基于富勒烯、卟啉和咔咯的新颖二元体系的构筑及性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了理解和模拟光合作用,最终实现太阳能的有效利用,电子/能量给受体体系的构筑成为近年来的重要研究领域之一。大量的给受体体系通过多种多样的连接方式来实现高效的能量转移或电子转移过程。新型的桥连方式和新颖给受体单元的引入不但能赋予体系全新的性能,还可以促进人们更深入地理解电子/能量转移过程的机制,以探寻更具实用价值的分子器件和功能材料。
     富勒烯是良好的电子和能量的受体,卟啉和咔咯是优异的电子和能量的给体。为进一步拓宽上述功能分子在这一领域的应用,本文从构筑新型共价键连方式、新型超分子作用方式以及新型给体单元三个角度制备了三类新颖的电子与能量给受体体系,并对其性质进行了研究。
     (1)设计合成了新型的N连接的二茂铁/卟啉-富勒烯[60]二元体系,并成功的分离出[5,6]-开环和[6,6]-闭环亚氨基富勒烯两种异构体。电化学测试表明,开环异构体中的生色团(二茂铁/卟啉)比闭环异构体更容易被氧化。这是由于在闭环异构体中,桥连氮原子与富勒烯的共轭程度更大,因此降低了其对N取代芳基的给电子能力所致。瞬时吸收光谱测试表明,在卟啉-富勒烯体系中,开环异构体具有较长的电荷分离态寿命。本研究内容首次实现了利用富勒烯的不同共轭方式(开环或闭环)来影响给体的性质,进而调控了整个给受体体系的功能,这为设计可调控的电子转移体系和富勒烯材料提供了新的思路。
     (2)首次通过超分子方式构筑了咔咯-富勒烯给受体体系。证实了钴咔咯与C60和C70在溶液中有明显的相互作用。通过共结晶单晶结构研究了钴咔咯与C60和C70在固态下相互作用方式。对双咔咯主体分子与富勒烯超分子作用的研究结果表明,协同效应能够明显地增强咔咯体系对富勒烯的结合能力,这为进一步构筑咔咯-富勒烯超分子电子或能量转移体系奠定了基础。
     (3)合成了一类新颖的电子和能量给体分子:meso-meso直接键连卟啉-咔咯杂化体。通过X-射线单晶衍射技术对其结构进行了研究。吸收光谱测试结果表明,这种杂化体首次实现了不同类型大环分子之间强的激子耦合作用。发射光谱和荧光寿命测试结果表明,在卟啉和咔咯之间存在可逆的能量转移过程。
The success of nature in converting inexpensive, non-polluting and inexhaustible sunlight into energy has stimulated investigation of this natural process in order to emulate it. Numerous electron/energy donor-acceptor systems have been constructed through altering linkage modes or employing novel donors and acceptors in order to get a better understanding of the photosynthetic process.
     Fullerenes are good electron and energy acceptors, while both porphyrins and corroles are excellent electron and energy donors. In this dissertation, we respectively constructed three kinds of hybrids based on the above functional molecules. Firstly, we realized a novel covalent bridge (one nitrogen atom) in porphyrin-fullerene hybrids. Secondly, we reported the first example of non-covalent corrole fullerene hybrids through supramolecular interaction. Thirdly, we obtained a new kind of electron/energy donors, meso-meso directly linked porphyrin-corrole hybrids.
     1. N-linked ferrocene/porphyrin-fullerene dyads have been prepared and two isomers were separated successfully. Results revealed that chromophores connected to [5,6]-open isomers are more easily oxidizable than that attached to [6,6]-closed isomers. We suppose that the engagement between nitrogen lone-electron pair and the delocalized π-system of fullerene should exist in both [5,6]-open and [6,6]-closed isomers, but the extent of engagement should be larger in [6,6]-closed isomer. As a result, the lifetime of charge-separated state is much longer in [5,6]-open isomer. This work suggests that a perturbation of the π electrons of the fullerene can exactly affect electronic properties of N-substituted aryl groups through the bridge nitrogen atom, and will make fullerene-based materials an extensive application in functional materials.
     2. The supramolecular interactions between cobalt corroles and fullerenes (C60and C70) have been systematically explored both in solution and the solid state for the first time. It is very appealing that cobalt corrole monomers can form stable complexes with fullerenes in solution. Further results from bis-corroles suggest a realizable way to construct powerful complexes of corroles and fullerenes with the aid of cooperative effect. This work will broaden the application of corroles in supramolecular chemistry and lead to the supramolecular corrole-fullerene electron/energy transfer systems.
     3. meso-meso directly linked porphyrin corrole hybrids have been successfully prepared as novel electron/energy donors. Crystal structure and calculation results show that porphyrin and corrole moiety in the dyads adopt orthogonal conformations, which results in minimizing the conjugate of neighboring chromophores. Obvious split Soret bonds observed in absorption spectra reflect the existence of strong exciton coupling between the adjacent porphyrin and corrole. Luminescence properties of the freebase dyad indicate that reversible energy transfer should exist in the dyad.
引文
[1]Scheidt W R. Structural deformations and bond length alternation in porphyrin pi-cation radicals. J Biol Inorg Chem,2001,6:727-732
    [2]Rovira C, Kunc K, Hutter J, et al. Structural and electronic properties of Co-corrole, Co-corrin, and Co-porphyrin. Inorg Chem,2001,40:11-17
    [3]Koizumi K, Shoji M, Nishiyama Y, et al. The electronic structure and magnetic property of metal-oxo, porphyrin manganese-oxo, and mu-oxo-bridged manganese porphyrin dimer. Int J Quantum Chem,2004,100:943-956
    [4]Ishii K, Kobayashi N. The excited multiplet states of metalloporphyrins and metallo-phthalocyanines coordinated or linked to nitroxide radicals. Coordin Chem Rev,2000,198: 231-250
    [5]Sliwa W, Mianowska B. Metalloporphyrin arrays. Transit Metal Chem,2000,25:491-504
    [6]Adler A D, Longo F R, Finarelli J D, et al. A simplified synthesis for meso-tetraphenylporphine. J Org Chem,1967,32:476
    [7]Adler A D, Longo F R, Shergalis W. Mechanistic investigations of porphyrin syntheses. I. Preliminary studies on ms-tetraphenylporphin. J Am Chem Soc,1964,86:3145-3149
    [8]Lindsey J S, Schreiman I C, Hsu H C, et al. Rothemund and Adler-Longo reaction revisited: synthesis of tetraphenylporphyrins under equilibrium conditions. J Org Chem,1987,52: 827-836
    [9]Lindsey J S, Maccrum K A, Tyhonas J S, et al. Investigation of a synthesis of meso-porphyrin employing high concentration conditions and an electron transport chain for aerobic oxidation. J Org Chem,1994,59:579-587
    [10]Arsenault G P, Bullock E, MacDonald S F. Pyrromethanes and porphyrins therefonn. J Am Chem Soc,1960,82:4384-4389
    [11]Boubif A, Momenteau M. Synthesis of a porphyrin-2,3-diacrylic acid using a New "3+1" type procedure. J Chem Soc Chem Commun,1994,2069-2070
    [12]Boubif A, Momenteau M A. New convergent method for porphyrin synthesis based on a "3+1" condensation. J Chem Soc Perkin Trans I,1996,1235-1242
    [13]Johnson A W, Kay IT. Corroles. Part I. Synthesis. J Chem Soc 1965,1620-1629
    [14]Aviv-Harel I, Gross Z. Coordination chemistry of corroles with focus on main group elements. Coord Chem Rev,2011,255:717-736
    [15]Thomas K E, Alemayehu A B, Conradie J, et al. The structural chemistry of metallocorroles: combined X-ray crystallography and quantum chemistry studies afford unique insights. Acc Chem Res,2012,45:1203-1214
    [16]Vogel E, Will S, Tilling A S, et al. Metallocorroles with formally tetravalent iron. Angew Chem Int Ed,1994,33:731-735
    [17]Kadish K M, Shen J, Fremond L, et al. Clarification of the oxidation state of cobalt corroles in heterogeneous and homogeneous catalytic reduction of dioxygen. Inorg Chem,2008,47: 6726-6737
    [18]Broring M, Brgier F, Tejero E C, et al. Revisiting the electronic ground state of copper corroles. Angew Chem Int Ed,2007,46:445-448
    [19]Huang H C, Shown I, Chang S T, et al. Pyrolyzed cobalt corrole as a potential non-precious catalyst for fuel cells. Adv Funct Mater,2012,22:3500-3508
    [20]Okada S, Segawa H. Substituent-control exciton in j-aggregates of protonated water-insoluble porphyrins. J Am Chem Soc,2003,125:2792-2796
    [21]Aviv-Harel I, Gross Z. Aura of corroles. Chem-eur J,2009,15:8382-8394
    [22]Shen J, Shao J, Ou Z, et al. Electrochemistry and spectroelectrochemistry of meso-Substituted free-base corroles in nonaqueous media:reactions of (Cor)H3, [(Cor)H4]+,and [(Cor)H2]-. Inorg Chem,2006,45:2251-2265
    [23]Ou Z, Shen J, Shao J, et al. Protonated free-base corroles:acidity, electrochemistry, and spectroelectrochemistry of [(Cor)H4]+, [(Cor)H5]2+, and [(Cor)H6]3+. Inorg Chem,2007,46: 2775-2786
    [24]Ding T, Aleman E A, Modarelli D A, et al. Photophysical properties of a series of free-base corroles. J Phys Chem A,2005,109:7411-7417
    [25]Tasior M, Gryko D T, Cembor M, et al. Photoinduced energy and electron transfer in 1,8-naphthalimide-corrole dyads. New J Chem,2007,31:247-259
    [26]Gryko D T, Piechowska J, Jaworski J S, et al. Synthesis and properties of directly linked corrole-ferrocene systems. New J Chem,2007,31:1613-1619
    [27]Flamigni L, Gryko D T. Photoactive corrole-based arrays. Chem Soc Rev,2009,38: 1635-1646
    [28]Bendix J, Dmochowski I J, Gray H B, et al. Structural, electrochemical, and photophysical properties of Gallium(Ⅲ) 5,10,15-tri(pentafluorophenyl)corrole. Angew Chem Int Ed,2000, 39:4048-4051
    [29]Palmer J H, Durrell A C, Gross Z, et al. Near-IR phosphorescence of iridium(Ⅲ) corroles at ambient temperature. J Am Chem Soc,2010,132:9230-9231
    [30]Vestfrid J, Botoshansky M, Palmer J H, et al. Iodinated aluminum(ⅲ) corroles with long-lived triplet excited states. J Am Chem Soc,2011,133:12899-12901
    [31]Aviv I, Gross Z. Corrole-based applications. Chem Commun,2007,1987-1999
    [32]Paolesse R. Corrole:The little big porphyrinoid. Synlett,2008,15:2215-2230
    [33]Gross Z, Galili N, Saltsman I. The first direct synthesis of corroles from pyrrole. Angew Chem Int Ed,1999,38:1427-1429
    [34]Gross Z, Galili N, Simkhovich L, et al. Solvent-free condensation of pyrrole and pentafluorobenzaldehyde:a novel synthetic pathway to corrole and oligopyrromethenes. Org Lett,1999,1:599-602
    [35]Gryko D T, Koszarna B. Refined methods for the synthesis of meso-substituted A3-and trans-A2B-corroles. Org Biomol Chem,2003,1:350-357
    [36]Paolesse R, Jaquinod L, Nurco D J, et al.5,10,15-triphenylcorrole:a product from a modified Rothemund reaction. Chem Commun,1999,1307-1308
    [37]Gryko D T, Jadach K. A simple and versatile One-Pot synthesis of meso-substituted trans-A2B-corroles. J Org Chem,2001,66:4267-4275
    [38]Koszarna B, Gryko D T. Efficient synthesis of meso-substituted corroles in a H2O-MeOH mixture. J Org Chem,2006,71:3707-3717
    [39]Guilard R, Gryko D T, Canard G, et al. Synthesis of corroles bearing up to three different meso substituents. Org Lett,2002,4:4491-4494
    [40]Geier G R, Chick J F B, Callinan J B, et al. A survey of acid catalysis and oxidation conditions in the two-step, one-flask synthesis of meso-substituted corroles via dipyrromethanedicarbinols and pyrrole. J Org Chem,2004,69:4159-4169
    [41]Kroto H W, Curl R F, Smalley R E, et al. C60:Buckminsterfullerene. Nature,1985,318: 162-163
    [42]Kratschmer W, Lamb L D, Fostiropoulos K, et al. Solid C60:a new form of carbon. Nature, 1990,347:354-358
    [43]Liddle P A, Kuciauskas D, Sumida J P, et al. Photoinduced charge separation and charge recombination to a triplet state in a carotene-porphyrin-fullerene triad. J Am Chem Soc,1997, 119:1400-1405
    [44]Kuciauskas D, Liddell P A, Moore A L, et al. Magnetic switching of charge separation lifetimes in artificial photosynthetic reaction centers. J Am Chem Soc,1998,120: 10880-10886
    [45]Echegoyen L, Echegoyen L E. Electrochemistry of fullerenes and their derivatives. Acc Chem Res,1998,31:593-601
    [46]Guldi D M, Prato M. Excited-state properties of C6o fullerene derivatives. Acc Chem Res, 2000,33:695-703
    [47]Allemand P M, Koch A, Wudl F. Two different fullerenes have the same cyclic voltammetry. J Am Chem Soc,1991,113:1050-1051
    [48]Xie Q, Arias F, Echegoyen L. Electrochemically-reversible, single-electron oxidation of C60 and C70.J Am Chem Soc,1993,115:9818-9819
    [49]Urbani M, Pelado B, Cruz P, et al. Synthesis and photoinduced energy-and electron-transfer processes of C60-oligothienylenevinylene-C70 dumbbell compounds. Chem Eur J,2011,17: 5432-5444
    [50]Oswald F, El-Khouly M E, Araki Y, et al. Photophysical properties of the newly synthesized triad based on [70]fullerene studies with laser flash photolysis. J Phys Chem B,2007,111: 4335-4341
    [51]Hirsch A. Principles of Fullerene Reactivity. Top Curr Chem,1999,199:1-60
    [52]Prate M, Li C, Wudl F. Addition of azides to C60:synthesis of azafulleroids. J Am Chem Soc, 1993,115:1148-1150
    [53]Cases M, Duran M, Mestres J, et al. Mechanism of the addition reaction of alkyl azides to [60]fullerene and the subsequent N2 extrusion to form monoimino-[60]fullerenes. J Org Chem, 2001,66:433-442
    [54]Cases M, Duran M, Sola M. The [2+1] cycloaddition of singlet oxycarbonylnitrenes to C60.J Mol Model,2000,6,205-212
    [55]Brabec C J, Cravino A, Meissner D, et al. Origin of the open circuit voltage of plastic solar cells. Adv Funct Mater,2001,11:374-380
    [56]Gonzalez S, Martin N, Swartz A, et al. Addition reaction of azido-exTTFs to C60:synthesis of fullerotriazoline and azafulleroid electroactive dyads. Org Lett,2003,5:557-560
    [57]Guldi D M, Hungerbuhler H, Carmichael I, et al. [6-6]-closed versus [6-5]-open isomers of imino-and methanofullerenes:a comparison with pristine C60 and (C59N). J Phys Chem A, 2000,104:8601-8608
    [58]Yang C, Cho S, Heeger A J, et al. Heteroanalogues of PCBM:N-bridged imino-PCBMs for organic field-effect transistors. Angew Chem Int Ed,2009,48:1592-1595
    [59]Park S H, Yang C, Cowan S, et al. Isomeric iminofullerenes as acceptors in bulk heterojunction organic solar cells. J Mater Chem,2009,19:5624-5628
    [60]Sanchez L, Herranz M, Martin N. C60-based dumbbells:connecting C60 cages through electroactive bridges. J Mater Chem,2005,15:1409-1421
    [61]Guldi D M, Maggini M, Scorrano G, et al. Intramolecular electron transfer in fullerene/ferrocene based donor-bridge-acceptor dyads. J Am Chem Soc,1997,119:974-980
    [62]Fujitsuka M, Tsuboya N, Hamasaki R, et al. Solvent polarity dependence of photoinduced charge separation and recombination processes of ferrocene-C60 dyads. J Phys Chem A,2003, 107:1452-1458
    [63]Tsuboya N, Hamasaki R, Ito M, et al. Nonlinear optical properties of novel fullerene-ferrocene hybrid molecules. J Mater Chem,2003,13:511-513
    [64]Maggini M, DonoA, Scorrano G, et al. Synthesis of a [60]fullerene derivative covalently linked to a Ruthenium(Ⅱ) tris(bipyridine) complex. J Chem Soc Chem Commun,1995, 845-846
    [65]Maggini M, Guldi D M, Mondini S, et al. Photoinduced electron transfer in a tris(2,2'-bipyridine)-C60-Ruthenium(Ⅱ) dyad:evidence of charge recombination to a fullerene excited state. Chem Eur J,1998,4:1992-2000
    [66]Polese A, Mondini S, Bianco A, et al. Solvent-dependent intramolecular electron transfer in a peptide-linked [Ru(bpy)3]2+-C60 dyad. J Am Chem Soc,1999,121:3446-3452
    [66]Martin N, Sanchez L, Illescas B, et al. Photoinduced electron transfer between C6o and electroactive units. Carbon 2000,38:1577-1585
    [67]Martin N, Sanchez L, Herranz M A, et al. Electronic communication in tetrathiafulvalene (TTF)/C60 Systems:Toward molecular solar energy conversion materials. Acc Chem Res, 2007,40:1015-1024
    [68]Diaz M C, Herranz M A, Illescas B M, et al. Probing charge separation in structurally dfferent C60/exTTF ensembles. J Org Chem,2003,68:7711-7721
    [69]Herranz M A, Martin N, Ramey J, et al. Thermally reversible C60-based donor-acceptor ensembles. Chem Commun,2002:2968-2969
    [70]O'Regan B C, L6pez-Duarte I, Martinez-Diaz M V, et al. Catalysis of recombination and its limitation on open circuit voltage for dye sensitized photovoltaic cells using phthalocyanine dyes. J Am Chem Soc,2008,130:2906-2907
    [71]Gouloumis A, Liu S G, Sastre A, et al. Synthesis and electrochemical properties of phthalocyanine-fullerene hybrids. Chem Eur J,2000,6:3600-3607
    [72]Loi M A, Denk P, Hoppe H, et al. Long-lived photoinduced charge separation for solar cell applications in phthalocyanine-fulleropyrrolidine dyad thin films. J Mater Chem,2003,13: 700-704
    [73]Guldi D M, Gouloumis A, Vazquez P, et al. Nanoscale organization of a phthalocyanine-fullerene system:remarkable stabilization of charges in photoactive 1-D nanotubules. J Am Chem Soc,2005,127:5811-5813
    [74]Martin-Gomis L, Ohkubo K, Fernandez-Lazaro F, et al. Synthesis and photophysical studies of a new nonaggregated C60-silicon phthalocyanine-C60 triad. Org Lett,2007,9:3441-3444
    [75]El-Khouly M E, Kim J H, Kay K Y, et al. Synthesis and photoinduced intramolecular processes of light-harvesting silicon phthalocyanine-naphthalenediimide-fullerene connected systems. Chem Eur J,2009,15:5301-5310
    [76]Sukeguchi D, Yoshiyama H, Shibata N, et al. Synthesis and spectroscopic investigation of trifluoroethoxy-coated phthalocyanine linked with fullerene. J Fluorine Chem,2009,130: 361-364.
    [77]Gonzalez-Rodriguez D, Torres T, Guldi D M, et al. Subphthalocyanines:tuneable molecular scaffolds for intramolecular electron and energy transfer processes. J Am Chem Soc,2004, 126:6301-6313
    [78]D'Souza F, Chitta R, Ohkubo K, et al. Corrole-fullerene dyads:formation of long-lived charge-separated states in nonpolar solvents. J Am Chem Soc,2008,130:14263-14272
    [79]Guldi D M. Fullerene-porphyrin architectures; photosynthetic antenna and reaction center models. Chem Soc Rev,2002,31:22-36
    [80]Gust D, Moore T A, Moore A L. Mimicking photosynthetic solar energy transduction. Acc Chem Res,2001,34:40-48
    [81]Imahori H. Porphyrin-fullerene linked systems as artificial photosynthetic mimics. Org Biomol Chem,2004,2:1425-1433
    [82]Guldi D M, Illescas B M, Atienza C M, et al. Fullerene for organic electronics. Chem Soc Rev,2009,38:1587-1597
    [83]Imahori H, Sakata Y. Synthesis of closely spaced porphyrin-fullerene. Chem Lett,1996,25: 199-200
    [84]Drovetskaya T, Reed C A, Boyd P. A fullerene porphyrin conjugate. Tetrahedron Lett,1995, 36:7971-7974
    [85]MacMahon S, Fong R, Baran P S, et al. Synthetic approaches to a variety of covalently linked porphyrin-fullerene hybrids. J Org Chem,2001,66:5449-5455
    [86]Wedel M, Montforts F P. A facile synthetic access to porphyrin fullerene dyads and their optical properties. Tetrahedron Lett,1999,40:7071-7074
    [87]Yamada K, Imahori H, Nishimura Y, et al. Acceleration of photoinduced charge separation in porphyrin-C60 dyad with an acetylene spacer. Chem Lett,1999,28:895-896
    [88]Vail S A, Schuster D I, Guldi D M, et al. Energy and Electron Transfer in β-alkynyl-linked porphyrin-[60] fullerene dyads. J Phys Chem B,2006,110:14155-14166
    [89]Imahori H. Giant multiporphyrin arrays as artificial light-harvesting antennas. J Phys Chem B,2004,108:6130-6143
    [90]Imahori H, Tamaki K, Guldi D M, et al. Modulating charge separation and charge recombination dynamics in porphyrin-fullerene linked dyads and triads:marcus-normal versus inverted region. J Am Chem Soc,2001,123:2607-2617
    [91]Imahori H, Guldi D M, Tamaki K, et al. Charge separation in a novel artificial photosynthetic reaction center lives 380 ms. J Am Chem Soc,2001,123:6617-6628
    [92]Guldi D M, Imahori H, Tamaki K, et al. A molecular tetrad allowing efficient energy storage for 1.6 s at 163k. J Phys Chem A,2004,108:541-548
    [93]Babu S S, Mohwald H, Nakanishi T. Recent progress in morphology control of supramolecular fullerene assemblies and its applications. Chem Soc Rev,2010,39, 4021-4035
    [94]Kawase T, Kurata H. Ball-, bowl-, and belt-shaped conjugated systems and their complexing abilities:exploration of the concave-convex π-π interaction. Chem Rev,2006,106: 5250-5273
    [95]P6rez E M. Energy, supramolecular chemistry, fullerenes and the sky. Pure Appl Chem,2011, 83:201-211
    [96]Wang M X, Zhang X H, Zheng Q Y, et al. Synthesis, structure, and [60]fullerene complexation properties of azacalix[m]arene[n]pyridines. Angew Chem Int Ed,2004,43:838-838
    [97]Zhang E X, Wang D X, Zheng Q Y, et al. Synthesis of large macrocyclic azacalix[n]pyridines and their complexation with fullerenes C60 and C70. Org Lett,2008,10:2565-2568
    [98]Hu S Z, Chen C F. Triptycene-derived oxacalixarene with expanded cavity:synthesis, structure and its complexation with fullerenes C60 and C70. Chem Commun,2010,46: 4199-4201
    [99]Tian X H, Chen C F. Triptycene-derived calix[6]arenes:synthesis, structures, and their complexation with fullerenes C60 and C70. Chem Eur J,2010,16:8072-8079
    [100]Georghiou P E, Tran A H, Mizyed S, et al. Concave polyarenes with sulfide-linked flaps and tentacles:new electron-rich hosts for fullerenes. J Org Chem,2005,70:6158-6163
    [101]Sygula A, Fronczek F R, Sygula R, et al. A double concave hydrocarbon buckycatcher. J Am Chem Soc,2007,129:3842-3843
    [102]Kawase T, Tanaka K, Fujiwara N, et al. Complexation of a carbon nanoring with fullerenes. Angew Chem Int Ed,2003,42:1624-1628
    [103]Kawase T, Tanaka K, Shiono N, et al. Onion-type complexation based on carbon nanorings and a buckminsterfullerene. Angew Chem Int Ed,2004,43:1722-1724
    [104]Perez E M, Sanchez L, Fernandez G, et al. exTTF as a building block for fullerene receptors. Unexpected solvent-dependent positive homotropic cooperativity. J Am Chem Soc,2006,128: 7172-7173
    [105]Gayathri S S, Wielopolski M, Perez E M, et al. Discrete supramolecular donor-acceptor complexes. Angew Chem In Ed,2009,48:815-819
    [106]Perez E M, Sierra M, Sanchez L, et al. Concave tetrathiafulvalene-type donors as supramolecular partners for fullerenes. Angew Chem In Ed,2007,46:1847-1851
    [107]Sun Y, Drovetskaya T, Bolskar R D, et al. Fullerides of pyrrolidine-functionalized C60. J Org Chem,1997,62,3642-3649
    [108]Boyd, P D W, Hodgson M C, Rickard C E F, et al. Selective supramolecular porphyrin/ fullerene interactions. J Am Chem Soc 1999,121:10487-10495
    [109]Olmstead M M, Costa D A, Maitra K, et al. Interaction of curved and flat molecular surfaces. The structures of crystalline compounds composed of fullerene (C60, C60O, C70, and C120O) and metal octaethylporphyrin units. J Am Chem Soc,1999,121:7090-7097
    [110]Sun D, Tham F S, Reed C. A, et al. Porphyrin fullerene host guest chemistry. J Am Chem Soc 2000,122:10704-10705
    [111]Sun D, Tham F S, Reed C A, Supramolecular fullerene-porphyrin chemistry. Fullerene complexation by metalated "Jaws Porphyrin" hosts. J Am Chem Soc,2002,124:6604-6612
    [112]Tashiro K, Aida T, Zheng J Y, et al. A Cyclic dimer of metalloporphyrin forms a highly stable inclusion complex with C60. J Am Chem Soc,1999,121:9477-9478
    [113]Zheng J Y, Tashiro K, Hirabayashi Y, et al. Cyclic dimers of metalloporphyrins as tunable hosts for fullerenes:A remarkable effect of Rhodium(Ⅲ). Angew Chem Int Ed,2001,40: 1857-1861
    [114]Sato H, Tashiro K, Shinmori H, et al. Positive heterotropic cooperativity for selective guest binding via electronic communications through a fused zinc porphyrin array. J Am Chem Soc, 2005,127:13086-13087
    [115]Sato H, Tashiro, K, Shinmori H, et al. Cyclic dimer of a fused porphyrin zinc complex as a novel host with two π-electronically coupled binding sites. Chem Commun,2005,2324-2326
    [116]Wu Z Q, Shao X B, Li C, et al. Hydrogen-bonding-driven preorganized zinc porphyrin receptors for efficient complexation of C60, C70, and C60 derivatives. J Am Chem Soc,205, 127:17460-17468
    [117]Hou J L, Yi H P, Shao X B, et al. Helicity induction in hydrogen-bonding-driven zinc porphyrin foldamers by chiral C60-incorporating histidines. Angew Chem Int Ed,2006,45: 796-800
    [118]Hosseini A, Taylor S, Accorsi G, et al. Calix[4]arene-linked bisporphyrin hosts for fullerenes: binding strength, solvation effects, and porphyrin fullerene charge transfer bands. J Am Chem Soc,2006,128:15903-15913
    [119]Kubo Y, Sugasaki A, Ikeda M, et al. Cooperative C60 binding to a porphyrin tetramer arranged around a p-terphenyl axis in 1:2 host-guest stoichiometry. Org Lett,2002,4: 925-928
    [120]Burrell A K, Officer D L, Plieger P G. et al. Synthetic routes to multiporphyrin arrays. Chem Rev,2001,101:2751-2796
    [121]Iengo E, Zangrando E, Alessio E. Synthetic strategies and structural aspects of metal-mediated multiporphyrin assemblies. Acc Chem Res,2006,39:841-851
    [122]Holten D, Bocian D F, Lindsey J S. Probing electronic communication in covalently linked multiporphyrin arrays. A guide to the rational design of molecular photonic devices. Acc Chem Res,2002,35:57-69
    [123]Kim D, Osuka A. Directly linked porphyrin arrays with tunable excitonic interactions. Acc Chem Res,2004,37:735-745
    [124]Osuka A; Shimidzu H. Meso,meso-linked porphyrin arrays. Angew Chem Int Ed Engl,1997, 36:135-137
    [125]Aratani N; Osuka A. Synthesis of meso-meso linked hybrid porphyrin arrays by Pd-catalyzed cross-coupling reaction. Org Lett,2001,3:4213-4216
    [126]Jin L M, Chen L, Yin J J, et al. A facile and potent synthesis of meso, meso-linked porphyrin arrays using iodine(III) reagents. Eur J Org Chem,2005,3994-4001
    [127]Cho H S, Song J K, Ha J H, et al. Comparative studies on energy relaxation dynamics of directly linked Zn(II) porphyrin dimers with different dihedral angles. J Phys Chem A,2003, 107:1897-1903
    [128]Senge M O, Rossler B, von Gersdorff J, et al. The meso-beta-linkage as structural motif in porphyrin-based donor-acceptor compounds. Tetrahedron Lett,2004,45:3363-3367
    [129]Kasha M, Rawls H R; El-Bayoumi M A. The exciton model in molecular spectroscopy. Pure Appl Chem,1965,11:371-392
    [130]Yoshida N, Ishizuka T, Osuka A, et al. Fine tuning of photophysical properties of meso-meso-Mvked Zn-II-diporphyrins by dihedral angle control. Chem Eur J,2003,9:58-75
    [131]Shinmori H, Ahn T K, Cho H S, et al. Dihedral-angle modulation of meso-meso-linked Zn-II diporphyrin through diamine coordination and its application to reversible switching of excitation energy transfer. Angew Chem Int Ed,2003,42:2754-2758
    [132]Aratani N, Osuka A, Kim Y H, et al. Extremely long, discrete meso-meso-coupled porphyrin arrays. Angew Chem Int Ed,2000,39:1458-1462
    [133]Kim Y H, Jeong D.H, Kim D, et al. Photophysical properties of long rodlike meso meso-linked zinc(II) porphyrins investigated by time-resolved laser spectroscopic methods. J Am Chem Soc,2001,123:76-86
    [134]Kim D; Osuka A. Photophysical properties of directly linked linear porphyrin arrays. J Phys Chem A,2003,107:8791-8816
    [135]Ohta N, Iwaki Y, Ito T, et al. Photoinduced charge transfer along a meso, meso-linked porphyrin array. J Phys Chem B,1999,103:11242-11245
    [136]Imahori H, Tamaki K, Araki Y, et al. Stepwise charge separation and charge recombination in ferrocene-meso,meso-Linked porphyrin dimer fullerene triad. J Am Chem Soc,2002,124: 5165-5174
    [137]Park J K, Chen J, Lee H R, et al. Doubly β-functionalized meso-meso directly linked porphyrin dimer sensitizers for photovoltaics. J Phys Chem C,2009,113:21956-21963
    [138]He L, Zhu Y Z, Zheng J Y, et al. Meso-meso linked diporphyrin functionalized single-walled carbon nanotubes. J Photochem Photobio A:Chem,2010,216:15-23
    [139]Koszama B, Gryko D T. Meso-meso linked corroles. Chem Commun,2007,2994-2996
    [140]Sankar J, Rath H, Prabhuraja V, et al. Meso-meso-linked corrole dimers with modified cores: synthesis, characterization, and properties. Chem Eur J,2007,13:105-114
    [141]LeCours St M, DiMagno S G, Therien M J. Exceptional electronic modulation of porphyrins through meso-arylethynyl groups. Electronic spectroscopy, electronic structure, and electrochemistry of [5,15-Bis[(aryl)ethynyl]-10,20-diphenylporphinato]zinc(Ⅱ) complexes. X-ray crystal structures of [5,15-Bis[(4-fluorophenyl)ethynyl]-10,20-diphenylporphinato] zinc(Ⅱ) and 5,15-Bis[(4-methoxyphenyl)ethynyl]-10,20-diphenylporphyrin. J Am Chem Soc, 1996,118:11854-11864
    [142]Soares A R M, Martinez-Diaz M V, Bruckner A, et al. Synthesis of novel N-linked porphyrin-phthalocyanine dyads. Org Lett,2007,9:1557-1560
    [143]Takai A, Gros C P, Barbe J-M, et al. Greatly enhanced intermolecular π-dimer formation of a porphyrin trimer radical trications through multiple π bonds. Chem Eur J,2011,17: 3420-3428
    [144]Pereira A M V M, Neves M G P M S, Cavaleiro J A S, et al. Dipbrphyrinylamines:synthesis and electrochemistry. Org Lett,2011,13:4742-4745
    [145]Bagno A, Claeson S, Maggini M, et al. [60]Fullerene as a substituent. Chem Eur J,2002,8: 1015-1023
    [146]Wilson S R, MacMahon S, Tat F T, et al. Synthesis and photophysics of a linear non-covalently linked porphyrin-fullerene dyad. Chem Commun,2003,226-227
    [147]Tat F T, Zhou Z, MacMahon S, et al. A new fullerene complexation ligand:N-pyridyl-fulleropyrrolidine. J Org Chem,2004,69:4602-4606
    [148]Ouchi A, Hatsuda R, Awen B Z S, et al. Large substituent effect on the photochemical rearrangement of 1,6-(N-Aryl)aza-[60]fulleroids to 1,2-(N-Arylaziridino)-[60]fullerenes. J Am Chem Soc,2002,124:13364-13365
    [149]Ouchi A, Awen B Z S, Hatsuda R, et al. Remote control on the photochemical rearrangement of 1,6-(N-Aryl)aza-[60]fulleroids to 1,2-(N-Arylaziridino)-[60]fullerenes by N-Substituted aryl groups. J Phys Chem A,2004,108:9584-9592
    [150]Yamauchi S, Iwasaki Y, Ohba Y, et al. Direct evidence of complete charge separation in the excited triplet state of 1,2-(N-arylaziridino)-[60] fullerenes by means of time-resolved electron paramagnetic resonance. Chem Phys Lett,2005,411:203-206
    [151]Oton F, Tarraga A, Espinosa A, et al. Ferrocene-based ureas as multisignaling receptors for anions. J Org Chem,2006,71:4590-4598
    [152]Beer P D, Cadman J. Electrochemical and optical sensing of anions by transition metal based receptors. Coord Chem Rev,2000,205:131-155
    [153]Shafir A, Power M P, Whitener G D, et al. Synthesis, structure, and properties of 1,1-diamino-and 1.1-diazidoferrocene. Organometallics,2000,19:3978-3982
    [154]According to the literature, aminoferrocene has nearly the same redox potential with dimethylaminoferrocene. See:Britton W E, Kashyap R, El-Hashash M, et al. The anomalous electrochemistry of the ferrocenylamines. Organometallics 1986,5,1029-1031.
    [155]Ulmer L, Mattay J. Preparation and characterization of sulfonyl-azafulleroid and aulfonylaziridino-fullerene derivatives. Eur J Org Chem,2003,2933-2940
    [156]Tsuruoka R, Nagamachi T, Murakami Y, et al. Aziridination of C6o with simple amides and catalytic rearrangement of the aziridinofullerenes to azafulleroids. J Org Chem,2009,74: 1691-1697
    [157]Hachiya H, Kakuta T, Takami M, et al. Syntheses and crystal structures of azafulleroid and aziridinofullerene bearing silyl or germyl benzene. J organometallic chem,2009,694: 630-636
    [158]Nakahodo T, Okada M, Morita H, et al. [2+1] Cycloaddition of nitrene onto C6o revisited: interconversion between an aziridinofullerene and an azafulleroid. Angew Chem Int Ed,2008, 47:1298-1300
    [159]N,N-dimethylbenznylporphyrin 6 gave the third oxidation potential at 1.151 V, which was considered to be the oxidation of N,N-dimethyl group. See:Macdonald T L, Gutheim W G, Martin R B, et al. Oxidation of substituted N,N-dimethylanilines by cytochrome P-450: estimation of the effective oxidation-reduction potential of cytochrome P-450. Biochemistry 1989,28:2071-2077
    [160]Prato M, Maggini M, Giacometti C, et al. Synthesis and electrochemical properties of substituted fulleropyrrolidines. Tetrahedron,1996,52:5221-5234
    [161]FukinoT, Fujita N, Aida T. Coupling of a C2-chiral ferrocene with phenylalkynyl groups: novel ferrocenophanes carrying multiple chiral ferrocenyl units. Org Lett,2010,12: 3074-3077
    [162]Tolbert L M. Solitons in a box:the organic chemistry of electrically conducting polyenes. Acc Chem Res,1992,25:561-568
    [163]Li Y, Pullerits T, Sun M T. Theoretical characterization of the PC60BM:PDDTT model for an organic solar cell. J Phys Chem C,2011,115:21865-21873
    [164]Ojadi E C A, Linschitz H, Goutermaq M, et al. Sequential protonation of meso-[p-(dimethylamino)phenyl]porphyrins:charge-transfer excited states producing hyperporphyrins. J Phys Chem,1993,97:13192-13197
    [165]Sanchez L, Otero R, Gallego J M, et al. Ordering fullerenes at the nanometer scale on solid surfaces. Chem Rev,2009,109:2081-2091
    [166]Shrestha L K, Yamauchi Y, Hill J P, et al. Fullerene crystals with bimodal pore architectures consisting of macropores and mesopores. J Am Chem Soc,2013,135:586-589
    [167]Zhang J, Tan J, Ma Z, et al. Fullerene/sulfur-bridged annulene cocrystals:two-dimensional segregated heterojunctions with ambipolar transport properties and photoresponsivity. J Am Chem Soc,2013,135:558-561
    [168]Bui, P T, Nishino T, Yamamoto, Y, et al. Quantitative exploration of electron transfer in a single noncovalent supramolecular assembly. J Am Chem Soc,2013,135:5238-5241
    [169]Kawase T, Kurata H. Ball-, bowl-, and belt-shaped conjugated systems and their complexing abilities:exploration of the concave-convex π-π interaction. Chem Rev,2006, 106:5250-5273
    [170]Perez E M, Martin N. Molecular tweezers for fullerenes. Pure Appl Chem,2010,82: 523-533
    [171]Fernandez G, Perez E M, Sanchez L, et al. Self-organization of electroactive materials:a head-to-tail donor-acceptor supramolecular polymer. Angew Chem Int Ed,2008,47:1094-1097
    [172]Kawauchi T, Kitaura A, Kawauchi M, et al. Separation of C70 over C60 and selective extraction and resolution of higher fullerenes by syndiotactic helical poly(methyl methacrylate). J Am Chem Soc,2010,132:12191-12193
    [173]Boyd P D W, Reed C A. Fullerene-porphyrin constructs. Acc Chem Res,2005,38:235-242
    [174]Tashiro K, Aida T. Metalloporphyrin hosts for supramolecular chemistry of fullerenes. Chem Soc Rev,2007,36:189-197
    [175]Zhang C, Wang Q, Long H, et al. A highly C70 selective shape-persistent rectangular prism constructed through one-step alkyne metathesis. J Am Chem Soc,2011,133:20995-21001
    [176]Hajjaj F, Tashiro K, Nikawa H, et al. Ferromagnetic spin coupling between endohedral metallofullerene La@C82 and a cyclodimeric copper porphyrin upon inclusion. J Am Chem Soc,2011,133:9290-9292
    [177]Yamaguchi T, Ishii, N, Tashiro K, et al. Supramolecular peapods composed of a metallo-porphyrin nanotube and fullerenes. J Am Chem Soc,2003,125:13934-13935
    [178]Rossoma W V, Kundrat O, Ngo T H, et al. An oxacalix[2]arene[2]pyrimidine-bis(Zn-porphyrin) tweezer as a selective receptor towards fullerene C70. Tetrahedron Lett, 2010,51:2423-2426
    [179]D'Souza F, Chitta R, Ohkubo K, et al. Corrole fullerene dyads:formation of long-lived charge-separated states in nonpolar solvents. J Am Chem Soc,2008,130:14263-14272
    [180]Lewandowska K, Barszcz B, Wolak J, et al. Vibrational properties of new corrole-fullerene dyad and its components. Dyes Pigm,2013,96:249-255
    [181]Vale, L S H P, Barata, J F B, Santos, C I M, et al. Corroles in 1,3-dipolar cycloaddition reactions. J Porphyrins Phthalocyanines,2009,13:358-368
    [182]Sun D, Tham F. S, Reed C A, et al. Supramolecular fullerene-porphyrin chemistry. Fullerene complexation by metalated "Jaws porphyrin" hosts. J Am Chem Soc,2002,124: 6604-6612
    [183]Canevet D, Perez E M, Martin N. Wraparound hosts for fullerenes:tailored macrocycles and cages. Angew Chem Int Ed,2011,50:9248-9259
    [184]Koszarna B, Gryko D T. Efficient synthesis of maso-substituted corroles in a H2O-MeOH mixture. J Org Chem,2006,71:3707-3717
    [185]Balazs Y S, Saltsman I, Mahammed A. et al. High-resolution NMR spectroscopic trends and assignment rules of metal-free, metallated and substituted corroles. Magn Reson Chem,2004, 42:624-635
    [186]Ngo T H, Rossom W V, Dehaen W, et al. Reductive demetallation of Cu-corroles-a new protective strategy towards functional free-base corroles. Org Biomol Chem,2009,7:439-443
    [187]Connors A. Binding Constants; Wiley, New York,1987.
    [188]Georghiou P E, Dawe L N, Iran H-A, et al. C3-symmetrical tribenzotriquinacenes as hosts for C60 and C70 in solution and in the solid state. J Org Chem,2008,73:9040-9047
    [189]Schwab P F H, Levin M D, Michl J, et al. Molecular rods.1. Simple axial rods. Chem Rev, 1999,99:1863-1934
    [190]Martin R E, Diederich F. Linear monodisperse π-conjugated oligomers:model compounds for polymers and more. Angew Chem Int Ed,1999,38:1351-1377
    [191]Aratani N, Kim D, Osuka A. Discrete cyclic porphyrin arrays as artificial light-harvesting antenna. Acc Chem Res,2009,42:1922-1934
    [192]Yang J, Yoon M-C, Yoo H, et al. Excitation energy transfer in multiporphyrin arrays with cyclic architectures:towards artificial light-harvesting antenna complexes. Chem Soc Rev, 2012,41:4808-4826
    [193]Nakamura Y, Aratani N, Osuka A. Cyclic porphyrin arrays as artificial photosynthetic antenna:synthesis and excitation energy transfer. Chem Soc Rev,2007,36:831-845
    [194]Kim Y H, Jeong D H, Kim D, et al. Photophysical properties of long rodlike meso meso-Linked zinc(Ⅱ) porphyrins investigated by time-resolved laser spectroscopic methods. J Am Chem Soc,2001,123:76-86
    [195]Aratani N, Cho H S, Ahn T K, et al. Efficient excitation energy transfer in long meso meso linked Zn(II) porphyrin arrays bearing a 5,15-bisphenylethynylated Zn(II) porphyrin acceptor. J Am Chem Soc,2003,125:9668-9681
    [196]Tsuda A. Design of porphyrin nanoclusters toward discovery of novel properties and functions. Bull Chem Soc Jpn,2009,82:11-28
    [197]Mahammed A, Giladi I, Goldberg I, et al. Synthesis and structural characterization of a novel covalently-bound corrole dimer. Chem Eur J,2001,7:4259-4265
    [198]Hiroto S, Furukawa K, Shinokubo H, et al. Synthesis and biradicaloid character of doubly linked corrole dimers. J Am Chem Soc,2006,128:12380-12381
    [199]Gros C P, Brisach F, Meristoudi A, et al. Modulation of the singlet-singlet through-space energy transfer rates in cofacial bisporphyrin and porphyrin-corrole dyads. Inorg Chem,2007, 46:125-135
    [200]Flamigni L, Ventura B, Tasior M, et al. Photophysical properties of a new, stable corrole-porphyrin dyad. Inorganica Chimica Acta 2007,360:803-813
    [201]Hiroto S, Hisaki I, Shinokubo H, et al. Synthesis of corrole derivatives through regioselective Ir-catalyzed direct borylation. Angew Chem Int Ed,2005,44:6763-6766
    [202]Ngo T H, Nastasi F, Puntoriero F, et al. Corrole-porphyrin conjugates with interchangeable metal centers. Eur J Org Chem,2012,5605-5617
    [203]Tokuji S, Awane H, Yorimitsu H, et al. Direct arylation of meso-formyl porphyrin. Chem Eur J,2013,19:64-68
    [204]Honga S-K, Jeoungb E, Lee C-H. Meso-meso linked hybrid porphyrin arrays from meso-formylated porphyrins. J Porphyrins Phthalocyanines,2005,9:285-289
    [205]Jiao C, Zhu L, Wu J. BODIPY-fused porphyrins as soluble and stable near-IR dyes. Chem Eur J,2011,17:6610-6614
    [206]Tanaka T, Aratani N, Lim J M, et al. Porphyrin-hexaphyrin hybrid tapes. Chem Sci,2011,2: 1414-1418
    [207]Senge M O, Feng X D. Synthesis of directly meso-meso linked bisporphyrins using organolithium reagents. Tetrahedron Lett,1999,40:4165-4168.
    [208]Senge M O, Feng X D. Regioselective reaction of 5,15-disubstituted porphyrins with organolithium reagents-synthetic access to 5,10,15-trisubstituted porphyrins and directly meso-meso-linked bisporphyrins. J Chem Soc Perk T 1,2000,3615-3621
    [209]Thorley K J, Anderson H L. Extending conjugation in porphyrin dimer carbocations. Org Biomol Chem,2010,8:3472-3479
    [210]Thomas K E, Alemayehu A B, Conradie J, et al. The structural chemistry of metallocorroles: combined X-ray crystallography and quantum chemistry studies afford unique insights. Acc Chem Res,2012,45:1203-1214
    [211]Balazs Y S, Saltsman I, Mahammed A, et al. High-resolution NMR spectroscopic trends and assignment rules of metal-free, metallated and substituted corroles. Magn Reson Chem,2004, 42:624-635
    [212]Aratani N, Osuka A, Kim Y H, et al. Extremely long, discrete meso-meso-coupled porphyrin arrays. Angew Chem Int Ed,2000,39:1458-1462
    [213]Swider P, Nowak-Krol A, Voloshchuk R, et al. Mass spectrometry studies on meso-substituted corroles and their photochemical decomposition products. J Mass Spectrom, 2010,45:1443-1451
    [214]Otsuki J, Iwasaki K, Nakano Y, et al. Supramolecular porphyrin assemblies through amidinium-carboxylate salt bridges and fast intra-ensemble excited energy transfer. Chem Eur J,2004,10:3461-3466
    [215]Ding T, Aleman E A, Modarelli D A, et al. Photophysical properties of a series of free-base corroles. J Phys Chem A,2005,109:7411-7417
    [216]Ventura B, Esposti A D, Koszarna B, et al. Photophysical characterization of free-base corroles, promising chromophores for light energy conversion and singlet oxygen generation. New J Chem,2005,29:1559-1566
    [217]Littler B J, Ciringh Y, Lindsey J S. Investigation of conditions giving minimal scrambling in the synthesis of trans-porphyrins from dipyrromethanes and aldehydes. J Org Chem,1999,64: 2864-2872