豆豉发酵剂对发酵鱼酱的浸出成分、营养价值和生物活性化合物的影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于鲢鱼具有生长快、养殖成本低和抗病能力强等特点,近年来越来越受到人们的关注。该鱼种主要生长在中国、其他亚洲国家和美国。为了控制其过度繁殖并减少对以浮游生物为食的本土物种的威胁,有关鲢鱼市场开发相关的研究已经开始,将鲢鱼加工为具有附加值的人类消费品不失为一个很好的选择。
     豆豉是一种发酵大豆产品,具有很高的营养和药用价值,是中国、日本和其他东南亚国家传统的食品调味品,并且美国的许多中餐中也常见豆豉的身影。豆豉在许多发酵食品(如日本豆面酱)中被作为发酵剂使用,从而生产出适用于鱼肉发酵的如蛋白酶、淀粉酶、脂酶等多种酶类。
     为了扩展豆豉的应用范围,本文设计了一系列实验以验证能否使用豆豉培养基为发酵剂提高发酵鲢鱼肉的质量以及加速发酵过程。在实验1中,将活性预发酵豆豉培养基加入到鱼肉酱中后发酵30天,使其利于风味物质的生成(CulF)。在实验2中,将发酵30天后的豆豉添加到鱼肉酱然后再一同发酵30天(PSF)。在实验3中,未添加豆豉的鱼酱也发酵30天(ConF)。在CulF、PSF和ConF中,游离氨基酸总量分别增加了68.0%、68.6%和78.8%(P <0.05),其中谷氨酸、天冬氨酸、丙氨酸、赖氨酸和亮氨酸含量较高(>100mg/mL)。甲醛活性氮和氨基氮在发酵期间按照ConF 香气和滋味。这种豆豉接种发酵可以作为新技术来扩展鲢鱼的利用、消费和经济价值。
     此外,进一步研究了接种豆豉培养基(CulF)和空白(ConF)的发酵鱼酱中的蛋白降解和风味物质的生成情况。CulF中的蛋白酶活性比ConF样品中的高(P <0.05),并且在发酵15天后有3倍的差距。提取出的组分中主要含有低分子量的肽(<1.3kDa)。SDS–PAGE显示CulF和ConF样品提取物中的肌球蛋白重链分别在发酵1天和5天后完全降解。CulF的游离氨基酸和TCA可溶肽的含量高于ConF(P <0.05)。酶抑制剂测定显示出该发酵体系中主要含有酸性和丝氨酸蛋白酶。甲醇、硅甲烷二醇、吡嗪、酚和甲酸是CulF主要的挥发性化合物,而丁醇、丁酸和醋酸在ConF中占多数。鉴于豆豉接种发酵可以生成明显的滋味和香味物质,它应该优于鱼酱生产中的天然发酵。
     由于自由基清除活性是控制脂类过氧化的重要机制,本实验中接种豆豉培养基(CulF)和空白(ConF)鲢鱼酱样品发酵后,测定液体提取物中清除2,2-联氮-二(3-乙基-苯并噻唑-6-磺酸)自由基(ABTS)和1,1-二苯基-2-三硝基苯肼自由基(DPPH)的能力和金属螯合力,以及使用亚麻酸体系测定提取液的对脂质氧化的抑制力。结果显示出CulF在蛋白浓度为0.2mg/mL时可以清除高于50%的ABTS和DPPH自由基。CulF样品的亚铁离子螯合力高于ConF (P <0.05)。自由基清除能力跟发酵时间有关,除了DPPH都随着时间的增加而增加。CulF样品发酵15天后显示出很强的DPPH清除能力。尽管CulF展现出良好的抗氧化能力,但是显著(P <0.05)低于豆豉的抗氧化能力。CulF和ConF都可以稳定自由基并减少了80%的脂类被破坏。游离脂肪酸测定显示发酵30天后,CulF中EPA和DHA的含量明显高于ConF(P <0.05),可以推测这应得益于使用了豆豉发酵剂。
     由于提取液中的低分子量肽有部分抗氧化活性,从而对接种豆豉培养基的提取液(CulF)做进一步的研究。组分分析中有八种组分可以淬灭ABTS自由基,其淬灭能力随着分子量的增大而减弱。其中,7号组分呈现出很强的抗氧化活性。这些短肽也作为反应物质对风味形成起重要作用。
     微生物分析发现鱼酱中含有大量的乳酸菌,后者正是使得鱼酱有较低的pH并形成风味。这种格兰仕阳性菌(micrococci)在发酵鱼酱中大量增殖。另外,该研究发现CulF具有较高的过氧化值(16.8meq/kg鱼肉)和挥发性碱(TVB-N,111.9mg/100g)
     因此,本研究结果显示出豆豉作为新型发酵剂可以用来生产发酵鲢鱼酱,并具有极佳的风味和消费者接受度。发酵时间降至30天。该结果可以应用于其他鱼类品种以生产相似的发酵产品。
Silver carp (Hypophthalmichthys molitrix) has attracted much attention in recent years due to itsfast growth rate, a low feed demand, and resistance to diseases. Silver carp is intensively grown inChina, other Asian countries and U.S. To control over-population thereby reducing its threat tonative plankivorous species, research incentives and initiatives have been proposed toward marketdevelopment of silver carp. Processing silver carp to produce value-added products for humanconsumption is considered to be an attractive alternative.
     Douchi, a fermented soybean product, is a traditional food flavoring ingredient commonly usedin China, Japan, and other southeastern Asian countries, it is also used in many Chinese cuisines inthe U.S due its rich nutritional and medicinal compounds. Douchi find its practical applications inmany of fermented food products such as miso where it serves as starter culture, producing varietiesof enzymes including proteases, amylases and lipases which are suitable in fish fermentation.
     To expand the applications of douchi, numbers of experiments were conducted to test thehypothesis that douchi cultures could serve as a potential starter for enhancing the quality attributesof fermented silver carp meat and accelerate the fermentation processes. In experiment1, an active,pre-fermented douchi culture was incorporated into a fish paste to aid in the fish fermentation (30days) and facilitates biochemical production of extractive flavor components (CulF). In experiment2, a fully fermented (30days) douchi was added to a fish paste and the mixture was fermented for30days (PSF). In experiment3, a fish paste without the douchi culture was fermented for30d(ConF). Total extracted free amino acids increased by68.0,68.6, and78.8%(P <0.05) from theirinitial levels to2930,2422, and1573mg/mL after30days of fermentation for CulF, PSF, andConF fish pastes, respectively, of which, glutamic acid, aspartic acid, alanine, lysine, and leucinewere the major amino acids (>100mg/mL). The concentrations of both formaldehyde-reactivenitrogen and ammonia nitrogen extractives increased significantly (P <0.05) during fermentation,following the order of CulF> PSF> ConF. Low amounts of biogenic amines (<25ppm) wereproduced in all samples. Sensory panel evaluation showed that CulF fish pastes had desirable aromaand taste. The douchi-inoculated fermentation could be a novel technique for expanding theutilization, consumption, and the economic values of silver carp meats.
     Furthermore, silver carp fish pastes inoculated with a douchi starter culture (CulF) and withoutstarter culture (ConF) were fermented, and the consequent protein degradation and flavorcompound production were investigated. The protease activity in CulF, higher (P <0.05) than inConF, increased3-fold after15days of fermentation. The extractive fraction was largely comprisedof low-molecular-weight (<1.3kDa) peptides. SDS–PAGE analysis revealed complete degradationof myosin heavy chain in the extract after1and5days for CulF and ConF, respectively. CulF had ahigher (P <0.05) content of free amino acids and TCA–soluble peptides than ConF. Enzymeinhibitor assays showed that the fermentation system was dominated by acidic and serine proteases.Ethanol, silanediol, pyrazine, phenol, and formic acid were prevalent volatile compounds in CulF,while butanol, butanoic acid and acetic acid were abundant in ConF. For its strong capability to synthesize distinct taste and aroma compounds, douchi–inoculated fermentation was considered tobe superior to natural fermentation in the production of savory fish pastes.
     Free radical scavenging activity is an important mechanism for controlling peroxidation of lipids.Silver carp fish pastes inoculated with douchi starter culture (CulF) or without douchi starter culture(ConF) were further fermented, and the liquid extracts tested towards scavenging of2,20-azinobis(3-ethylbenzothiazoline-6-sulfonic acid)(ABTS),1,1-diphenyl-2-picrylhydrazyl (DPPH), andmetal chelating ability. The extract was also tested for inhibition of lipid oxidation in linolenicmodel system. The results indicated that CulF was superior to scavenging over50%of ABTS,DPPH at0.2mg/mL protein. The ferrous ions (Fe2+) chelating ability, showed that CulF wasstronger (P <0.05) than ConF. Radical scavenging capacity was fermentation dependent and itincreased with time except for DPPH. A strong DPPH scavenging ability was registered on day15for CulF. Although CulF exhibited good antioxidative capacity, it was significantly (P <0.05) lesspotent than douchi. The inhibition of lipid oxidation showed that both CulF and ConF couldstabilize radicals to minimize over80%lipid damage. The free fatty acid assay showed that CulFpossessed significantly higher (P <0.05) amounts of EPA and DHA than ConF after30dfermentation, inferring the advantage of douchi inclusion as starter culture.
     Since low molecular weight (MW) peptides of liquid extracts are known to play parts inantioxidantive activity of protein-derived antioxidants, further investigation was carried up to theliquid extracts (LE) of fish paste inoculated with douchi starter culture (CulF). The fractionationassay based on molecular weight revealed eight fractions which were able to scavenge the ABTSradicals. The scavenge capacity decrease with increases of molecular weights. Fraction7exhibiteda strong antioxidant activity among others. These low MW peptides also were considered to playsignificant role as reactants for flavor development.
     The microbial analysis found that fish pastes were largely dominated by lactic acid bacteriawhich played a supporting role in lowering pH and flavor developments. The gram positive bacteria(micrococci) populated the fermented fish pastes. Furthermore, the study found that CulF containedsubstantial amount of peroxide value (16.8meq/kg of fish), and total volatile base (TVB-N) of111.9mg/100g, however paint-like smell was not detected into the product.
     Therefore, the findings from the present study indicated that douchi as a novel starter can be usedto produce fermented silver carp fish pastes with excellent flavor and consumer acceptability.Fermentation time was reduced to30days. The results may be applicable to other fish species toproduce similar fermented products.
引文
1. Hjalmarsson GH, Park JW, Kristbergsson K. Seasonal effects on the physicochemicalcharacteristics of fish sauce made from capelin (Mallotus villosus). Food Chemistry2007;103:495-504.
    2. Katsuya F, Ishiyama S, Yaguramaki H, et al. Identification of Distinctive VolatileCompounds in Fish Sauce. J. Agric. Food Chem2002;50:5412-5416.
    3. Monta o N, Gavino G, Gavino VC. Polyunsaturated fatty acid contents of some traditionalfish and shrimp paste condiments of the Philippines Food Chemistry2001;75(2):155-158.
    4. Park J-N, Fukumoto Y, Fujita E, et al. Chemical Composition of Fish Sauces Produced inSoutheast and East Asian Countries. Journal of food composition and analysis2001;14:113-125.
    5. Giri A, Osako K, Ohshima T. Effect of raw materials on the extractive components and tasteaspects of fermented fish paste: sakana miso. Fish Sci2009;75:785-796.
    6. Lacroix C, Yildirim S. Fermentation technologies for the production of probiotics with highviability and functionality. Current Opinion in Biotechnology2007;18(176-183).
    7. Faithong N, Benjakul S, Phatcharat S, Binsan W. Chemical composition and antioxidativeactivity of Thai traditional fermented shrimp and krill products. Food Chemistry2010;119133-140.
    8. Harada K, Maeda T, Hasegawa Y, Tokunaga T, Tamura Y, Koizumi T. Antioxidant activityof fish sauces including puffer (Lagocephalus wheeleri) fish sauce measured by the oxygenradical absorbance capacity method Molecular Medicine Reports2010;3:663-668
    9. Jung W-K, Rajapakse N, Kim SK. Antioxidative activity of a low molecular weight peptidederived from the sauce of fermented blue mussel, Mytilus edulis. European Food Researchand Technology2005;220:535-539.
    10. Rajapakse N, Mendis E, Jung W-K, Je J-Y, Kim S-K. Purification of a radical scavengingpeptide from fermented mussel sauce and its antioxidant properties Food ResearchInternational2005;38:175-182.
    11. Sachindra NM, Bhaskar N. In vitro antioxidant activity of liquor from fermented shrimpbiowaste. Bioresource Technology2008;999013-9016.
    12. Wang D, Wang L, Zhu F-X, Zhu J-Y. In vitro and in vivo studies on the antioxidant activitiesof the aqueous extracts of Douchi (a traditional Chinese salt-fermented soybean food). FoodChemistry2008;107:1421-1428.
    13. Nout MJR, Kiers JL. Tempe fermentation, innovation and functionality: update into the thirdmillenium. Journal of Applied Microbiology2005;98:789-805.
    14. Schaasfsma G. Lactose and lactose derivatives as bioactive ingredients in human nutrition..International Dairy Science2008;18:458-465.
    15. Yoshida Y. Umami taste and traditional seasonings. Food Rev. Int1998;14:213-246
    16. Je J-Y, Park P-J, Jung W-K, Kim S-K. Amino acid changes in fermented oyster (Crassostreagigas) sauce with different fermentation periods. Food Chemistry2005;91:15-18.
    17. Kilinc B, Cakli S, Tolasa S, Dincer T. Chemical, microbiological and sensory changesassociated with fish sauce processing. European Food Research and Technology2006;22:604-613.
    18. Gomna A, Rana K. Inter-household and intra-household patterns of fish and meatconsumption in fishing communities in two states. Br. J. Nutr2007;97:145-152.
    19. Gildberg A. Utilisation of male arctic capelin and atlantic cod intestines for fish sauceproduction–evaluation of fermentation conditions. Bioresource Technology2001;76:119-
    123.
    20. Kose S, Hall GM. Sustainability of fermented fish products, in fish processing: sustainabilityand New Opportunities.(ed G. M. Hall), Wiley2010.
    21. Hariono I, Yeap SE, Kok TN, Ang GT. Use of koji and protease in fish sauce fermentation.Singapore J Pri Ind2006;32:19-29
    22. Giri A, Osako K, Ohshima T. Extractive components and taste aspects of fermented fishpastes and bean pastes prepared using different koji molds as starters. Fish Sci2009;75:481-489.
    23. Kim J-S, Shahidi F, Heu M-S. Characteristics of Salt-Fermented Sauces from ShrimpProcessing Byproducts. J. Agric. Food Chem2003;51:784-792.
    24. Klomklao S, Benjakul S, Visessanguan W, Kishimura H, Simpson BK. Effects of theaddition of spleen of skipjack tuna (Katsuwonus pelamis) on the liquefaction andcharacteristics of fish sauce made from sardine (Sardinella gibbosa) Food Chemistry200698:440-452.
    25. Kasankala LM, Xiong YL, Chen J. The Influence of Douchi Starter Cultures on theComposition of Extractive Components, Microbiological Activity, and Sensory Properties ofFermented Fish Pastes. J Food sci2012;76:154-161.
    26. Paludan-Mu¨ller C, Madsen M, Sophanodora P, Gram L, M ller PL. Fermentation andmicrof lora of plaa-som, a Thai fermented f ish product prepared with different saltconcentrations. International Journal of Food Microbiology2002;73:61-70.
    27.Candogan K, Acton JC. Proteolytic activity of bacterial starter cultures for meat fermentation.J Muscle Foods2004;15:23-34.
    28. Beddows CG, Ismail M, Steinkraus KH. The use of biomelain in the investigation offermentation. Journal of the Science of Food and Agriculture1979;11:379-388.
    29. Gram L, Dalgaard P. Fish spoilage bacteria-problems and solutions. Current Opinion inBiotechnology2002;13:262-266.
    30. Xu W, Yu G, Xue C, Xue Y, Ren Y. Biochemical changes associated with fast fermentationof squid processing by-products for low salt fish sauce Food Chemistry2008;107:1597-1604.
    31. Curtis RI. Umami and the foods of classical antiquity. Am J Clin Nutr2009;90:712S-8S.
    32. Kopermsub P, Yunchalard S. Safety control indices for plaa-som, a Thai fermented fishproduct. African J Microbiol Research2008;2:18-25.
    33. Essuman KM. Fermented fish in Africa.http://www.fao.org/DOCREP/T0685E/T0685E00.HTM1992.
    34. Dissaraphong S, Benjakul S, Visessanguan W, Kishimura H. The influence of storageconditions of tuna viscera before fermentation on the chemical, physical and microbiologicalchanges in fish sauce during fermentation. Bioresource Technology2006;97:2032-2040.
    35. Jo C, Kim DH, Kim HY, Lee WD, Lee HK, Byun MW. Studies on the development of low-salted, fermented, and seasoned Changran Jeotkal using the intestines of Theragechalcogramma Radiation Physics and Chemistry2004;71(121-124).
    36. Kasankala LM, Xiong YL, Chen J. Enzymatic Activity and Flavor Compound Production inFermented Silver Carp Fish Paste Inoculated with Douchi Starter Culture. J. Agric.FoodChem2012;60:226233.
    37. Martin RE, Carter EP, Flick GJ, Davis LM. Marine and freshwater products handbook. CRCPress2000:406-411.
    38. Peralta EM, Hatate H, Kawabe D, et al. Improving antioxidant activity and nutritionalcomponents of Philippine salt-fermented shrimp paste through prolonged fermentation. FoodChemistry2008;111:72-77.
    39. Riebroy S, Benjakula S, Visessanguan W. Properties and acceptability of Som-fug, a Thaifermented fish mince, inoculated with lactic acid bacteria starters LWT2008;41:569-580.
    40. Crisan EV, Sands A. Microflora of four fermented fish sauces. Applied Microbiology1975;29:106-108.
    41. Thorarinsdottir KA, Arason S, Geirsdottir M, Bogason SG, Kristbergsson K. Changes inmyofibrillar proteins during processing of salted cod (Gadus morhua) as determined byelectrophoresis and differential scanning calorimetry. Food Chemistry2002;77:377-385.
    42. Jiang J-J, Zeng QX, Zhu ZW, Zhang L-Y. Chemical and sensory changes associated Yu-lufermentation process-A traditional Chinese fish sauce. Food Chemistry2007;1041629-1634.
    43. Ishige N. Cultural aspects of fermented fish product in Asia. In: Lee, C H, Steinkraus, K Hand Alan Reilly, P J (Eds) United Nations University Press, Tokyo, Japan1993p13-32.
    44. Hui YH. The hand book of food science and technology and engineering CRC Press2006:pp63-66.
    45. McIver RC, Brooks RI, Reineccius GA. Flavor of Fermented Fish Sauce. J. Agrlc. FoodChem1982;30:1017-1020.
    46. Bille PG, Shemkai RH. Process development, nutrition and sensory characteristics of Spiced-smoked and sun-dried dagaa (rastrineobola argentea) from lake Victoria, tanzania. Africanjournal of food agriculture nutrition and development2006;6.
    47. Sanni AI, Asieduw M, Ayernor GS. Microflora and chemical composition of Momoni, aGhanaian fermented fish condiment. Journal of food composition and analysis2002;15:577-583.
    48. Antoine FR, Wei CI, Otwell WS, et al. TVB-N correlation with odor evaluation and aerobicplate count in Mahi-mahi (Coryphaena hippurus). Journal of food science2002;67:3210-3214.
    49. Visessanguan W, Benjakul S, Smitinont T, Kittikun C, Thepkasikul P, Panya A. Changes inmicrobiological, biochemical and physico-chemical properties of Nham inoculated withdifferent inoculum levels of Lactobacillus curvatus. LWT392006:814-826.
    50. Karashimada T. Epidemiological characteristics of human botulism occurred in Japan andtheir background. Report of the Hokkaido institute of public health No.311981.
    51. Nishiura H. Incubation period as a clinical predictor of botulism: analysis of previous izushi-borne outbreaks in Hokkaido, Japan, from1951to1965. Epidemiology and infection2007;135:126-130.
    52. Anihouvi VB, Ayernor GS, Hounhouigan JD, Sakyi-Dawson E. Quality characteristics oflanhouin: a traditionally Processed fermented fish product in the republic of benin. African JFood Agric nutri and development2006;6(1-10).
    53. Satomi M, Furushita M, Oikawa H, Yoshikawa-Takahashi M, Y Y. Analysis of a30kbpplasmid encoding histidine decarboxylase gene in Tetragenococcus halophilus isolated fromfish sauce. Int J Food Microbiol2008;126:202-209.
    54. SillaSantos MH. Biogenic amines: their importance in foods. International Journal of FoodMicrobiology1996;29:213-231.
    55. Tsai Y-H, Kung H-F, Chen H-C, Chang S-C, Hsu H-H, Wei C-I. Determination of histamineand histamine-forming bacteria in dried milkfish (Chanos chanos) implicated in a food-bornepoisoning. Food Chemistry2007;105:1289-1296.
    56. Kimura B, Konagaya Y, Fujii T. Histamine formation by Tetragenococcus muriaticus, ahalophilic lactic acid bacterium isolated from fish sauce. International Journal of FoodMicrobiology2001;70:71-77.
    57. Taira W, Funatsu Y, Satomi M, Takano T, Abe H. Changes in extractive components andmicrobial proliferation during fermentation of fish sauce from underutilized fish species andquality of final products. Fisheries science2007;73:913-923.
    58. Pet j E, Enrola S, Pet j P. Biogenic amines in cold-smoked fish fermented with lactic acidbacteria. Eur Food Res Technol2000;210280-285.
    59. Hu Y, Xia W, Ge C. Characterization of fermented silver carp sausages inoculated withmixed starter culture. LWT2008;41730-738.
    60. Pe′rez-Juan Ma, Flores Mn, Toldra F. Effect of ionic strength of different salts on thebinding of volatile compounds to porcine soluble protein extracts in model systems. FoodResearch International2007;40687-693.
    61. Teucher B, Dainty JR, Spinks CA, et al. Sodium and Bone Health-Impact of ModeratelyHigh and Low Salt Intakes on Calcium Metabolism in Postmenopausal Women. Journal ofBone and Mineral Research2008;23:1477-1485.
    62.Frankel EN. Antioxidants in lipid foods and food quality,. Food Chemistry1996;57(1):51-55.
    63. Baron CP, Andersen HJ. Myoglobin-induced lipid oxidation. A Review. J. Agric. FoodChem2002;50:3887-3897.
    64. Majumdar RK, Basu S. Characterization of the traditional fermented fish product from LonaIlish of northeast India. Indian J Traditional Knowledge2010;9:453-458.
    65. Park D, Xiong YL, Alderton AL, Ooizumi T. Biochemical changes in myofibrillar proteinisolates exposed to three oxidizing systems. J. Agric. Food Chem.2006;54:4445-4451.
    66. Erdmann K, Cheung BWY, Schr der H. The possible roles of food-derived bioactivepeptides in reducing the risk of cardiovascular disease. Journal of Nutritional Biochemistry2008;Article in press.
    67. Klompong V, Benjakul S, Kantachote D, Shahidi F. Antioxidative activity and functionalproperties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) asinfluenced by the degree of hydrolysis and enzyme type. Food Chem2007;102:1317-1327.
    68. Mendis E, Rajapakse, N., Kim, S.-K. Antioxidant Properties of a Radical-ScavengingPeptide Purified from Enzymatically Prepared Fish Skin Gelatin Hydrolysate. Journal ofagricultural and food chemistry2005;53(3).
    69. Cheng Y, Chen J, Xiong YL. Chromatographic Separation and Tandem MS Identification ofActive Peptides in Potato Protein Hydrolysate That Inhibit Autoxidation of Soybean Oil-in-Water Emulsions. J. Agric. Food Chem2010;58:8825-8832.
    70. Jae-Young J, Qian Z-J, Byun H-G, Kim S-K. Purification and characterization of anantioxidant peptide obtained from tuna backbone protein by enzymatic hydrolysis. ProcessBiochemistry2007;42(5):840-846.
    71. Yang J-I, Ho H-Y, Chu Y-J, Chow C-J. Characteristic and antioxidant activity of retortedgelatin hydrolysates from cobia (Rachycentron canadum) skin. Food Chemistry2008;110:128-136.
    72. Li B, Chen F, Wang XJB, Wu Y. Isolation and identification of antioxidative peptides fromporcine collagen hydrolysate by consecutive chromatography and electrospray ionization–mass spectrometry. Food Chemistry2007;102:1135-1143.
    73. Pe a-Ramosa EA, Xiong YL. Whey and soy protein hydrolysates inhibit lipid oxidation incooked pork patties,. Meat Science200364259-263.
    74. Moure A, Pazos M, Medina I, Domínguez H, Parajó JC. Antioxidant activity of extractsproduced by solvent extraction of almond shells acid hydrolysates Food Chemistry,2007;101:193-210
    75. Pokorn¢y J, Yanishlieva N, Gordon M. Introduction; In Pokorn¢y J, Antioxidants in foodPractical applications. Woodhead Publishing Ltd2001:1-10.
    76. Xie Z, Huang J, Xu X, Jin Z. Antioxidant activity of peptides isolated from alfalfa leafprotein hydrolysate. Food Chemistry2008;111370-376.
    77. Zhang J-H, Tatsumi E, Fan J-F, Li L-T. Chemical components of Aspergillus-type Douchi, aChinese traditional fermented soybean product, change during the fermentation process.International Journal of Food Science andTechnology2008;42(3):263-268.
    78. Dong S, Mingyong Z, Dongfeng W, Zunying L, Yuanhui, Z, Huicheng Y. Antioxidant andbiochemical properties of protein hydrolysates prepared from Silver carp(Hypophthalmichthys molitrix). Food Chemistry2008;107(4):1485-1493.
    79. Picot L, Bordenave S, Didelot S, et al. Antiproliferative activity of fish protein hydrolysateson human breast cancer cell lines. Process Biochemistry2006;41(5):1217-1222.
    80. Thiansilakul Y, Benjakul S, Shahidi F. Compositions, functional properties and antioxidativeactivity of protein hydrolysates prepared from round scad (Decapterus maruadsi). FoodChemistry2007;103:1385-1394.
    81. Qian Z-J, Jung W-K, Kim S-K. Free radical scavenging activity of a novel antioxidativepeptide purified from hydrolysate of bullfrog skin, Rana catesbeiana Shaw. BioresourceTechnology2008;991690-1698.
    82. Sidhu KS. Health benefits and potential risks related to consumption of fish or fish oil RegulToxicol Pharmacol2003;38(3):336-44.
    83. Wakako T, Yasuhiro F, Masataka S, Takashi T, Hiroki A. Changes in extractive componentsand microbial proliferation during fermentation of fish sauce from underutilized fish speciesand quality of final products. Fisheries science2007;73:913-923.
    84. Keast RSJ, Breslin PAS. Modifying the Bitterness of Selected Oral Pharmaceuticals withCation and Anion series of Salts. Pharmaceutical Research2002;19:1019-1026.
    85. Hartmann R, Meisel H. Food-derived peptides with biological activity: from research to foodapplications. Current Opinion in Biotechnology2007;18:163–169.
    86. Korhonen H, Pihlanto A. Food-derived Bioactive Peptides-Opportunities for DesigningFuture Foods. Pharmaceutical Design2003;9(16):1297-308.
    87. Thomas PD, Nichols TW, Angstadt A. Dietary Bioactive Peptides In Maintaining IntestinalIntegrity And Function. Am J Gastroenterol2001;96(9):311.
    88. Bordenave S, Fruitier I, Ballandier I, et al. HPLC preparation of fish waste hydrolysatefractions. Effect on guinea pig ileum and ACE activity. Prep Biochem Biotechnol2002;32(1):65-77.
    89. Duarte J, Vinderola G, Ritz B, Perdigo′n G, Matar C. Immunomodulating capacity ofcommercial fish protein hydrolysate for diet supplementation. Immunobiology2006;211:341-350.
    90. Omar KA, Liang S, Ling WY, Wang X. Stabilizing flaxseed oil with individual antioxidantsand their Mixtures. Eur. J. Lipid Sci. Technol2010;112:1003-1011.
    91. Khan MA, Parrish CC, Shahidi F. Effects of mechanical handling, storage on ice andascorbic acid treatment on lipid oxidation in cultured Newfoundland blue mussel (Mytilusedulis). Food Chemistry2006;99605-614.
    92. Kris-Etherton PM, Harris WS, Lawrence J. Fish Consumption, Fish Oil, Omega-3FattyAcids, and Cardiovascular Disease. Circulation2002;106:2747-2757.
    93. Kim S-K, Eresha M. Bioactive compounds from marine processing byproducts-A review.Food Research International2006;39383-393.
    94. Dall TL, Bays H. Addressing lipid treatment targets beyond cholesterol: a role forprescription omega-3fatty acid therapy. South Med J2009;102:390-396.
    95. Valdivielso P, Rioja J, García-Arias C, Sánchez-Chaparro MA, González-Santos P. Omega3fatty acids induce a marked reduction of apolipoprotein B48when added to fluvastatin inpatients with type2diabetes and mixed hyperlipidemia: a preliminary report. CardiovascularDiabetology2009;8.
    96. Nordvi B, Egelandsdal B, Langsrud, Ofstad R, Slinde E. Development of a novel,fermented and dried saithe and salmon product. Innovative. Food Science and EmergingTechnologies2007;8:163-171
    97. Kasankala MK, Xue Y, Weilong Y, Hong SD, Qian H. Optimization of gelatine extractionfrom grass carp (Catenopharyngodon idella) fish skin by response surface methodology.Bioresource Technology2007;983338-3343.
    98. Muyonga JH, Colec CGB, Duodu KG. Extraction and physico-chemical characterisation ofNile perch (Lates niloticus) skin and bone gelatine. Food Hydrocoll.2004;8:581-592.
    99. Wangtueai S, Noomhorm A. Processing optimization and characterization of gelatin fromlizardfish (Saurida spp.) scales. LWT-Food Science and Technology2009;42:825-834.
    100. Je J-Y, Park P-J, Kim S-K. Antioxidant activity of a peptide isolated from Alaska pollack(Theragra chalcogramma) frame protein hydrolysate. Food Research International2005;38:45-50.
    101. Jung W-K, Mendis E, Je J-Y, et al. Angiotensin I-converting enzyme inhibitory peptidefrom yellowfin sole (Limanda aspera) frame protein and its antihypertensive effect inspontaneously hypertensive rats. Food Chemistry2006;94:26-32
    102. Aspmo SI, Horn SJ, Eijsink VGH. Enzymatic hydrolysis of Atlantic cod (Gadus morhua L.)viscera. Process Biochemistry2005;401957-1966.
    103. Herna′ndez-Briones A, Vela′zquez G, Va′zquez M, Ram′rez JA. Effects of adding fishgelatin on Alaska pollock surimi gels. Food Hydrocolloids2009;23:2446-2449.
    104. Morzel M, Fitzgerald GF, Arendt EK. Fermentation of salmon fillets with a variety of lacticacid bacteria Food Research International.199730(10).
    105. Sinsuwan S, Rodtong S, Yongsawatdigul J. Purification and Characterization of a Salt-Activated and Organic Solvent-Stable Heterotrimer Proteinase from Virgibacillus sp. SK33Isolated from Thai Fish sauce. J. Agric. Food Chem2010;58:248–256.
    106. Kim J-S, Chung HY. Components in commercial douchi-a Chinese fermented black beanproduct by supercritical fluid extraction. J Food Sci Nutr2008;13:12-17
    107. Wang L-J, Li D, Zou L, et al. Antioxidative activity of douchi (a Chinese traditional salt-fermented soybean food) extracts during its processing. Inter.J Food Properties,2007;10:385-396.
    108. Takahashi R, Wakabayashi K. Antioxidant activities of black and yellow soybeans againstlow density lipoprotein oxidation. J. Agric. Food Chem2005;534578-4582.
    109. Kim J-M, Kim J-S, Yoo H, Choung M-G, Sung AM-K. Effects of Black Soybean [Glycinemax (L.) Merr.] Seed Coats and Its Anthocyanidins on Colonic Inflammation and CellProliferation in Vitro and in Vivo. J. Agric. Food Chem2008;56:8427-8433.
    110. Fogarty WM. Microbial enzymes and biotechnology. Applied Science Publishers, London1983:317p.
    111. Machida M, Asai K, Sano M, Tanaka T, Kumagai T. Genome sequencing and analysis ofAspergillus oryzae. Nature2005;l431157-1161.
    112. Vishwanatha KS, Appu Rao AG, Singh SA. Characterisation of acid protease expressedfrom Aspergillus oryzae MTCC5341. Food Chemistry2009;114:402-407.
    113. Itou K, Kobayashi S, Ooizumi T, Akahane Y. Changes of proximate composition andextractive components in narezushi, a fermented mackerel product, during processingFisheries science2006;72:1269-1276.
    114. Dincer T, Cakil S, Kilnc B, Tolasa S. Amino acids and fatty acid composition content of fishsauce. J Veterinary and animal advances2010;9:311-315.
    115. FAO. The state of world fisheries and aquaculture2010.2010.
    116. Kolar CS, Chapman DC, Courtenay WR, Housel CMJ, Williams JD. Asian Carps of theGenus Hypophthalmichthys (Pisces, Cyprinidae)―A Biological Synopsis andEnvironmental Risk Assessment. Report to U.S. Fish and Wildlife Service per InteragencyAgreement94400-3-01282005.
    117. FAO. The state of world fisheries and aquaculture. http://www.fao.org2006
    118. Gao R-C, Xue C-H, Yuan L, et al. Determination of the big head carp myofibrillar(Aristichthys nobilis) adenosine triphosphatase activity by ion chromatography. Journal ofChromatography A2006;1118:278-280
    1. Yuan C, Kaneniwa M, Wang X, et al. Seasonal expression of2types of myosin withdifferent thermostability in silver carp muscle (Hypophthalmichthys molitrix). J FoodScience2006;71:39-43.
    2. Rogowski DL, Soucek DJ, Levengood JM, et al. Contaminant concentrations in Asian carps,invasive species in the Mississippi and Illinois Rivers. Environ Monit Assess2009;157:211-
    222.
    3. Hoff M. U. S. Fish&Wildlife Service. http://www.fws.gov.2006.
    4. Kasankala MK, Xue Y, Weilong Y, Hong SD, Qian H. Optimization of gelatine extractionfrom grass carp (Catenopharyngodon idella) fish skin by response surface methodology.Bioresource Technology2007;983338-3343.
    5. Zhang J-H, b ET, Ding C-H, d L-TL. Angiotensin I-converting enzyme inhibitory peptides indouchi, a Chinese traditional fermented soybean product. Food Chemistry2006;98:551-557.
    6. Chen Q-C, Yong-Xia X, Peng W, Xiao-Yun X, Si-Yi P. Aroma impact compounds inLiuyang douchi, a Chinese traditional fermented soya bean product. Inter J Food Sci Technol2011;46:1823-1829.
    7. Machida M, Asai K, Sano M, Tanaka T, Kumagai T. Genome sequencing and analysis ofAspergillus oryzae. Nature2005;l431157-1161.
    8. Ogawa A, Yasuhara A, Tanaka TI, Takaharu Sakiyama, Nakanishi AK. Production ofNeutral Protease by Membrane-Surface of Aspergillus ryzae IAM Liquid Culture J FermentBioengineering1995;8035-40.
    9. Vishwanatha KS, Appu Rao AG, Singh SA. Characterisation of acid protease expressed fromAspergillus oryzae MTCC5341. Food Chemistry2009;114:402-407.
    10. Wang PA, Martinez I, Olsen RL. Myosin heavy chain degradation during post mortemstorage of Atlantic cod (Gadus morhua L.) Food Chemistry2009;11541228-41233.
    11. Kammoun R, Naili B, Bejar S. Application of a statistical design to the optimization ofparameters and culture medium for a-amylase production by Aspergillus oryzae CBS819.72grown on gruel (wheat grinding by-product). Bioresource Technology2008;99:5602-5609.
    12. Li Y-Y, Yu R-C, Chou C-C. Some biochemical and physical changes during the preparationof the enzyme-ripening sufu, a fermented product of soybean curd. J. Agric. Food Chem2010;58:4888-489.
    13. Yin L-J. Effect of rice koji fermentation on the characteristics of mackerel muscle. J. Fish.Soc. Taiwan2005;32:341-354.
    14. Kakio M, Kawai Y, Kunimoto M, Yamazaki K, Inouei N, Shina H. Chemical andMicrobiological Characteristics of Sardine Meal Fermented with Aspergillus oryzae IFO
    4202. Food Sci Techno/. Int. Toky'o1997;3:61-68.
    15. Kose S, Hall GM. Sustainability of fermented fish products, in fish processing: sustainabilityand New Opportunities.(ed G. M. Hall), Wiley2010.
    16. Kim J-S, Chung HY. Components in commercial douchi-a Chinese fermented black beanproduct by supercritical fluid extraction. J Food Sci Nutr2008;13:12-17
    17. Kasankala LM, Xiong YL, Chen J. The Influence of Douchi Starter Cultures on theComposition of Extractive Components, Microbiological Activity, and Sensory Properties ofFermented Fish Pastes. J Food sci2012;76:154-161.
    18. Wang D, Wang L-j, Zhu F-x, et al. In vitro and in vivo studies on the antioxidant activities ofthe aqueous extracts of Douchi (a traditional Chinese salt-fermented soybean food. FoodChemistry2008;107.
    19. Klomklao S, Kishimura H, Benjakul S. Endogenous proteinases in true sardine (Sardinopsmelanostictus). Food Chemistry2008;107:213-220.
    20. Lowry OH, Rosebrough NJ, Fan AL, Randall RJ. Protein measurement with Folinphenolreagent Journal of Biological Chemistry1951193:256-275.
    21. Bernfield P. Enzymes of starch degradation and synthesis F. Nord (Ed.), Advances inenzymology,. Vol. XIIInterscience Publication, NY (1951), p.3791951.
    22. Miller GL. Use of dinitorosalicylic acid reagent for determination of reducing sugar. Anal.Chem1959;31:426-428.
    23. AOAC. Official method of analysis (15th ed.): In K. Helrich (Ed.). Washington, DC:Association of Official Analytical Chemists.1999.
    24. Klomklao S, Benjakul S, Visessanguan W, Kishimura H, Simpson BK. Effects of theaddition of spleen of skipjack tuna (Katsuwonus pelamis) on the liquefaction andcharacteristics of fish sauce made from sardine (Sardinella gibbosa) Food Chemistry200698:440-452.
    25. Giri A, Osako K, Ohshima T. Effect of raw materials on the extractive components and tasteaspects of fermented fish paste: sakana miso. Fish Sci2009;75:785-796.
    26. Kilinc B, Cakli S, Tolasa S, Dincer T. Chemical, microbiological and sensory changesassociated with fish sauce processing. European Food Research and Technology2006;22:604-613.
    27. Xu C, Hao K, Peng C, Cai W, Jin Z. Effects of fermentation temperature and time on thephysicochemical and sensory characteristics of douchi. Food Technology and Biotechnology2005;43(3):307-311
    28. Ndaw AD, Faid M, Bouseta A, Zinedine A. Effect of Controlled Lactic Acid BacteriaFermentation on the Microbiological and Chemical Quality of Moroccan Sardines (Sardinapilchardus). Int. J. Agri. Biol2008;10:21-27.
    29. Callewaert R, Vuyst LD. Bacteriocin production with Lactobacillus amylovuirus DCE471isimproved and stabilized by feed batch fermentation. Appl. Envir. Microbiol2000;66:606-13.
    30.Candogan K, Acton JC. Proteolytic activity of bacterial starter cultures for meat fermentation.J Muscle Foods2004;15:23-34.
    31. García-Gómez MJ, Huerta-Ochoa S, Loera-Corral O, Prado-Barragán LA. Advantages of aproteolytic extract by Aspergillus oryzae from fish flour over a commercial proteolyticpreparation. Food Chemistry2009;112:604-608.
    32. Zhang J-H, Tatsumi E, Fan J-F, Li L-T. Chemical components of aspergillus-type douchi, aChinese traditional fermented soybean product, change during the fermentation process. InterJ Food Sci and Technol2007;42:263-268.
    33. Wang R, Lawb RCS, Webb C. Protease production and conidiation by Aspergillus oryzae inflour fermentation. Process Biochemistry2005;40:217-227.
    34. Kim J-S, Y CH. Components in Commercial Douchi-a Chinese Fermented Black BeanProduct by Supercritical Fluid Extraction. J Food Sci Nutr2008;1312-17
    35. Visessanguana W, Benjakulb S, Siriporn Riebroyb, Thepkasikula P. Changes in compositionand functional properties of proteins and their contributions to Nham characteristics. MeatScience2004;66:579-588.
    36. Cao M-J, Shao W, Li Y, Hara K, Wang X-C, Su W-J. Identification of a myofibril-boundserine Proteinase in the skeletal muscle of silver carp. J Food Biochemistry2004;28:373-386.
    37. Fogarty WM. Microbial enzymes and biotechnology. Applied Science Publishers, London1983:317p.
    38. Hariono I, Yeap SE, Kok TN, Ang GT. Use of koji and protease in fish sauce fermentation.Singapore J Pri Ind2006;32:19-29
    39. Xu W, Yu G, Xue C, Xue Y, Ren Y. Biochemical changes associated with fast fermentationof squid processing by-products for low salt fish sauce Food Chemistry2008;107:1597-1604.
    40. Majumdar RK, Basu S. Characterization of the traditional fermented fish product from LonaIlish of northeast India. Indian J Traditional Knowledge2010;9:453-458.
    41. Owens JD, Mendoza LS. Enzymatically hydrolysed and bacterially fermented fisheryproducts. J. Food Technol.1985(20):273-93.
    42. Itou K, Kobayashi S, Ooizumi T, Akahane Y. Changes of proximate composition andextractive components in narezushi, a fermented mackerel product, during processingFisheries science2006;72:1269-1276.
    1. MAPRC. Ministry of Agriculture of the people's Republic of China.2006.
    2. Yuan CH. Culture and processing of silver carp, a plankton feeder fish: for sustainabledevelopment of freshwater fisheries in China. International Symposium on “SustainabilityScience on Seafood and Ocean Ecosystem Conservation”.7November2009. Hakodate,Japan2009.
    3. Xu Y, Xia W, Yang F, Kim JM, Nie X. Effect of fermentation temperature on the microbialand physicochemical properties of silver carp sausages inoculated with Pediococcuspentosaceus. Food Chemistry2010;118512-518.
    4. Zhang J, Duan R, Tian Y, Konno K. Characterisation of acid-soluble collagen from skin ofsilver carp (Hypophthalmichthys molitrix). Food Chemistry2009;116:318-322.
    5. Kilinc B, Cakli S, Tolasa S, Dincer T. Chemical, microbiological and sensory changesassociated with fish sauce processing. European Food Research and Technology2006;22:604-613.
    6. Peralta EM, Hatate H, Kawabe D, et al. Improving antioxidant activity and nutritionalcomponents of Philippine salt-fermented shrimp paste through prolonged fermentation. FoodChemistry2008;111:72-77.
    7. Dissaraphong S, Benjakul S, Visessanguan W, Kishimura H. The influence of storageconditions of tuna viscera before fermentation on the chemical, physical and microbiologicalchanges in fish sauce during fermentation. Bioresource Technology2006;97:2032-2040.
    8. Martin RE, Carter EP, Flick GJ, Davis LM. Marine and freshwater products handbook. CRCPress2000:406-411.
    9. Hariono I, Yeap SE, Kok TN, Ang GT. Use of koji and protease in fish sauce fermentation.Singapore J Pri Ind2006;32:19-29
    10. Beddows CG, Ismail M, Steinkraus KH. The use of biomelain in the investigation offermentation. Journal of the Science of Food and Agriculture1979;11:379-388.
    11. Sinsuwan S, Rodtong S, Yongsawatdigul J. Production and characterization of NaCl-activated proteinases from Virgibacillus sp. SK33isolated from fish sauce fermentationProcess Biochemistry2008;43185-192.
    12. García-Gómez MJ, Huerta-Ochoa S, Loera-Corral O, Prado-Barragán LA. Advantages of aproteolytic extract by Aspergillus oryzae from fish flour over a commercial proteolyticpreparation. Food Chemistry2009;112:604-608.
    13. Giri A, Osako K, Ohshima T. Extractive components and taste aspects of fermented fishpastes and bean pastes prepared using different koji molds as starters. Fish Sci2009;75:481-
    489.
    14. Chen J, Cheng Y-Q, Yamaki K, Li L-T. Anti-a-glucosidase activity of Chinese traditionallyfermented soybean (douchi). Food Chemistry2007;1031091-1096.
    15. Zhang J-H, Tatsumi E, Fan J-F, Li L-T. Chemical components of Aspergillus-type Douchi, aChinese traditional fermented soybean product, change during the fermentation process.International Journal of Food Science andTechnology2008;42(3):263-268.
    16. Peng Y, Huang Q, Zhang R-H, Zhang Y-Z. Purification and characterization of a fibrinolyticenzyme produced by Bacillus amyloliquefaciens DC-4screened from douchi, a traditionalChinese soybean food. Comparative Biochemistry and Physiology Part B2003;13445-52.
    17. Wang CT, Ji BP, Nout R, Li PL, Ji H, Chen LF. Purification and characterization of afibrinolytic enzyme of Bacillus subtilis DC33, isolated from Chinese traditional Douchi. J.Ind. Microbial. Biotechnol.2006;33:750-758.
    18. Wang D, Wang L, Zhu F-X, Zhu J-Y. In vitro and in vivo studies on the antioxidant activitiesof the aqueous extracts of Douchi (a traditional Chinese salt-fermented soybean food). FoodChemistry2008;107:1421-1428.
    19. Wang D, Wang L-j, Zhu F-x, et al. In vitro and in vivo studies on the antioxidant activities ofthe aqueous extracts of Douchi (a traditional Chinese salt-fermented soybean food. FoodChemistry2008;107.
    20. Xu W, Yu G, Xue C, Xue Y, Ren Y. Biochemical changes associated with fast fermentationof squid processing by-products for low salt fish sauce Food Chemistry2008;107:1597-1604.
    21. AOAC. Official method of analysis (15th ed.): In K. Helrich (Ed.). Washington, DC:Association of Official Analytical Chemists.1999.
    22. Klomklao S, Kishimura H, Benjakul S. Endogenous proteinases in true sardine (Sardinopsmelanostictus). Food Chemistry2008;107:213-220.
    23. Klomklao S, Benjakul S, Visessanguan W, Kishimura H, Simpson BK. Effects of theaddition of spleen of skipjack tuna (Katsuwonus pelamis) on the liquefaction andcharacteristics of fish sauce made from sardine (Sardinella gibbosa) Food Chemistry200698:440-452.
    24. Itou K, Kobayashi S, Ooizumi T, Akahane Y. Changes of proximate composition andextractive components in narezushi, a fermented mackerel product, during processingFisheries science2006;72:1269-1276.
    25. Jo C, Kim DH, Kim HY, Lee WD, Lee HK, Byun MW. Studies on the development of low-salted, fermented, and seasoned Changran Jeotkal using the intestines of Theragechalcogramma Radiation Physics and Chemistry2004;71(121-124).
    26. Klomklao S, Benjakul S, Viessaguan W, Kishimura H, Simpson BK. Proteolytic degradationof sardine (Sardinella gibbosa) proteins by trypsin from skipjack tuna (Katsuwonus pelamis)spleen. Food Chemistry2006;98:14-22.
    27. Martńez-Alvare O, Gómez-Guillén MC. The effect of brine composition and pH on the yieldand nature of water-soluble proteins extractable from brined muscle of cod (Gadus morhua).Food Chemistry2005;92:71-77.
    28. Gram L, Dalgaard P. Fish spoilage bacteria-problems and solutions. Current Opinion inBiotechnology2002;13:262-266.
    29. Uch da M, Ou J, Chen B-W, et al. Effects of soy sauce koji and lactic acid bacteria on thefermentation of fish sauce from freshwater silver carp Hypophthalmichthys molitrix. Fish Sci2005;71:422-430.
    30. Nordvi B, Egelandsdal B, Langsrud, Ofstad R, Slinde E. Development of a novel,fermented and dried saithe and salmon product. Innovative. Food Science and EmergingTechnologies2007;8:163-171
    31. Anihouvi VB, Sakyi-Dawson E, Ayernor GS, Hounhouigan JD. Microbiological changes innaturally fermented cassava fish (Pseudotolithus sp.) for lanhouin production. InternationalJournal of Food Microbiology2007;116287-291.
    32. Mizutani T, Kimizuka A, Ruddle K, Ishige N. Chemical compounds of fermented fishproducts. Journal of Food Composition and Analysis1992;5:152-159.
    33. Park J-N, Fukumoto Y, Fujita E, et al. Chemical Composition of Fish Sauces Produced inSoutheast and East Asian Countries. Journal of food composition and analysis2001;14:113-
    125.
    34. Chaillou S, Champomier-Vergès M-C, Cornet M, et al. The complete genome sequence ofthe meat-borne lactic acid bacterium Lactobacillus sakei23K. Nature Biotechnology2005;23:1527-1533.
    35. SillaSantos MH. Biogenic amines: their importance in foods. International Journal of FoodMicrobiology1996;29:213-231.
    36. Satomi M, Furushita M, Oikawa H, Yoshikawa-Takahashi M, Y Y. Analysis of a30kbpplasmid encoding histidine decarboxylase gene in Tetragenococcus halophilus isolated fromfish sauce. Int J Food Microbiol2008;126:202-209.
    37. Harada K, Maeda T, Hasegawa Y, Tokunaga T, Tamura Y, Koizumi T. Antioxidant activityof fish sauces including puffer (Lagocephalus wheeleri) fish sauce measured by the oxygenradical absorbance capacity method Molecular Medicine Reports2010;3:663-668
    38. Rajapakse N, Mendis E, Jung W-K, Je J-Y, Kim S-K. Purification of a radical scavengingpeptide from fermented mussel sauce and its antioxidant properties Food ResearchInternational2005;38:175-182.
    1. Cao M-J, Shao W, Li Y, Hara K, Wang X-C, Su W-J. Identification of a myofibril-boundserine Proteinase in the skeletal muscle of silver carp. J Food Biochemistry2004;28:373-386.
    2. Liu H, Yin, L., Li, S., Zhang, N., Ma, C. Effect of endogenous cathepsin B and L ondegradation of sliver carp (Hypophthalmichthys molitrix) myofibrillar proteins. Journal ofMuscle Foods2008;19(2):125-139.
    3. Iacobuzio-Donahue CA, Shuja S, Cai J, Peng P, Murnane MJ. Elevations in Cathepsin BProtein Content and Enzyme Activity Occur Independently of Glycosylation duringColorectal Tumor Progression. J. Biological Chem1997;27229190-29199.
    4. Platt MO, Ankeny RF, Jo H. Laminar Shear Stress Inhibits Cathepsin L Activity inEndothelial Cells. Arterioscler. Thromb. Vasc. Biol.2006;26:1784-1790.
    5. Wang PA, Martinez I, Olsen RL. Myosin heavy chain degradation during post mortemstorage of Atlantic cod (Gadus morhua L.) Food Chemistry2009;11541228-41233.
    6. Yuan C, Kaneniwa M, Wang X, et al. Seasonal expression of2types of myosin withdifferent thermostability in silver carp muscle (Hypophthalmichthys molitrix). J FoodScience2006;71:39-43.
    7. Yongsawatdigul J, Rodtong S, Raksakulthai N. Acceleration of thai fish sauce fermentationusing proteinases and bacterial starter cultures. Food Sci2007;72:382-390.
    8. Ramírez JA, García-Carre o FL, Morales OG, Sánchez A. Inhibition of Modori-AssociatedProteinases by Legume Seed Extracts in Surimi Production. J Food Science2002;67:578-81.
    9. Kilinc B, Cakli S, Tolasa S, Dincer T. Chemical, microbiological and sensory changesassociated with fish sauce processing. European Food Research and Technology2006;22:604-613.
    10. Klomklao S, Benjakul S, Visessanguan W, Kishimura H, Simpson BK. Effects of theaddition of spleen of skipjack tuna (Katsuwonus pelamis) on the liquefaction andcharacteristics of fish sauce made from sardine (Sardinella gibbosa) Food Chemistry200698:440-452.
    11. Chéret R, Delbarre-Ladrat C, Lamballerie-Anton Md, Verrez-Bagnis V. Calpain andcathepsin activities in post mortem fish and meat muscles. Food Chemistry2007;101:1474-
    1479.
    12. Toyokawa Y, Takahara H, Reungsang A, et al. Purification and characterization of ahalotolerant serine proteinase from thermotolerant Bacillus licheniformis RKK-04isolatedfrom Thai fish sauce. Appl Microbiol Biotechnol2010;86:1867-1875.
    13. Ichishima E, Yamane A, Nitta T, et al. Production of a New Type of Acid Carboxypeptidaseof Molds of the Aspergillus niger Group. Applied Microbiology1973;26:327-331.
    14. Kasankala LM, Xiong YL, Chen J. The Influence of Douchi Starter Cultures on theComposition of Extractive Components, Microbiological Activity, and Sensory Properties ofFermented Fish Pastes. J Food sci2012;76:154-161.
    15. Klomklao S, Kishimura H, Benjakul S. Endogenous proteinases in true sardine (Sardinopsmelanostictus). Food Chemistry2008;107:213-220.
    16. Lowry OH, Rosebrough NJ, Fan AL, Randall RJ. Protein measurement with Folinphenolreagent Journal of Biological Chemistry1951193:256-275.
    17. Park D, Xiong YL, Alderton AL, Ooizumi T. Biochemical changes in myofibrillar proteinisolates exposed to three oxidizing systems. J. Agric. Food Chem.2006;54:4445-4451.
    18. Laemmli UK. Cleavage of structural proteins during the assembly of the head ofbacteriophage T4. Nature1970;227(680–685.).
    19. Itou K, Kobayashi S, Ooizumi T, Akahane Y. Changes of proximate composition andextractive components in narezushi, a fermented mackerel product, during processingFisheries science2006;72:1269-1276.
    20. Adler-Nissen J. Determination of the degree of hydrolysis of food protein hydrolysates bytrinitrobenzenesulfonic acid. J Agric Food Chem1979;27:1256-1262.
    21. Benjakul S, Morrissey MT. Protein Hydrolysates from Pacific Whiting Solid Wastes. J.Agric. Food Chem1997;453423-3430.
    22. Kakio M, Kawai Y, Kunimoto M, Yamazaki K, Inouei N, Shina H. Chemical andMicrobiological Characteristics of Sardine Meal Fermented with Aspergillus oryzae IFO
    4202. Food Sci Techno/. Int. Toky'o1997;3:61-68.
    23. Machida M, Asai K, Sano M, Tanaka T, Kumagai T. Genome sequencing and analysis ofAspergillus oryzae. Nature2005;l431157-1161.
    24. García-Gómez MJ, Huerta-Ochoa S, Loera-Corral O, Prado-Barragán LA. Advantages of aproteolytic extract by Aspergillus oryzae from fish flour over a commercial proteolyticpreparation. Food Chemistry2009;112:604-608.
    25. Nielsen LB, Nielsen HH. Purification and characterization of cathepsin D from herringmuscle (Clupea harengus). Comparative Biochemistry and Physiology Part B2001;128351-
    363.
    26. Kasankala LM, Xiong YL, Chen J. Enzymatic Activity and Flavor Compound Production inFermented Silver Carp Fish Paste Inoculated with Douchi Starter Culture. J. Agric.FoodChem2012;60:226233.
    27. Sinsuwan S, Rodtong S, Yongsawatdigul J. Purification and Characterization of a Salt-Activated and Organic Solvent-Stable Heterotrimer Proteinase from Virgibacillus sp. SK33Isolated from Thai Fish sauce. J. Agric. Food Chem2010;58:248–256.
    28. Klomklao S, Benjakul S, Viessaguan W, Kishimura H, Simpson BK. Proteolytic degradationof sardine (Sardinella gibbosa) proteins by trypsin from skipjack tuna (Katsuwonus pelamis)spleen. Food Chemistry2006;98:14-22.
    29.Candogan K, Acton JC. Proteolytic activity of bacterial starter cultures for meat fermentation.J Muscle Foods2004;15:23-34.
    30. Vishwanatha KS, Appu Rao AG, Singh SA. Characterisation of acid protease expressed fromAspergillus oryzae MTCC5341. Food Chemistry2009;114:402-407.
    31. Riebroy S, Benjakul S, Visessanguan W, Rustad UET. Comparative study on acid-inducedgelation of myosin from Atlantic cod (Gardus morhua) and burbot (Lota lota). FoodChemistry2008;109:42-53.
    32. Yongsawatdigul J, Choi Y, Udomporn S. Biogenic Amines Formation in Fish SaucePrepared from Fresh and Temperatureabused Indian Anchovy (Stolephorus indicus). Food sci2004;69:312-319.
    33. Adamiec J, Cejpek K, Roossner J, Velisek J. Novel strecker degradatiom products of tyrosineand dihydroxyphelalanine. Czech J Food Sci2001;1913-18.
    34. Yongsawatdigul J, Rodtong S, Raksakulthai N. Acceleration of Thai fish sauce fermentationusing proteases and bacterial starter cultures.. J Food Sci2007;72:382390.
    1. Je J-Y, Park P-J, Kim S-K. Antioxidant activity of a peptide isolated from Alaska pollack(Theragra chalcogramma) frame protein hydrolysate. Food Research International2005;38:45-50.
    2. Frankel EN. Antioxidants in lipid foods and food quality,. Food Chemistry1996;57(1):51-55.
    3. Pokorn¢y J, Yanishlieva N, Gordon M. Introduction; In Pokorn y J, Antioxidants in foodPractical applications. Woodhead Publishing Ltd2001:1-10.
    4. Peralta EM, Hatate H, Kawabe D, et al. Improving antioxidant activity and nutritionalcomponents of Philippine salt-fermented shrimp paste through prolonged fermentation. FoodChemistry2008;111:72-77.
    5. Qian Z-J, Jung W-K, Kim S-K. Free radical scavenging activity of a novel antioxidativepeptide purified from hydrolysate of bullfrog skin, Rana catesbeiana Shaw. BioresourceTechnology2008;991690-1698.
    6. Pihlanto A, Akkanen S, Korhonen HJ. AEC-inhibitory and antioxidant properties of potato(Solanu tuberosum). Food Chemistry2008;109(1):104-112.
    7. Jung W-K, Rajapakse N, Kim SK. Antioxidative activity of a low molecular weight peptidederived from the sauce of fermented blue mussel, Mytilus edulis. European Food Researchand Technology2005;220:535-539.
    8. Cheng Y, Chen J, Xiong YL. Chromatographic Separation and Tandem MS Identification ofActive Peptides in Potato Protein Hydrolysate That Inhibit Autoxidation of Soybean Oil-in-Water Emulsions. J. Agric. Food Chem2010;58:8825-8832.
    9. Domaizon I, Desvilettes C, Debroas D, Boardier G. Influence of zooplankton andphytoplankton on the fatty acid composition of digesta and tissue lipids of silvercarp:mesocosm experiment. J Fish Biology2000;57:417-432.
    10. Taskaya L, Chen Y-C, Beamer S, Tou JC, Jacek J. Compositional characteristics of materialsrecovered from whole gutted silver carp (hypophthalmichthys molitrix) using isoelectricsolubilization/precipitation. J. Agric. Food Chem2009;57:4259-4266.
    11. Kasankala LM, Xiong YL, Chen J. The Influence of Douchi Starter Cultures on theComposition of Extractive Components, Microbiological Activity, and Sensory Properties ofFermented Fish Pastes. J Food sci2012;76:154-161.
    12. Rdez MB, Pastoriza L, Sampedro G, Herrera JJR, Cabo ML. Modified method for theanalysis of free fatty acids in fish. J. Agric. Food Chem2005;53:1903-1906.
    13. Saisithi P. Studies on the origin and development of the typical flavor and aroma of Thai fishsauce. PhD thesis, University of Washington, Seattle, WA1967.
    14. Monta o N, Gavino G, Gavino VC. Polyunsaturated fatty acid contents of some traditionalfish and shrimp paste condiments of the Philippines Food Chemistry2001;75(2):155-158.
    15. Takahashi Y, Konishi T. Tofu (soybean curd) lowers serum lipid levels and modulateshepatic gene expression involved in lipogenesis primarily through its protein, not isoflavone,component in rats. J. Agric. Food Chem2011;dx.doi.org/10.1021/jf201403u.
    16. Benbrook CM. Elevating Antioxidant Levels in Food through Organic Farming and FoodProcessing. An Organic Center of Science Review. Organic Center for Education andPromotion2005.
    17. Kim J-S, Shahidi F, Heu M-S. Characteristics of Salt-Fermented Sauces from ShrimpProcessing Byproducts. J. Agric. Food Chem2003;51:784-792.
    18. Osorio C, Carriazo JG, Almanza O. Antioxidant activity of corozo (Bactris guineensis) fruitby electron paramagnetic resonance (EPR) spectroscopy. Eur Food Res Technol2011;233:103-108.
    19. Zhou X, Wang C, Jiang A. Antioxidant peptides isolated from sea cucumber StichopusJaponicus. Eur Food Res Technol DOI10.1007/s00217-011-1610-x.
    20. Wang D, Wang L-j, Zhu F-x, et al. In vitro and in vivo studies on the antioxidant activities ofthe aqueous extracts of Douchi (a traditional Chinese salt-fermented soybean food. FoodChemistry2008;107.
    21. Klompong V, Benjakul S, Kantachote D, Shahidi F. Antioxidative activity and functionalproperties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) asinfluenced by the degree of hydrolysis and enzyme type. Food Chem2007;102:1317-1327.
    22. Robles-Martinez C, Cervantes E, Ke PJ. Recommended Method For Testing the ObjectiveRancidity Development in Fish Based on TBARS Formation. Canadian Technical Report ofFisheries and Aquatic Sciences No.10891982.
    23. Udenigwe CC, Aluko RE. Antioxidant and Angiotensin Converting Enzyme-InhibitoryProperties of a Flaxseed Protein-Derived High Fischer Ratio Peptide Mixture. J Agric FoodChem.2010;58:4762-4768.
    24. Amarowicz’ R, Shahidi F. Antioxidant activity of peptide fractions of capelin proteinhydrolysates. Food Chem1997;58:355-359.
    25. Tang X, He Z, Dai Y, Xiong YL, Xie M, Chen J. Peptide fractionation and free radicalscavenging activity of zein hydrolysate. J Agric Food Chem2010;13:587-93.
    26. Sharma OP, Tej KB. DPPH antioxidant assay revisited. Food Chemistry2009;113:1202-
    1205.
    27. Esaki H, Nohara Y, Onozaki H, Osawa T. Antioxidative Activity of Natto. Nippon Shokuhin.Kogyo Gakkaishi1990;37:474-477.
    28. Markus BH, Hem CJ, Heinz E. Structure of an Antioxidant from Fermented Soybeans(Tempeh). Journal of the American Oil Chemists' Society1997;74:477-479.
    29. Wang D, Wang L, Zhu F-X, Zhu J-Y. In vitro and in vivo studies on the antioxidant activitiesof the aqueous extracts of Douchi (a traditional Chinese salt-fermented soybean food). FoodChemistry2008;107:1421-1428.
    30. Yin L-J. Effect of rice koji fermentation on the characteristics of Mackerel Muscle. J. Fish.Soc. Taiwan2005;32:341-354.
    31. Adler-Nissen J. Determination of the degree of hydrolysis of food protein hydrolysates bytrinitrobenzenesulfonic acid. J Agric Food Chem1979;27:1256-1262.
    32. Kong B, Xiong YL. Antioxidant Activity of Zein Hydrolysates in a Liposome System andthe Possible Mode of Action. J. Agric. Food Chem2006;54(16):6059-6068.
    33. Erdmann K, Cheung BWY, Schr der H. The possible roles of food-derived bioactivepeptides in reducing the risk of cardiovascular disease. Journal of Nutritional Biochemistry2008;Article in press.
    34. Mendis E, Rajapakse, N., Kim, S.-K. Antioxidant Properties of a Radical-ScavengingPeptide Purified from Enzymatically Prepared Fish Skin Gelatin Hydrolysate. Journal ofagricultural and food chemistry2005;581-587
    35. Pe′rez-Mateos M, Lanier TC, Boyd LC. Effects of rosemary and green tea extracts on frozensurimi gels fortified with omega-3fatty acids. J Sci Food Agric2006;86:558-567
    36. Riebroy S, Benjakul S, Visessanguan W, Rustad UET. Comparative study on acid-inducedgelation of myosin from Atlantic cod (Gardus morhua) and burbot (Lota lota). FoodChemistry2008;109:42-53.
    37. Harada K, Maeda T, Hasegawa Y, Tokunaga T, Tamura Y, Koizumi T. Antioxidant activityof fish sauces including puffer (Lagocephalus wheeleri) fish sauce measured by the oxygenradical absorbance capacity method Molecular Medicine Reports2010;3:663-668
    38. Rajapakse N, Mendis E, Jung W-K, Je J-Y, Kim S-K. Purification of a radical scavengingpeptide from fermented mussel sauce and its antioxidant properties Food ResearchInternational2005;38:175-182.
    39. Kilinc B, Cakli S, Tolasa S, Dincer T. Chemical, microbiological and sensory changesassociated with fish sauce processing. European Food Research and Technology2006;22:604-613.
    40. Dong S, Mingyong Z, Dongfeng W, Zunying L, Yuanhui, Z, Huicheng Y. Antioxidant andbiochemical properties of protein hydrolysates prepared from Silver carp(Hypophthalmichthys molitrix). Food Chemistry2008;107(4):1485-1493.
    1. Kose S, Hall GM. Sustainability of fermented fish products, in fish processing: sustainabilityand New Opportunities.(ed G. M. Hall), Wiley2010.
    2. Antoine FR, Wei CI, Otwell WS, et al. TVB-N correlation with odor evaluation and aerobicplate count in Mahi-mahi (Coryphaena hippurus). Journal of food science2002;67:3210-
    3214.
    3. Visessanguan W, Benjakul S, Smitinont T, Kittikun C, Thepkasikul P, Panya A. Changes inmicrobiological, biochemical and physico-chemical properties of Nham inoculated withdifferent inoculum levels of Lactobacillus curvatus. LWT392006:814-826.
    4. Nishiura H. Incubation period as a clinical predictor of botulism: analysis of previous izushi-borne outbreaks in Hokkaido, Japan, from1951to1965. Epidemiology and infection2007;135:126-130.
    5. Anihouvi VB, Ayernor GS, Hounhouigan JD, Sakyi-Dawson E. Quality characteristics oflanhouin: a traditionally Processed fermented fish product in the republic of benin. African JFood Agric nutri and development2006;6(1-10).
    6. Kanner J, Rosenthal I. An assessment of lipid oxidation in foods. Pure&App/. Chern1992;64:I959-1964.
    7. Aubourg SP, Medina I, Gallardo JM. Quality assessment of blue whiting (Micromesistiuspoutassou) during chilled storage by monitoring lipid damages. J. Agric. Food Chem1998;46:3662-3666.
    8. Haernandaz-Herrero MM, Roig-Saugues AX, Lopez-sbater EI, Rodringuez-Jerez JJ, Mora-Ventura MT. Total volitile basic nitrogen and other physicochemical and microbiologicalcharacteristics as related to ripening of salted anchovies. J Food Science1999;64:344-347.
    9. Kilinc B, Cakli S, Tolasa S, Dincer T. Chemical, microbiological and sensory changesassociated with fish sauce processing. European Food Research and Technology2006;22:604-613.
    10. Omar KA, Liang S, Ling WY, Wang X. Stabilizing flaxseed oil with individual antioxidantsand their Mixtures. Eur. J. Lipid Sci. Technol2010;112:1003-1011.
    11. Valdivielso P, Rioja J, García-Arias C, Sánchez-Chaparro MA, González-Santos P. Omega3fatty acids induce a marked reduction of apolipoprotein B48when added to fluvastatin inpatients with type2diabetes and mixed hyperlipidemia: a preliminary report. CardiovascularDiabetology2009;8.
    12. Gaman PM, Sherrington KB. The Science of Food. BH, Google Book1996.
    13. Kim S-K, Eresha M. Bioactive compounds from marine processing byproducts-A review.Food Research International2006;39383-393.
    14. Hartmann R, Meisel H. Food-derived peptides with biological activity: from research to foodapplications. Current Opinion in Biotechnology2007;18:163–169.
    15. Bernbom N, Ng YY, Paludan-Müller C, Gram L. Survival and growth of salmonella andvibrio in som-fak, a Thai low-salt garlic containing fermented fish product. InternationalJournal of Food Microbiology2009;134:223-229.
    16. Kasankala LM, Xiong YL, Chen J. The Influence of Douchi Starter Cultures on theComposition of Extractive Components, Microbiological Activity, and Sensory Properties ofFermented Fish Pastes. J Food sci2012;76:154-161.
    17. Xu W, Yu G, Xue C, Xue Y, Ren Y. Biochemical changes associated with fast fermentationof squid processing by-products for low salt fish sauce Food Chemistry2008;107:1597-1604.
    18. Chapman RH, McKay J. The estimation of peroxides in fats and oils by the ferric thiocyanatemethod. J. Am. Oil Chem. Soc1949;26:360-363.
    19. AOAC. Official Methods of Analysis,14th ed.; Association of Official Analytical Chemists:Washington, DC.1984.
    20. Chen YC, Nguyen J, Semmens K, Beamer S, Jaczynski J. Physicochemical changes inomega-3-enhanced farmed rainbow trout (Oncorhynchus mykiss) muscle during refrigeratedstorage. Food Chem.2007;104:1143-1152.
    21. Crisan EV, Sands A. Microflora of four fermented fish sauces. Applied Microbiology1975;29:106-108.
    22. Kakio M, Kawai Y, Kunimoto M, Yamazaki K, Inouei N, Shina H. Chemical andMicrobiological Characteristics of Sardine Meal Fermented with Aspergillus oryzae IFO
    4202. Food Sci Techno/. Int. Toky'o1997;3:61-68.
    23. Majumdar RK, Basu S. Characterization of the traditional fermented fish product from LonaIlish of northeast India. Indian J Traditional Knowledge2010;9:453-458.
    24. Kobayashi T, Kimura B, Fujii T. Differentiation of Tetragenococcus populations occurring inproducts and manufacturing processes of puffer fish ovaries fermented with rice-bran.International Journal of Food Microbiology2000;56:211-218.
    25. Beddows CG, Ardeshir AG, J DW. Development and origin of volatile fatty acids in Budu. JSci Food Agric1980;31:86-92.
    26. Dincer T, Cakil S, Kilnc B, Tolasa S. Amino acids and fatty acid composition content of fishsauce. J Veterinary and animal advances2010;9:311-315.
    27. Zhou X, Wang C, Jiang A. Antioxidant peptides isolated from sea cucumber StichopusJaponicus. Eur Food Res Technol DOI10.1007/s00217-011-1610-x.
    28. Hossain MA, Furuichi M, Yone Y. POV, TBA, and VBN values, and proximate, amino acid,and fatty acid compositions of scrap meals fermented with fungi. Nippon Suisan Gakkaishi1987;53:1629-1632.
    29. Roldan AH, Barassi CA, Trucco RE. Increase in free fatty acids during rippening ofAnchovies (Engraulus anchoita). J Food Technol1985;20:581-585.
    30. Uch da M, Ou J, Chen B-W, et al. Effects of soy sauce koji and lactic acid bacteria on thefermentation of fish sauce from freshwater silver carp Hypophthalmichthys molitrix. Fish Sci2005;71:422-430.
    31. Venugopal V, Shahidi F. Valueadded products from underutilized fish species. Food Scienceand Nutrition1995;35:431-453.
    32. Rai AK, Swapnaa HC, Bhaskara N, Halamib PM, Sachindraa NM. Effect of fermentationensilaging on recovery of oil from fresh water fish viscera. Enzyme and MicrobialTechnology2010;46:9-13.
    33. Taskaya L, Chen Y-C, Beamer S, Tou JC, Jacek J. Compositional characteristics of materialsrecovered from whole gutted silver carp (hypophthalmichthys molitrix) using isoelectricsolubilization/precipitation. J. Agric. Food Chem2009;57:4259-4266.
    34. Monta o N, Gavino G, Gavino VC. Polyunsaturated fatty acid contents of some traditionalfish and shrimp paste condiments of the Philippines Food Chemistry2001;75(2):155-158.
    35. Peralta EM, Hatate H, Kawabe D, et al. Improving antioxidant activity and nutritionalcomponents of Philippine salt-fermented shrimp paste through prolonged fermentation. FoodChemistry2008;111:72-77.
    36. Giri A, Osako K, Ohshima T. Extractive components and taste aspects of fermented fishpastes and bean pastes prepared using different koji molds as starters. Fish Sci2009;75:481-
    489.
    37. Keast RSJ, Breslin PAS. Modifying the Bitterness of Selected Oral Pharmaceuticals withCation and Anion series of Salts. Pharmaceutical Research2002;19:1019-1026.
    38. Wakako T, Yasuhiro F, Masataka S, Takashi T, Hiroki A. Changes in extractive componentsand microbial proliferation during fermentation of fish sauce from underutilized fish speciesand quality of final products. Fisheries science2007;73:913-923.
    39. Xie Z, Huang J, Xu X, Jin Z. Antioxidant activity of peptides isolated from alfalfa leafprotein hydrolysate. Food Chemistry2008;111370-376.