Lévy分布下期权蒙特卡洛模拟定价模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2008年金融危机后,期权合约占全球衍生品市场总交易量的比重越来越大,投资者越来越多地使用期权进行风险对冲或套利。在2014年,我国的期货和证券交易所也将进行期权合约的正式交易,成为中国期权交易元年。在近些年,理论界对期权定价的研究日新月异,以Levy模型为代表的非正态期权定价方法发展迅速。在这些背景下,回顾我国权证市场历史,引入最新的期权定价模型和定价技术,不仅能帮助我们反思中国金融衍生品交易和监管,为未来期权市场的平稳运行提供帮助,也能从理论上探索适合我国金融市场特殊环境的期权定价模型。
     以Black-Scholes-Merton模型为代表的传统期权定价模型普遍建立在金融资产收益率的正态分布假设下,但金融数据具有强烈的非正态特征,大量研究证实,使用Levy族随机过程对传统模型进行修正能提升定价精度。Levy过程是具有独立增量、平稳增量和随机连续特征的分布函数的统称,广泛应用于金融、医学、物理等领域,可以准确表现金融数据高阶统计特征,特别是资产的“跳跃特征”和“非对称特征”。虽然Levy过程具有这些优点,但与正态随机模型相比,Levy随机模型结构较复杂,模型参数估计、风险中性测度转换和随机数模拟都更困难,也不适合解决路径依赖期权的定价问题,并且Levy随机数生成算法的运行效率较低,这些都是Levy分布下蒙特卡洛期权模拟定价的难点,也是实际操作中必须解决的重点。
     针对以上几个问题,本文用Levy随机过程对传统期权定价模型和方法进行修正与拓展,同时针对中国证券市场的欧式权证、美式权证、百慕大式权证的历史数据进行全面的实证分析,具体内容及相关成果如下:
     1.在蒙特卡洛模拟定价的框架下,建立了多种Levy期权随机模型,针对这些模型的结构给出了参数估计和风险中性调整的方法,最后使用这些模型对大陆权证市场数据进行定价,用定价结果对Levy期权定价模型进行检验,也对大陆权证市场的有效性进行分析。
     2.期权价格对标的资产的波动很敏感,考虑到金融资产波动率的时变特征,使用有偏GARCH模型对基础资产进行建模,同时引入Levy随机过程对模型的“新息项”进行模拟。完成Levy-GARCH模型风险中性测度转换问题后,我们用多种Levy随机过程和多种GARCH模型进行交叉建模与实证,使用大陆欧式权证交易数据对Levy-GARCH模型进行定价,验证这一模型是否能准确描述历史数据波动率的时变特征,并证实模拟收益率能否准确反映真实数据的分布特征。
     3.针对美式期权定价的路径依赖问题,用Levy随机模型模拟基础资产的价格路径,用美式期权最小二乘法进行预期现金流的逐期迭代,最终用蒙特卡洛模拟的方法得到期权价格。在实证环节中,引入我国百慕大权证和美式权证数据,证实这一方法能否有效预测现金流贴现值,从而检验这一方法的准确度和定价效率。
     4.借鉴方差减少技术的思路,从Levy随机数的时变布朗运动生成算法出发,同时生成两组高度相关的随机路径,用控制变量法建立期权模拟定价模型,并用拟蒙特卡洛模拟技术进行算法优化,形成时变布朗算法下的Levy过程方差减少技术,之后使用欧式权证数据进行模拟定价,验证这一方法是否能降低随机路径间的方差、能否加快模拟定价的收敛速度、能否提升整体定价效率。
     5.综合我国沪深两市中欧式、美式和百慕式权证在多种模型下的定价结果,计算权证市场价格和模型理论价格的偏离程度,综合考虑定价误差的统计特征并与香港权证市场做对比分析,验证我国权证市场是否存在过分投机现象,分析市场是否缺乏有效性。1
After the2008financial crisis, the global derivatives trading volume in options proportion is growing, more and more investors build portfolios using options to hedge or arbitrage, our futures and stock options will soon open. Theoretical research of options is also changing, option pricing models under Levy processes developed rapidly.In this context, a review of the China's warrants market and the introduction of option pricing models can not only help us to reflect Chinese financial derivatives market regulation, but also to explore the option pricing theory for China's financial market environment.
     Black-Scholes model and other traditional option pricing models are usually built on the assumption of normal distribution of financial assets under yields, and the strong non-normal characteristics of financial data have been confirmed, thus Levy stochastic processes can correct the traditional model by improving pricing accuracy. Levy processes are collectively referred to the distribution function with independent increments, steady incremental and stochastically continuous characteristics, it is widely used in finance, medicine, physics and other fields. Levy can be expressed in higher-order statistical features especially assets "jump feature" and "asymmetric characteristics". However, compared with the normal random model, Structures of Levy stochastic models are more complex, Levy model parameter estimation, and risk-neutral measure conversion and random number generation are more difficult, is not suitable to solve the path-dependent option pricing problems. But random number generating algorithm is a core issue for Monte Carlo simulation.
     In this paper, Levy stochastic process with several traditional option pricing models for correction and expansion are discussed, while a comprehensive empirical research on China's mainland European Style Warrants, American and Bermudan Warrants. The specific content and related results are as follows:
     1In the framework of Monte Carlo simulation pricing, we established multi-Levy process option pricing models, the structural model for the given parameter estimation and risk-neutral adjustment method are discussed, the last part of this chapter is an empirical analysis of China warrants trading data in order to prove the validate of Levy models.
     2Option pricing is sensitivity to assets volatility, taking into account the time-varying characteristics of the financial assets, we use biased GARCH model to model the underlying assets while introducing Levy stochastic process to model the "innovations". China warrants trading data are used to do empirical verify for these models It is proved the Levy-GARCH models can describe the historical volatility of the time-varying data characteristics.
     3For the path-dependent American option pricing problem, we use Levy-GARCH models to simulate price path of underlying assets, based on American option lest square Monte Carlo method we calculate expected cash flows iteratively, then with the Monte Carlo simulation method we obtained the option pricing result. The empirical research of American Style China's Warrants and Bermuda data confirmed the effectiveness of this approach.
     4We introduced a variance reduction technology modified with change Brownian motion Levy random number generation algorithm. First we generate two highly correlated random path, one normal distribution path and one Levy path, then we used random path to simulate the control variable. Under the framework of control variable algorithm, we introduced this "variance reduction method under Levy processes". Finally, we use this method to simulate European China's warrants, the results verified analog path can reduce the variance between samples, this method can accelerate the convergence speed of Monte-Carlo simulation.
引文
[1]Ahrens J H, Kohrt K D. Computer methods for efficient sampling from largely arbitrary statistical distributions[J]. Computing,1981,26(1):19-31.
    [2]Akesson F, Lehoczy J P. Path generation for quasi-Monte Carlo simulation of mortgage-backed securities[J]. Management Science,2000,46(9):1171-1187.
    [3]Albrecher H, Predota M. On Asian option pricing for NIG Levy processes[J]. Journal of Computational and Applied Mathematics,2004,172(1):153-168.
    [4]Andricopoulos AD, Widdicks M, Peter W. Duck, and David P Newton. Universal option valuation using quadrature methods[J]. Journal of Financial Economics,2003,67(3):447-471.
    [5]Antonov I A, Saleev V M. An economic method of computing LPt sequences[J]. USSR Computational Mathematics and Mathematical Physics,1979, 19(1):252-256.
    [6]Avramidis A N, Ecuyer P L. Efficient Monte Carlo and quasi-Monte Carlo option pricing under the variance Gamma model[J]. Management Science,2006, 52(12):1930-1944.
    [7]Bakshi G, Madan D B. A theory of volatility spreads[J]. Management Science, 2006,52(12):1945-1956.
    [8]Bakshi G, Chen ZW. An alternative valuation model for contigent claims[J]. Journal of Financial Economics,1997,44(1):123-165.
    [9]Barndorff-Nielsen OE. Normal inverse Gaussian distributions and the stochastic volatility modeling[J]. Scandinavian Journal of Statistics,1997,24(1): 1-13.
    [10]Barndorff-Nielsen OE. Processes of normal inverse Gaussian type[J], Finance and Stochastics,1997,2(1):41-68.
    [11]Barndorff-Nielsen OE, Shephard N. Non Gaussian Omsten-Uhlenbeck-based models and some of their uses in finance economics[J]. Journal of the Royal Statistical Society:Series B,2001,63(2):167-241.
    [12]Barndorff-Nielsen OE, Stelzer R. The multivariate supOU stochastic volatility model[J]. Mathematical Finance,2013,23(2):275-296.
    [13]Barone Adesi G, Engle R F and Mancini L. A GARCH option pricing model with filtered historical simulation[J]. Review of Financial Studies,2008,21(3): 1223-1258.
    [14]Bertholon H, Monfort A and Pegoraro F. Econometric asset pricing modeling[J]. Journal of Financial Econometrics,2008,6(4):407-458.
    [15]Bhljnarine R R and Anthony E B. Sequential Monte Carlo pricing of American-style options under stochastic volatility models[J]. Annals of Applied Statistics,2010,4(1):222-265.
    [16]Black F and Scholes M. The pricing of options and corporate liabilities[J]. The Journal of Political Economy,1973,81(3):637-654.
    [17]Bollerslev T, Todorov V, Zhengzi LS. Jump tails extreme dependencies and the distribution of stock returns[J]. Journal of Econometrics,2012,172(2): 307-324.
    [18]Bouchard B, Ekeland I, Touzi N. On the Malliavin approach to Monte Carlo approximation of conditional expectations[J]. Finance and Stochastics,2004,8(1): 45-71.
    [19]Bouchard B, Touzi N. Discrete time approximation and Monte Carlo simulations of backward stochastic diffierential equations[J]. Stochastic Processes and their Applications,2004,111(2):175-206.
    [20]Byun S J and Min B. Conditional volatility and the GARCH option pricing model with non-normal innovations[J].Journal of Futures Markets,2013,33(1): 1-28.
    [21]Box G, Mervin E. Muller. A note on the generation of random normal deviates[J]. The Annals of Mathematical Statistics,1958,29(2):610-611.
    [22]Boyle P. Options:A Monte Carlo approach[J]. Journal of Financial Economics,1977,4(3):323-338.
    [23]Broadie M, Yamamoto Y. Application of the fast Gauss transform to option pricing[J]. Managment Science,2003,49(8):1071-1088.
    [24]Broadie M, Yamamoto Y. A double-exponential fast Gauss transform for pricing discrete pathdependent options[J]. Operations Research,2005,53(5): 764-779.
    [25]Byun SJ, Min B. Conditional volatility and the GARCH option pricing model with non-normal innovations[J]. Journal of Futures Market,2013,33(1):1-28.
    [26]Carr P, Madan D B. Option valuation using the fast Fourier transform[J]. Journal of Computational Finance,1999,2(4):61-73.
    [27]Carr P, Geman H, Madan D H and Yor M. The fine structure of asset returns: an empirical investigation[J]. Journal of Business,2002,75(2):305-332.
    [28]Carr P and Wu L R. The finite moment log stable process and option pricing[J]. Journal of Finance,2003,58(2):753-777.
    [29]Carriere J F. Valuation of the early exercise price for options using simulations and nonparametric regression[J]. Insurance:Mathematics and Economics,1996,19(1):19-30;
    [30]Carrosco M, Chernov M, Florens JP, Ghysels. Efficient estimation of general dynamic models with a continuum of moment conditions[J]. Journal of Econometrics,2007,140(2):529-573.
    [31]Chen Z, Feng L and Lin X. Simulating Levy process from their characteristic functions and financial applications[J]. ACM Transactions on Modeling and Computer Simulation,2012,22(3).
    [32]Chen Z, Ren R, Scott L. Pricing interest rate options in a two-factor cox-ingersoll-ross model of the term structure[J]. Review of Financial Studies, 1992,5(1):613-636.
    [33]Christoffersen P. Elkamhi R, Feuou B, Jacobs K. Option valuation with conditional heteroskedasticity and nonnormality[J]. Review of Financial Studies, 2010,23(5):2139-2183.
    [34]Christoffersen P, Jacobs K, Ornthanalai C. GARCH option valuation:theory and evidence[Z]. Aarhus University, Working Paper,2012.
    [35]Chorro C, Guegan D, Lelpo F. Option pricing for GARCH-type models with generalized hyperbolic innovation[J]. Quantitative Finance,2012,12(7): 1079-1094.
    [36]Cox J, Ross S. The valuation of options for alternative stochastic processes [J]. Journal of Financial Economics,1976,3(1):66-145.
    [37]Cox J, Ross S. Rubinstein M. Option pricing:a simplified approach[J]. Journal of Financial Economics,1979,7(3):229-263.
    [38]Derflinger G, Hormann W, Leydold J. Random variate generation by numerical inversion when only the density is known[J]. ACM Transactions on Modeling and Computer Simulation,2010,20 (4):1-25.
    [39]Derman E, Kani I, Chriss N. Implied trinomial tress of the volatility smile[J]. The Journal of Derivatives,1996,3(4):7-22.
    [40]Diener F, Diener M. Asymptotics of the price oscillations of a European call option in a tree model[J]. Mathematical Finance,2004,14(2):271-293.
    [41]Ding Z, Grange C, Engle R. A long memory property of stock market returns and a new model[J]. Journal of Empirical Finance,1993,1(1):83-106.
    [42]Dingec K D and Hormann W. A general control variate method for option pricing under Levy processes[J]. Stochastics and Statistics,2012,221(2): 368-377.
    [43]Duan JC. Conditionally fat-tailed distribution and the volatility smile in options[D].1999, Hong Kong University of Science and Technology.
    [44]Duan JC. The GARCH option pricing model[J]. Mathematical Finance,1995, 5(1):13-32.
    [45]Duan JC, Zhang H. Pricing Hang Seng index options around the Asian financial crisis-A GARCH approach[J]. Journal of Banking Finance,2001, 25(11):1989-2014.
    [46]Eberlein E, Keller U. Hyperbolic distribution in finance[J]. Bernoulli,1995, 1(3):281-299.
    [47]Eberlein E, Keller U, Prause K. New insights into smile mispricing and value at risk:the hyperbolic model[J]. The Journal of Business,1998,71(3):371-405.
    [48]Eberlein E. Application of generalized hyperbolic Levy motion to finance[M], Birkhauser Boston,2001,319-336.
    [49]Ecuyer PL. Quasi-Monte Carlo methods in finance[G]. WSC'04 Proceeding of the 36th Conferenth on Winter Simulation,2004,1645-1655.
    [50]Emmanuelle C, Lamberton D, Protter P. An analysis of a least squares regression method for American option pricing[J]. Finance and Stochastics,2002, 6(4):449-471.
    [51]Engle R F. Long term skewness and systematic risk[J]. Journal of Financial Econometrics,2011,9(3):437-468.
    [52]Esscher, F. On the probability function in the collective theory of risk[J]. Skandinavisk Aktuarietidskrift,1932,15 (3):175-195.
    [53]Fama E. The behavior of stock market prices[J]. Journal of Business,38(4): 34-105.
    [54]Fang F and Oosterlee CW. Pricing early-exercise and discrete barrier options by Fourier-cosine series expansions[J]. Numerische Mathematik,2009,114(1): 27-62.
    [55]French K R, Schwert G W and Stambaugh R F. Expected stock returns and volatility[J]. Journal of Financial Economics,1987,19(1):3-29.
    [56]Galai D and Schneller M I. Pricing of warrants and the value of the firm[J]. The Journal of Finance,1978,33(5):33-42.
    [57]Gerber, H, Shiu, E. Option pricing by Esscher transforms[J]. Transactions of the Society of Actuaries,1994,46:99-191.
    [58]Gilks W R, Wild P. Adaptive rejection sampling for Gibbs sampling[J]. Journal of the Royal Statistical Society,1992,41(2):337-348.
    [59]Glasserman P. Monte Carlo methods in financial engineering[M]. Springer-Verlag,2004.
    [60]Glosten LR, Jaganathan R, Runkle D E. Relationship between the expected value and the volatility of the nominal excess return on stocks[J]. The Journal of Finance,1993,48(5):1779-1801.
    [61]Harrison J M, Pliska S R. Martingales and stochastic integrals in the theory of continuous trading[J]. Stochastic Process and their Applications,1984,11(3): 261-271.
    [62]Haugh MB, Kogan L. Pricing American options:a duality approach[J]. Operations Research,2004,52(2):72-92.
    [63]Heston S L and Nandi S. A closed-form GARCH option valuation model[J]. The Review of Financial Studies,2010,13(3):585-625.
    [64]Hormann W and Leydold J. Continuous random variate generation by fast numerical inversion[J]. ACM Transactions on Modeling and Computer Simulation,2003,13(4):347-362.
    [65]Jarrow R, Rudd A. Option pricing[M]. Homewood, Illinois,1983:183-188.
    [66]Kalemanova A, Schmid B, Werner R. The normal inverse Gaussian distribution for synthetic CDO pricing[J]. The Journal of Derivatives,2007,14(3): 80-94.
    [67]Kermna A and Vorst A. A pricing method for options based on average asset values[J]. Journal of Banking and Finance,1990,14(1):113-129.
    [68]Kim J, Jang B G, Kim K T. A simple iterative method for the valuation of American options[J]. Quantitative Finance,2013,13(6):885-895.
    [69]Koponen, I. Analytic approach to the problem of convergence of truncated Levy flights towards the Gaussian stochastic process[J]. Physical Review E,1995, 52:1197-1199.
    [70]Kou S. Jump diffusion model for option pricing[J]. Management Science, 2002,48(8):1086-1101.
    [71]Kreinin A, Merkoulovitch L and.Rosen D. Mesuring portfolio risk using quasi Monte Carlo methods[J]. Algo Research Quarterly,1998,1(1):17-26.
    [72]Kyle AS. Continuous auctions and insider trading[J]. Econometrica,1985, 53(6):1315-1335.
    [73]Lars Stentoft. American option pricing using simulation:an introduction with to the GARCH option pricing model[C]. CREATES working paper,2012.
    [74]Lehar A, Scheicher M, Schittenkopf C. GARCH vs. stochastic volatility: option pricing and risk management J]. Journal of Banking & Finance,2002, 160(1):246-256.
    [75]Longstaff F A, Schwartz E S. Valuing American options by simulation:a simple least-squares approach[J]. The Review of Financial Studies,2001,14(1): 113-147.
    [76]Lord R, Fang F, BervoetsF, Oosterlee CW. A fast and accurate FFT-based method for pricing early-exercise options under Levy Processes[J]. SLAM Journal on Scientific Computing,2008,30(4):1678-1705.
    [77]Lydia W. American Monte Carlo option pricing under pure jump Levy models[D]. Stellenbosch University,2013.
    [78]Madan DB, Carr P, Chang E C. The variance Gamma process and option pricing[J]. European Finance Review,1998,2(1):79-105
    [79]Madan DB, Marc Y. CGMY and Meixner subordinators are absolutely continuous with respect to one sided stable subordinators[J]. Prabability,2006,9.
    [80]Madan DB, Milne F. Option pricing with V. G. martingale components[J]. Mathematical Finance,1(4):39-55.
    [81]Madan DB, Peter P. Carr, Eric C. Chang. The variance Gamma process and option pricing[J]. European Finance Review,1998,2(1):79-105.
    [82]Madan DB, Seneta E. The variance Gamma (V.G.) model for share market returns[J]. The Journal of Business,1990,63(4):511-524.
    [83]Madan DB, Seneta E. Simulation of estimation using the empirical characteristic function[J]. International Statistics Review,1987,55,153-161.
    [84]Madan D B and Yor M. Representing the CGMY and Meixner Levy processes as time changed Brownian motions[J]. The Journal of Computational Finance,2008,12(1):27-47.
    [85]Mandelbrot E. The variation of certain speculative prices[J]. Journal of Business,35:394-419.
    [86]Merton RC. An intertemporal capital asset pricing model[J]. Econometrica, 1973,41(5):867-887.
    [87]Merton RC. Theory of rational option pricing[J]. The Bell Journal of Economics and Management Science,1973,4(1):141-183.
    [88]Merton RC. Option pricing when underlying stock returns are discontinuous[J]. Journal of Financial Economics,1976,3(1):125-144.
    [89]Morokoff W J and Caflisch R E. Quasi-Monte Carlo integration[J]. Journal of Computational Physics.1995,122(2):218-230.
    [90]Moskowitz B and Caflisch R E. Smoothness and dimension reduction in quasi-Monte Carlo methods[J]. Mathematical and Computer Modelling,1996, 23(8-9):37-54.
    [91]Nelson D B. Conditional heteroskedasticity in asset returns:a new approach[J]. Econometrica,1991,59(2):347-370.
    [92]Neumann VJ. Various techniques used in connection with random digits[J], Applied Mathematics Series,1951,12.
    [93]Omberg E. Efficient discrete time jump process models in option pricing[J]. The Journal of Financial and Quantitative Analysis,1988,23(2):61-74.
    [94]Pigorsch C, Stelzer R. A multivariate Ornstein-Uhlenbeck type stochastic volatility model[D],2009.
    [95]Robinstein M. Nonparametric tests of alternative option pricing models using all reported trades and quotes on the 30 most active CBOE option classes from August 23,1976 through August 31,1978[J]. Journal of Finance,1985,40(2): 455-480.
    [96]Rodriguez M J, Ruiz E. Revisiting several popular GARCH models with leverage effect:difference and similarities[J]. Journal of Financial Econometrics, 2012,10(4):637-668.
    [97]Rosenberg J V and Engle R F. Empirical pricing kernels[J]. Journal of Financial Economics,2002,64(3):341-372.
    [98]Schoutens W. The Meixner process in finance[D]. EURANDOM,2001, Eindhoven.
    [99]Scott L. Pricing stock options in a jump-diffusion model with stochastic volatility and interest rates:application of fourier inversion methods [J]. Mathematical Finance,1997,7(1):413-426.
    [100]Sidenius J. Warrants pricing-is dilution a delusion?[J]. Financial Analysis Journal,1996,52(5):77-80.
    [101]Stentoft L. American option pricing using GARCH models and normal inverse Gaussian distribution[J]. Journal of Financial Econometrics,2008, 6(4):540-582.
    [102]Tilley JA. Valuing American options in a path simulation model[J]. Transactions Society of Actuaries Schaunburg,1993,45:499-520.
    [103]Trigeorgis L A. Log trasformed binomial numerical analysis method for valuing complex multi option ivestments[J]. Journal of Financial and Quantitative Analysis,1991,26(3):309-326.
    [104]Tompkins R. Implied volatility surfaces:uncovering the regularities for options on financial futures[J]. The European Journal of Finance,2001,7(3): 198-230.
    [105]Walsh J B. The rate of convergence of the binomial tree scheme[J]. Finance and Stochastics,2003,7(3):337-361.
    [106]Xiong W, Yu L. The Chinese warrant bubble[J]. American Economic Review,2011,101(6):2723-2753.
    [107]Yang C W, Liao S L and Shyu S D. Closed form valuations of basket options using multivariate normal inverse Gaussian model [J]. Mathematics and Economics.2009,44(1):95-102.
    [108]Yuan XY, Fan W, Liu Q. China's securities markets:chanllenges, innovations and the latese developments[J]. International Finance Review,2007, 8(1):245-262.
    [109]Zakoian J M. Threshold heteroskedastic models[J]. Journal of Economic Dynamics and Control,1994,18(5):931-955.
    [110]Zdenek Zmeskal. Generalised soft binomial American real option pricing model(fuzzy-stochastic approach)[J]. European Journal of Operational Research, 2010,207(2):1096-1103.
    [111]代军.权证定价中Black-Scholes-Merton模型与CSR模型的比较[J].中国管理科学,2009,17(5):20-26.
    [112]马俊海,张维,刘凤琴.期权定价的蒙特卡洛模拟综合型方差减少技术[J].管理科学学报,2005,8(4):68-79.
    [113]牟旷凝.蒙特卡洛方法和拟蒙特卡洛方法在期权定价中应用的比较研究[J].科学技术与工程,2010,10(8):1925-1933.
    [114]林海,郑振龙,彭博.股票波动率模型与认股权证定价[Z].厦门:厦门大学经济学院,2005.
    [115]刘强,向赟.美式期权FHS-GARCH-LSM定价新方法[J].复旦学报(自然科学版),51(4):480-485.
    [116]刘志东,陈晓静.无限活动纯跳跃Levy金融资产价格模型及其CF-CGMM参数估计与应用[J].系统管理学报,2010,19(4):429-450.
    [117]罗付岩,徐海云.拟蒙特卡洛模拟方法在金融计算中的应用研究[J].数理统计与管理,2008,27(4):605-610.
    [118]马宇超,陈敏,蔡宗武,张敏.中国股市权证定价的带均值回归跳跃扩散模型[J].系统工程理论与实践,2010,30(1):4-21.
    [119]潘涛,邢铁英.中国权证定价方法的研究:基于经典BS模型及GARCH修正模型比较的分析框架[J].世界经济,2007,30(6):75-80.
    [120]孙春燕,陈耀辉,李楚霖.对美式期权定价中一类蒙特卡洛收敛速度的研究[J].系统工程,2004,22(6):95-98.
    [121]王茵田,朱英姿,章真.投资者是非理性的吗——卖空限制下我国权证价格偏离探析[J].金融研究,2012,379(1):194-206.
    [122]吴建祖,宣慧玉.美式期权定价的最小二乘蒙特卡洛模拟方法[J].统计决策,2006,205(1):155-157.
    [123]吴鑫育,周海林,汪寿阳,马超群.权证定价:Black-Scholes-Merton vs. CEV[J].系统工程理论与实践,2013,33(5):1126-1134.
    [124]吴鑫育,周海林,马超群,汪寿阳.基于随机贴现因子方法的权证定价研究[J].中国管理科学,2012,20(4):1-7.
    [125]吴鑫育,周海林,汪寿阳,马超群.基于GARCH扩散模型的权证定价[J].系统工程理论与实践,2012,32(3):449-457.
    [126]吴仰哲,廖四郎,林士贵.Levy与GARCH-Levy过程之选择权评价与实证分析:台湾加权股票指数选择权为例[J].管理与系统,2010,17(1):49-74.
    [127]徐龙炳.中国股票市场股票收益率稳态特征的实证研究[J].金融研究,2001,4(6):36-43.
    [128]杨海军,雷杨.基于加权最小二乘拟蒙特卡罗的美式期权定价[J].系统工程学报,2008,23(5):532-538.
    [129]周海林,吴鑫育,丁忠明,汪寿阳.权证是冗余证券吗?基于沪深交易所的经验证据[J].系统工程理论与实践,2013,33(7):1699-1708.