正畸数字化间接粘结技术的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在口腔正畸矫治过程中,托槽粘结位置的准确性是直丝弓矫治效果的重要保障。为了追求精确的托槽粘结,现代矫治技术越来越多的使用托槽间接粘结技术。间接粘结技术又可分为传统间接粘结技术及数字化间接粘结技术。传统间接粘结技术步骤繁多,需技师大量实验室的操作时间,限制了托槽间接粘结技术在临床上的应用。随着信息技术的发展,三维数字化牙颌模型具有存储方便、精度较高、测量方便等优点,越来越受到正畸医生的青睐。因此,在数字化模型上进行托槽定位,成为近几年来国内外数字化正畸技术的热点问题。随着数字化三维技术的发展,数字化间接粘结技术也逐渐应用于正畸临床。
     但是,在托槽粘结定位位置上存在多种观点:Angle认为托槽的理想位置应该在牙唇表面的中心点,Andrews发明了直丝弓托槽,建议将托槽粘结在临床冠面轴的中点(FA点),McLaughlin与Bennett提出测量从切缘到托槽槽沟的距离来定托槽的位置,Ricketts与Kalange提出了用边缘嵴来确定托槽的垂直位置,Eliades等认为把牙齿的边缘嵴作为参考点是非常重要的。
     ABO-OGS评分系统是目前公认的比较客观而且可靠地正畸治疗结果评价系统。ABO-OGS评分系统是基于石膏模型与X线曲面断层片的情况,精确客观评价正畸治疗结果的方法,该系统包括:牙齿排列、边缘嵴高度、后牙颊舌向倾斜度、咬合接触、合关系、覆盖、邻接接触关系及牙根倾斜度这八项独立的评分。前七项在正畸模型上,最后一项在全景片上评估。按照每项指标的异常程度,评分时分别记0-2分,最后将各项指标的分数相加得到总记分。总记分越高说明正畸治疗的结果越不理想。ABO-OGS评分系统可以评估研究模型的3个平面,对于鉴别完成病例是个有用的指数。
     目前,国内还没有在数字化牙颌模型上进行托槽虚拟定位,用软件制作完成弓丝,模拟正畸矫治后效果,并用ABO-OGS评分标准评估虚拟矫治后的矫治效果的研究。本研究将应用激光扫描的牙冠与CBCT重建的牙根和颌骨进行整合,建立包括牙冠、牙根和颌骨在内的三维数字化牙颌模型,利用工程软件绘制真实大小的DamonQ自锁托槽,在整合模型上比较数字化DamonQ自锁托槽含牙根信息托槽定位法及托槽高度定位法虚拟矫治效果差异。通过ABO-OGS评分系统的三项标准(边缘嵴高度、牙齿排列、牙根平行度)评估虚拟矫治后的矫治效果,探讨数字化托槽虚拟定位的准确性以及今后临床应用的可行性。同时,计算机软件形成的虚拟托槽定位能否精确转移至患者口内,主要取决于计算机软件中托槽软件位置与转移托盘转移至口内托槽位置的一致性。目前关于托槽虚拟定位与转移后实际粘结位置的差异性的研究报道较少。本文探讨托槽虚拟位置与转移至石膏模型上的位置的差异,为临床托槽粘结位置提供理论依据。本文内容共分为三部分,小结如下:
     一.CBCT与激光扫描联合建立数字化三维牙颌模型
     本部分主要是将激光扫描的牙冠与CBCT重建的牙根进行整合,建立包括牙冠、牙根及颌骨的三维数字化模型,为后续托槽间接粘结的准确定位奠定的实验基础。本研究选取广东省口腔医院正畸科门诊拟隐形矫治患者15例,男3例,女12例,Angle Ⅰ类或Angle Ⅱ类错合,年龄23-38岁,平均27.7岁,其中Angle Ⅰ类错合患者9例,Angle Ⅱ类错合畸形患者6例。纳入标准:恒牙列,牙列完整(28-32颗牙齿),无多生牙,无畸形牙,无根管治疗及唇颊侧充填牙齿,牙齿无过度磨耗,无金属修复体,排除标准:CBCT图像不清晰。患者知情同意,签署知情同意书。
     用二步法硅橡胶印模技术取患者硅橡胶印模,将硅橡胶模型寄往西安恒惠科技有限公司,用三维激光扫描设备扫描,对取得的数据进行处理,获得牙齿三维数据,并以STL格式保存。所有患者采用NewTom3G锥形束CT进行扫描。采用卧位投射,扫描后原始容积数据传输到计算机后经设备标配综合图像处理软件(NewTom NNT)完成数字化处理,然后输出高分辨率DICOM格式图像数据。西安恒惠科技有限公司相关人员根据骨密度信息,将CBCT中牙齿数据提取出来,生成单颌STL,使用专用软件的曲面匹配工具,与激光扫描的STL对牙冠部位进行匹配,建立包含牙根在内的数字化三维牙颌模型。
     本部分获得15例患者的包含牙根、牙冠和颌骨的三维影像,该数字模型精细平滑、解剖细节清晰,能够清晰地观察到牙冠、牙根的三维位置关系。结论:包含牙根的数字化三维牙颌模型的建立这对正畸治疗方案的确立及治疗效果的评估都有重大意义。通过整合模型,我们可以清晰地观察牙冠的情形,以及直观看到牙根排列情况,准确评估牙周状况和牙槽骨厚度,并且全面评估患者牙冠与牙根、颌骨的空间位置关系,为矫治方案的制定提供了依据,为后续托槽间接粘结的准确定位奠定的实验基础。
     二.DamonQ自锁托槽在数字化牙颌模型上的模拟定位
     本研究在第一部分建立的15个三维数字化牙颌模型上,利用工程软件绘制真实大小的DatnonQ自锁托槽,在整合模型上比较数字化DamonQ自锁托槽含牙根信息托槽定位法与托槽高度定位法虚拟矫治效果差异。通过ABO-OGS评分系统的三项标准(边缘嵴高度、牙齿排列、牙根平行度)评估虚拟矫治后的矫治效果,探讨数字化托槽虚拟定位的准确性以及今后临床应用的可行性。
     方法:1)先在这15个患者石膏模型上测量上下颌中切牙临床牙冠高度,确定我们托槽高度定位的标准为:上中切牙高度为4.5mm,下颌中切牙高度为3.5mm。2)按照含牙根信息托槽定位法对15例牙颌模型上28颗牙齿进行托槽定位。3)按照托槽高度定位法对15例牙颌模型上28颗牙齿进行托槽定位。4)软件形成矫治后终状态。5)ABO-OGS评分标准评估矫治结果:在计算机软件上使用目测法对研究模型各种托槽定位方法正畸虚拟治疗前后的数字化模型进行测量。测量指标参照ABO-OGS标准,包括三项:牙齿排列、后牙边缘嵴高度及牙根平行度。每个病例记录记分牙位、各单项记分及总记分。每个病例的测量间隔时间为2周,重复测量3次,测量结果取3次测量的均值。6)统计学分析:本研究是对牙齿的牙齿排齐、边缘嵴高度、牙根平行度这三个测量指标及综合指标,采用重复测量资料方差分析,比较矫正前和两种不同的托槽虚拟定位方法虚拟矫治后结果,不满足球对称检验,采用校正的Greenhouse-Geisser结果。软件版本为SPSS19.0,设定显著性水平位为0.05。
     结果:1)用OrthoRx软件成功地获得了所有患者牙颌模型模拟的最终矫治状态。2)在边缘嵴高度方面,治疗前扣分均数为2.80±2.01分,按含牙根信息托槽定位法(以下简称方法一),其虚拟矫治后扣分均数为0.53±0.83分,按托槽高度法为标准定位托槽(以下简称方法二),其虚拟矫治后扣分均数为0.27±0.46分,重复测量资料方差分析检验结果示:方法一及方法二虚拟矫治前后牙齿边缘嵴高度差异均有统计学意义(F=22.691,P=0.000),两种托槽定位方法,虚拟矫治后边缘嵴高度扣分均小于治疗前扣分,但是,两种方法虚拟矫治后边缘嵴扣分没有统计学差异。3)在牙齿排齐方面,治疗前扣分均数为10.80±5.06分,方法一虚拟矫治后扣分均数为0.27±0.46分,方法二虚拟矫治后扣分均数为1.00±0.84分,重复测量资料方差分析检验结果示:方法一及方法二虚拟矫治前后牙齿排齐差异均有统计学意义(F=67.144,P=0.000),两种托槽定位方法,虚拟矫治后牙齿排齐方面扣分均小于治疗前扣分。而且,两种方法虚拟矫治后牙齿排齐扣分差异有显著性(P<0.05),方法一虚拟矫治后扣分小于方法二。4)在牙根平行度方面,治疗前扣分均数为0.47±1.13分,方法一虚拟矫治后扣分均数为0.07±0.26分,方法二虚拟矫治后扣分均数为1.00±1.13分,重复测量资料方差分析检验结果示:方法一与方法二比较,两者矫治后牙根平行度扣分差异有统计学意义(F=5.971,P=0.007)。方法一虚拟矫治后牙根平行度扣分小于方法二。但是,两种方法虚拟矫治前后牙根平行度差异均无统计学意义,两种托槽定位方法,虚拟矫治后牙根平行度方面未发生明显改善。5)在牙齿排齐、边缘嵴高度及牙根平行度3项总的扣分情况,治疗前总的扣分的平均值为14.07±7.15分,方法一虚拟矫治后扣分均数为0.87±1.19分,方法二虚拟矫治后扣分均数为2.27±1.58分,重复测量资料方差分析检验结果示:方法一及方法二虚拟矫治前后3项总的扣分差异均有统计学意义(F=54.818,P=0.000),两种托槽定位方法,虚拟矫治后3项总扣分均小于治疗前扣分。同时,两种方法矫治后3项总扣分差异有显著性(P<0.05),故可以认为方法一虚拟矫治后效果较方法二好。
     结论:1)在重建包含牙根的三维数字化模型上,用OrthoRx软件,通过含牙根信息托槽定位法及与托槽高度定位法,其虚拟矫治均有效果。2)通过含牙根信息托槽定位法较托槽高度定位法虚拟矫治效果更好,该结果反映了含牙根信息托槽定位法其托槽定位方法更为准确。这为后续研究托槽准确定位于口腔提供实验依据。
     三.托槽软件位置与间接粘结转移的实际位置一致性的验证
     本研究比较托槽软件位置与转移至中间石膏模型的位置的差异,以及托槽软件位置与初始石膏模型位置的差异,以期为数字化托槽间接粘结位置的一致性提供实验依据。
     方法:1)选取已按照含牙根信息托槽定位法定位的15个数字化模型。2)将软件托槽粘结位置转移至中间石膏模型上。3)用特殊软件工具测量每个托槽软件位置到中间石膏模型位置的线距差。4)制作间接粘结转移托盘。5)将托槽从转移托盘转移至初始石膏模型上。6)用特殊软件工具测量每个托槽软件位置到初始石膏模型位置的线距差。7)统计学处理:实验数据以均数±标准差来表示。数据使用SPSS19.0软件进行统计学分析,各数据先进行正态性检验,每组数据用单样本t检验,检验值为0.2。两组数据比较采用配对t检验,并先进行成对样本相关系数检验,当P<0.05时,被认为差异具有统计学意义。
     结果:1)各个牙位托槽软件位置与转移至中间石膏模型后托槽位置的线距测量结果如下:Al:t=-15.863,P=0.000,差分的95%置信区间的上限为-0.089;A2:t=-13.909,P=0.000,差分的95%置信区间的上限为-0.070;A3:t=-14.414,P=0.000,差分的95%置信区间的上限为-0.078;A4:t=-19.526,P=0.000,差分的95%置信区间的上限为-0.112;A5:t=-16.950,P=0.000,差分的95%置信区间的上限为-0.101;B1:t=-9.322,P=0.001,差分的95%置信区间的上限为-0.065;B2:t=-10.428,P=0.000,差分的95%置信区间的上限为-0.066;B3:t=-15.144,P=0.000,差分的95%置信区间的上限为-0.093;B4:t=-21.046,P=0.000,差分的95%置信区间的上限为-0.108;B5:t=-33.444,P=0.000,差分的95%置信区间的上限为-0.121;C1:t=-16.595,P=0.000,差分的95%置信区间的上限为-0.090;C2:t=-16.820,P=0.000,差分的95%置信区间的上限为-0.098;C3:t=一15.272,P=0.000,差分的95%置信区间的上限为-0.094;C4:t=-18.776,P=0.000,差分的95%置信区间的上限为-0.094;C5:t=-18.403,P=0.000,差分的95%置信区间的上限为-0.101;D1:t=:一19.074,P=0.000,差分的95%置信区间的上限为-0.101;D2:t=-16.895,P=0.000,差分的95%置信区间的上限为-0.089;D3:t=-13.260,P=0.000,差分的95%置信区间的上限为-0.094;D4:t=-15.293,P=0.000,差分的95%置信区间的上限为-0.083;D5:t=-11.630,P=0.000,差分的95%置信区间的上限为-0.067;即可认为所有牙位的线距差值与检验值0.20mm有显著性差异,这些牙位的线距差值均小于检验值0.20mm,可以认为软件中托槽位置与硬件上托槽位置具有一致性。2)各个牙位托槽软件位置与初始石膏模型上托槽位置的线距测量结果如下:A1:t=-7.159,P=0.000,差分的95%置信区间的上限为-0.057;A2:t:=-6.702,P-0.000,差分的95%置信区间的上限为-0.045;A3:t=-8.983,P=0.000,差分的95%置信区间的上限为-0.073;A4:t=-8.582,P=0.000,差分的95%置信区间的上限为-0.069;A5:t=-9.133,P=0.000,差分的95%置信区间的上限为-0.072;B1:t=-10.582,P=0.001,差分的95%置信区间的上限为-0.075;B2:t=-12.642,P0.000,差分的95%置信区间的上限为-0.081;B3:t=-6.327,P=0.000,差分的95%置信区间的上限为-0.043;B4:t=-10.452,P=0.000,差分的95%置信区间的上限为-0.077;B5:t=-15.792,P=0.000,差分的95%置信区间的上限为-0.087;C1:t=-8.601,P=0.000,差分的95%置信区间的上限为-0.070;C2:t=-12.166,P=0.000,差分的95%置信区间的上限为-0.082;C3:t=-7.412,P=0.000,差分的95%置信区间的上限为-0.051;C4:t=-5.405,P=0.000,差分的95%置信区间的上限为-0.038;C5:t=-8.724,P=0.000,差分的95%置信区间的上限为-0.047;D1:t=-8.680,P=0.000,差分的95%置信区间的上限为-0.075;D2:t=-9.552,P=0.000,差分的95%置信区间的上限为-0.070;D3:t=-9.970,P=0.000,差分的95%置信区间的上限为-0.068;D4:t=-7.758,P=0.000,差分的95%置信区间的上限为-0.058;D5:t=-12.393,P=0.000,差分的95%置信区间的上限为-0.084。即可认为所有牙位的线距差值与检验值0.20mm有显著性差异,这些牙位的线距差值均小于检验值0.20mm,可以认为软件中托槽位置与牙齿实际位置具有一致性。3)我们将每个牙位上软件-中间石膏模型线距值与软件-初始石膏模型线距值进行配对t检验,结果示:A1:t=1.669,P=0.102;A2:t=:1.520,P=0.136; A3: t=-0.281,P=0.780;A4:t=3.062,P=0.004; A5:t=1.499,P=0.141;B1:t=-0.736, P=0.465; B2:t=-1.556,P=0.127;B3:t=3.877,P=0.000;B4:t=2.842,P=0.007;B5: t==3.593,P=0.001;C1:t=:0.713,P:0.480; C2:t=1.409,P=0.166;C3:t=3.108, P=0.003;C4:t=3.569,P=0.001;C5:t:6.419,P=0.000;D1:t=1.171,P=0.248; D2: t=1.020,P:0.313;D3:t=1.152,P:0.256;D4:t=1.510,P=0.138;D5:t=-1.957, P=0.057.A1,A2,A3,A5,B1,B2,C1,C2,D1,D2,D3,D4,D5这些牙位的托槽两者差异均无显著性(P>0.05)。即可认为这些牙位的托槽在软件-中间石膏模型线距差值与软件-初始石膏模型线距差值一致,即托槽的中间石膏模型位置与初始石膏模型位置基本一致。而A4,B3,B4,B5,C3,C4,C5这些牙位的托槽差异均有显著性(P<0.05),即可认为这些牙位的软件-初始石膏模型线距差值大于软件-中间石膏模型线距差值。
     结论:1)从软件到中间石膏模型的托槽转移过程中,所有牙位托槽的位置差值在0.2mm内,可以认为托槽软件位置与中间石膏模型位置基本一致。2)从软件到初始石膏模型的托槽转移过程中,所有牙位托槽的位置差值在0.2mm内,可以认为托槽软件位置与初始石膏模型位置基本一致。
The bracket placement is an important step during orthodontic treatment. In order to have an accurate bracket bonding, brackets-indirect-bonding technique is widely used these days. Further, indirect bonding technique can be categorized into the traditional and digital indirect bonding technologies. The traditional indirect bonding technique requires tedious work by laboratory technicians, which significantly hampers its clinical applications. During the development of information technology, the3D digital dental model becomes more and more popular due to its accuracy and convenience for storage and measurement. To date, the technique of positioning brackets in a digital model has become a hot topic in China. With the development of digital technology, digital indirect bonding technology is gradually applied in clinical orthodontics.
     However, several bracket placement protocols have been proposed. Angle recommended that the ideal position to place the bracket located at the center of the tooth labial surface. Andrews developed the straight-wire appliance and proposed that the brackets should be placed at the midpoint of the facial axis (FA) point. McLaughlin and Bennett suggested that the position of bracket should be based on the distance between the incisal edge and bracket groove which varied from person to person.. Ricketts and later Kalange recommended to find the vertical position of brackets according to the marginal ridges.
     The Objective Grading System (OGS) developed by the American Board of Orthodontics (ABO), named as ABO-OGS, is currently considered as an objective and reliable evaluation system for the therapeutic effects of orthodontic treatment. The evaluation system is based on a plaster model and X-ray panoramic radiographs. It can evaluate the outcome of orthodontic treatment accurately and objectively. The system includes8established occlusal criteria, including tooth alignment, vertical positioning of marginal ridges, buccolingual inclination of posterior teeth, occlusal relationship, occlusal contacts, overjet, interproximal contacts and root angulation. The first seven criteria are based on orthodontic models, whereas the eighth one, root angulation, is according to a panoramic radiograph. It scored from0-2points based on the abnormal degree of each criterion. The total score is the sum of the eight criteria. The lower of the total score indicated a better treatment. ABO-OGS scoring system can evaluate three levels of a model, which is considered as a useful index to evaluate the orthodontic treatment.
     At present, there are very few studies about the bracket positioning through a3D digital dental model or evaluating the orthodontic treatment effect using the ABO-OGS system. The goal of this study is to establish a three-dimensional digital model of reconstructed crowns, roots and jaws using a laser scanning and CBCT technology. Here, the full-sized DamonQ self-ligating brackets were drawn by the software. In addition, we compared the therapeutic effects of two different ways in locating the brackets:1) through combining the height of DamonQ self-ligating bracket and the long axis of tooth;2) bracket positioning system. We determined the effect of virtual orthodontic treatment based on three criteria, including alignment, marginal ridge height and root angulation, according to ABO-OGS grading system. We also discussed the feasibility of digital virtual positioning braces in clinical applications. As we know, whether the virtual brackets can mimic mouth precisely mainly depends on the consistency between the virtual brace position on the software and the exact position being transferred to a patient's mouth. In this work, we investigated the difference between virtual and real bracket positions in the computer and plaster cast, respectively. This study will provide the basis for clinical application. My dissertation includes three chapters and described as followings.1. The establishment of three dimensional visualized digital model by the integration of the data of cone beam computer tomography images and laser scanning.
     The purpose of this study was to reconstruct crowns, roots and jaws with laser scanning and CBCT technology and establish a three-dimensional digital model. This study will lay the foundation to obtain the accurate position of the indirect-bonding-brackets.
     Total15invisible orthodontic patients were selected from the department of Guangdong Provincial stomatological hospital for this study. There are9cases of Angle class I malocclusion and6cases of Angle class II malocclusion. Among these patients,3were male,12were female. The age range is from23to38years old, with an average age of27.7years old. The patients were selected based on the following criteria:permanent dentition, complete dentition (28-32teeth), no extra teeth, no deformity teeth, no root canal treatment, no labial and buccal filling teeth, no teeth with excessive wear, no metal restorations. In addition, the patients whose CBCT image is not clear were excluded. The patients were informed and signed for the consent.
     The patients' teeth were impressed with silicone rubber using twoa two-step methods. The silicone rubber models were sent to the Xi'an Henghui Technology Co. ltd. The data was acquired by using3D laser scanning, and then was process to obtain3D dataimage, saved in the STL format. All patients were scanned by using NewTom3G cone beam CT. By using lying projection, the scanned original volume data is transmitted to the computer, and digital processing was completedprocessed by usingwith a software image processing equipment program (NewTom NNT), then the DICOM image data with high resolution DICOM image data was were generated. According to bone density information, teeth data were extracted obtained from the CBCT, and then a single jaw STL was generated. Herein, we used the special software was used, andto match the STL laser scanning on image of the crown part was matched., Finally, the digital three-dimensional dental model included including the roots was established.
     Results:In this part, we obtained the three-dimensional models comprised of the roots, crown and jaws from15patients. These models are fine and smooth, presented clear anatomical details, from which we can clearly observe3D position of the crown and root. This study is of great significance to assess the effect of orthodontic treatment. To establish the3D digital dental model including the teeth root is essential for choosing the orthodontic treatment plan and evaluating the therapeutic effect. Based on the integrated model, we can clearly observe the situation of the crown and the arrangement of root, and then fully evaluate the spatial relationship among the crown, root and jaw. This study will provide the basis for formulating the therapeutic plan, and can avoid the improper orthodontic treatment, such as poor root, bone cracking, fenestration, root exposure as well as other serious consequences. This study also provides the basic information for the accurate positioning of the subsequent indirect-bonding brackets.
     2. A preliminary study on positioning of Damon Q self-ligating brackets on the digital integration model.
     According to the3D digital dental models from15patients, the full-sized DamonQ self-ligating brackets were drawn by the software. In addition, we compared the therapeutic effects of two different ways in locating the brackets:1) bracket location with root information;2) bracket height positioning system. We evaluated the effects of virtual orthodontic treatment based on three criteria, including alignment, marginal ridge height and root angulation, according to ABO-OGS grading system. We also discussed the feasibility of digital virtual positioning braces in clinical applications.
     Methods:1) First, we measured the clinical crown height with maxillary central incisor and mandibular central incisor in the gypsum model of15patients. We determined the height of bracket position according the following standards:the height of upper incisor and mandibular incisor is4.5mm and3.5mm, respectively.2) We determined the position of28teeth of15cases according to bracket location with root information.3) We determined the position of28teeth of15cases according to the height position method.4) The final status was generated by the software.5) Treatment:The treatment results were assessed with ABO-OGS. We compared the models that before and after orthodontic treatment with visual method in computer software. Herein, we evaluated the effects of virtual orthodontic treatment based on three criteria according to ABO-OGS grading system, including alignment, marginal ridge height and root angulation. The measurement interval of each case is2weeks, and every case measured3times. The results are the mean value of3measurements.6) Statistical analysis:This study is about teeth alignment, marginal ridge height, root parallelism of the three measurement indicators and composite indicators, using repeated measures ANOVA. Comparing the result before treatment and two different positioning methods after treatment. Results dissatisfaction football symmetry test results using the Greenhouse-Geisser correction. Software version SPSS19.0, set the significance level of0.05bits.
     Results:1)We obtained the final treatment status of all the patients by using the OrthoRx software.2) For the marginal ridge height, the mean value of the deduction points of was2.80±2.01before treatment according to ABO-OGS system. When we located the brackets with the method that combining height and long axis of tooth (referred to method one), the points became0.53±0.83after the virtual orthodontic treatment. When we positioned the brackets with the height position method (referred to method two), the points became0.27±0.46after virtual orthodontic treatment. According to analysis of variance for repeated measurement design, there were significant differences in the deduction points of marginal ridge height before and after treatment with method one and method two(F=22.691, P=0.000). In conclusion, the deduction points of marginal ridge height are significantly decreased after the treatment using these two methods. However, there were no statistics significance differences between method one and method two on the deduction points of marginal ridge height (P>0.05).3)For the teeth alignment, the mean value of the deduction points was10.80±5.06before the treatment based on ABO-OGS. When we located the brackets with method one, the deduction points became0.27±0.46after the treatment. In addition, the points became1.00±0.84after treatment with method two. According to analysis of variance for repeated measurement design, there were significant differences in the deduction points of alignment before and after treatment (F=67.144,P=0.000). The deduction points of alignment are significantly decreased after the treatment using these two kinds of positioning methods In addition, there were statistics significance differences between method one and method two on the deduction points of alignment (P<0.05).4) For the root parallelism of teeth, the mean of the deduction points was0.47±1.13before the treatment according to ABO-OSG. After virtual orthodontic treatment with method one, the deduction value became0.07±0.26. After the virtual orthodontic treatment with method two, the points became1.00±1.13. According to analysis of variance for repeated measurement design, compared method one with method two, there were statistics significance differences in the deduction points of root parallelism (F=5.971, P=0.007). But, there is no improvement on the deduction points of root parallelism with both methods (P>0.05), there were no statistics significance in the deduction points of root parallelism before and after treatment using both methods.5) For the deduction points of the three scoring components (including alignment, marginal ridge height and root angulation) of ABO-OGS, the mean value of the deduction points was14.07±7.15before the treatment. After virtual orthodontic treatment with method one, the deduction value became0.87±1.19. After the virtual orthodontic treatment with method two, the points became2.27±1.58. According to analysis of variance for repeated measurement design, there were significant differences in the deduction points of3scoring components before and after treatment using these two methods (F=54.818, P=0.000).The deduction points of3scoring components are significantly decreased after the treatment using these two kinds of positioning methods. Moreover, there were statistics significance differences in the deduction points of3scoring components in two methord (P<0.05).
     Conclusion:1) In the reconstruction of3D digital modes, we had achieved the effective therapeutic treatment with two different brackets positioning method using OrthoRx software.2) Method one, the bracket position method combining height with long axis of tooth, is more accurate, compared to method two. The research provides the experimental basis for bracket accurately in the mouth.
     3. The verification of consistency of bracket location in software and the actual location by indirect bonding transfer.
     In this part, we investigated the difference between software and the transition of model position of all brackets, as well as the difference between software and real position of all brackets. This study will provide the basis for clinical application.
     Methords:1) We selected15digital models according to the bracket position method which combined the height and long axis of tooth.2)The virtual bracket bonding position in the software was transferred to the hardware model.3) The line distance between software and hardware model in each bracket was measured with specific measurement tools.4) Making indirect bonding transfer tray.5) The brackets from the transfer tray were transferred to the original plaster models.6) The line distance between software and real position in each bracket was measured with specific measurement tools.7) Statistical analysis:The data of this study were presented as mean±standard deviation (s). The SPSS19software package was used for statistical analysis. First, each data was analyzed for normality test. Then, each set of data is analyzed for single sample t test, and the test value is0.1. The data of two groups were first analyzed with correlation coefficient test, and then compared by paired samples t test. The probabilities (P)<0.05was considered to be statistics significance, and P<0.01was considered to be significantly statistics significance.
     Results:1)The measurement results:The distance of bracket position between software and the transition of model position are as follows:A1:t=-15.863, P=0.000,95%confidence interval for the difference of a maximum is-0.089; A2:t=-13.909, P=0.000,95%confidence interval for the difference of a maximum is-0.070; A3:t=-14.414, P=0.000,95%confidence interval for the difference of a maximum is-0.078; A4:t=-19.526, P=0.000,95%confidence interval for the difference of a maximum is-0.112; A5:t=-16.950, P=0.000,95%confidence interval for the difference of a maximum is-0.101; B1:t=-9.322, P=0.001,95%confidence interval for the difference of a maximum is-0.065; B2:t=-10.428, P=0.000,95%confidence interval for the difference of a maximum is-0.066; B3:t=-15.144, P=0.000,95%confidence interval for the difference of a maximum is-0.093; B4:t=-21.046, P=0.000,95%confidence interval for the difference of a maximum is-0.108; B5:t=-33.444, P=0.000,95%confidence interval for the difference of a maximum is -0.121; C1:t=-16.595, P=0.000,95%confidence interval for the difference of a maximum is-0.090; C2:t=-16.820, P=0.000,95%confidence interval for the difference of a maximum is-0.098; C3:t=-15.272, P=0.000,95%confidence interval for the difference of a maximum is-0.094; C4:t=-18.776, P=0.000595%confidence interval for the difference of a maximum is-0.094; C5:t=-18.403, P=0.000,95%confidence interval for the difference of a maximum is-0.101;Dl:t=-19.074, P=0.000,95%confidence interval for the difference of a maximum is-0.101; D2:t=-16.895, P=0.000,95%confidence interval for the difference of a maximum is-0.089;D3:t=-13.260, P=0.000,95%confidence interval for the difference of a maximum is-0.094;D4:t=-15.293, P=0.000,95%confidence interval for the difference of amaximum is-0.083; D5:t=-11.630, P=0.000,95%confidence interval for the difference of a maximum is-0.067. So there were significant differences between test line and the value of0.20mm, all the test values are less than0.20mm, so these can be considered a virtual bracket position is consistent with the hardware position.2) The measurement results:The distance of bracket position between software and actual position are as follows:Al:t=-7.159, P=0.000,95%confidence interval for the difference of a maximum is-0.057; A2:t=-6.702, P=0.000,95%confidence interval for the difference of a maximum is-0.045; A3:t=-8.983, P=0.000,95%confidence interval for the difference of a maximum is-0.073; A4:t=-8.582, P=0.000,95%confidence interval for the difference of a maximum is-0.069; A5:t=-9.133, P=0.000,95%confidence interval for the difference of a maximum is-0.072; B1:t=-10.582, P=0.001,95%confidence interval for the difference of a maximum is-0.075; B2:t=-12.642, P=0.000,95%confidence interval for the difference of a maximum is-0.081; B3:t=-6.327, P=0.000,95%confidence interval for the difference of a maximum is-0.043; B4:t=-10.452, P=0.000,95%confidence interval for the difference of a maximum is-0.077; B5:t=-15.792, P=0.000,95%confidence interval for the difference of a maximum is-0.087; C1:t=-8.601, P=0.000,95%confidence interval for the difference of a maximum is-0.070; C2:t=-12.166, P=0.000,95%confidence interval for the difference of a maximum is-0.082; C3:t=-7.412, P=0.000,95%confidence interval for the difference of a maximum is-0.051; C4:t=-5.405, P=0.000,95%confidence interval for the difference of a maximum is-0.038; C5:t=-8.724, P=0.000,95%confidence interval for the difference of a maximum is-0.047; D1:t=-8.680, P=0.000,95%confidence interval for the difference of a maximum is-0.075; D2:t=-9.552, P=0.000,95%confidence interval for the difference of a maximum is-0.070; D3:t=-9.970, P=0.000,95%confidence interval for the difference of a maximum is-0.068; D4:t=-7.758, P=0.000,95%confidence interval for the difference of a maximum is-0.058; D5:t=-12.393, P=0.000,95%confidence interval for the difference of a maximum is-0.084. So there were significant differences between test line and the value of0.20mm, all the test values are less than0.20mm, so these can be considered a virtual bracket position is consistent with the actual position.3) We compared the line distance between hardware and real position by paired t test. The results are as follows:Al: t=1.669, P=0.102; A2:1=1.520, P=0.136; A3:t=-0.281, P=0.780; A4:1=3.062, P=0.004; A5:1=1.499, P=0.141; B1:t=-0.736, P=0.465; B2:1=4.556, P=0.127; B3: t=3.877, P=0.000; B4:1=2.842, P=0.007; B5:1=3.593, P=0.001; C1:1=0.713, P=0.480; C2:t=1.409, P=0.166; C3:t=3.108, P=0.003; C4:t=3.569, P=0.001; C5: t=6.419, P=0.000; D1:1=1.171, P=0.248; D2:t=1.020, P=0.313; D3:1=1.152, P=0.256; D4:1=1.510, P=0.138; D5:t=4.957, P=0.057. The results showed that there was no significant difference among these teeth A1, A2, A3, A5, B1, B2, C1, C2, D1, D2, D3, D4, D5(P>0.05), which suggested that the hardware position and real position were almost consistent. However, there was significant difference among these teethA4, B3, B4, B5, C3, C4, C5(P<0.05).
     Conclusion:1) In the process of brackets transfered from software position to hardware position, we measured the line distance between software position and hardware position of brackets. The difference of most brackets is close to0.2mm, so software position and hardware position of brackets is considered consistently.2) In the process of brackets transfered from software position to real position, we measured the line distance between software position and real position of brackets. The difference of most brackets is close to0.2mm, so software position and actual position of brackets is considered consistently.
引文
[1]Mozzo P, Procacci C, Tacconi A, et al. A new volumetric CT machine for dental imaging based on the cone-beam technique:preliminary results[J].Eur Radiol,1998, 8(9):1558-1564.
    [2]Arai Y, Honda K, Iwai K, et al. Practical model"3DX"of limited cone-beam X-ray CT for dental use[J]. Int Congr Ser,2001,1230(7):713-718.
    [3]Mohan R, Singh A, Gundappa M. Three-dimensional imaging in periodontal diagnosis:Utilization of cone beam computed tomography [J]. J Indian Soc Periodontol,2011,15(1):11-17.
    [4]Hatcher DC. Operational principles for cone-beam computed tomography [J]. Am Dent Assoc,2010,141(3):3-6.
    [5]Gateno J, Xia J, Teichgraeber JF, et al. A new technique for the creation of a computerized composite skull model. J Oral Maxillofac Surg,2003,61(2): 222-227.
    [6]Gateno J, Xia JJ, Teichgraeber JF, et al. Clinical feasibility of computer-aided surgical simulation (CASS) in the treatment of complex cranio-maxillofacial deformities. J Oral Maxillofac Surg,2007,65(4):728-734.
    [7]Macchi A, Carrafiello G, Cacciafesta V, et al. Three-dimensional digital modeling and setup. Am J Orthod Dentofacial Orthop,2006,129(5):605-610.
    [8]周晶,郭宏铭.牙根三维牙颌模型重建系统的研究.北京口腔医学,2010,18(1):14-17.
    [9]Rangel FA, Maal TJ, Berge SJ,et al. Integration of Digital Dental casts in cone-beam computed tomography scans. ISRN Dent.2012; 2012:949086.
    [10]Park TJ, Lee SH, Lee KS.A method for mandibular dental arch superimposition using 3D core beam CT and orthodontic 3D digital model. Korean J Orthod,2012, 42(4):169-181.
    [11]Levartovsky S, Folkman M, Alter E, et al. Elastomeric impression materials. Refuat Hapeh Vehashinayim,2011,28(2):54-64,75.
    [12]Idris B, Houston F, Claffey N. Comparison of the dimensional accuracy of one-and two-st ep techniquesw ith the use of putty/wash addition sil-icone impression materials [J]. J Prosthet Dent,1995,74(5):535-541.
    [13]Shillingburg HT, Hobo S, Whitsett LD, et al. Fundamentals of Fixed Prosthodontics [M].3rd ed. Chicago:Quintessence Publishing Co,1997:299.
    [14]胡航,张正仪,杨艳丽,等.加聚型硅橡胶一次法、两次法印模三维精度研究.口腔医学,2007,27(9):418-420.
    [15]姚玲玲,黄琛琛,何流,等。加聚型硅橡胶一次法两次法印模三维精度比较.安徽医学,2012,33(3):271-273.
    [16]马绪臣.口腔颌面锥形束CT的临床应用[M].北京:人民卫生出版社,2011:1-6.
    [17]方冬,赵垫,袁宪顺等.][mplagraphy牙颌面锥形束CT与多层螺旋CT的图像质量对比研究.中华老年口腔医学杂志,2008,6(4):226-229.
    [18]Ludlow JB, Davies-Ludlow LE, Brooks SL, et al. Dosimetry of CBCT devices for oral and maxillofacial radiology:CB Mercuray, NewTom 3G and i-CAT[J]. Dentomaxillofac Radiol,2006,35(4):219-226.
    [19]Zilberman O, Huggare J, Parikakis KA. Evaluation of the validity of tooth size and arch width measurements using conventional and three-dimensional virtual orthodontic models. Angle Orthod,2003,73(3):301-306.
    [20]Tomassetti JJ, Taloumis LJ, Denny JM, et al. A comparison of 3 computerized Bolton tooth-size analyses with a commonly used method. Angle Orthod,2001, 71(5):351-357.
    [1]Balut N, Klapper L, Sandrik J, et al. Variations in bracket placement in the preadjusted orthodontic appliance. Am J Orthod Dentofacial Orthop.1992, 102(1):62-67.
    [2]Andrews LF. The straight-wire appliance. Origin, controversy, commentary. J Clin Orthod,1976,10(7):99-114.
    [3]Andrews LF. The straight-wire appliance. Br J Orthod,1979,6(3):125-143.
    [4]McLaughlin RP, Bennett JC. Bracket placement with preadjusted appliance. J Clin Orthod,1995,29(5):302-311.
    [5]Ricketts MR. Bioprogressive therapy as an answer to orthodontic needs. Am J Orthod,1976,70(3):241-268.
    [6]Kalange JT. Ideal appliance placement with APC brackets and indirect bonding. J Clin Orthod.1999,33(9):516-526.
    [7]Roth RH. Functional occlusion for the orthodontist, Part Ⅲ [J]. J Clin Orthod, 1981,13(1):174-198.
    [8]Eliades T, Gioka C, Papaconstantinou S, et al. Premolar bracket position revised: proximal and occlusal contacts assessment [J]. World J Orthod,2005, 6(2):149-155.
    [9]John TK. Prescription- Based Precision Full Arch Indirect Bonding[J]. Semin Orthod,2007,13(1):19-42.
    [10]William J R, Redmond MJ and Redmond WR. The OrthoCAD bracket placement solution. Am J Orthod Dentofacial Orthop,2004,125(5):645-646.
    [11]Silverma E, Dietz VS, Gianelly AA, et al. Universal direct bonding system for both metal and plastic brackets [J]. Am J Orthod,1972,62(3):236-244.
    [12]Kuroda T, Motohashi N, Tominaga R, et al. Three-dimensional dental cast analysing system using laser scanning. Am J Orthod Dentofacial Orthop,1996, 110(4):365-369.
    [13]Hayasaki H, Martins R, Gandini L Jr, et al. A new way of analysing occlusion 3 dimensionally. Am J Orthod Dentofacial Orthop,2005,128(1):128-132.
    [14]Hildebrand JC, Palomo JM, Palomo L, et al. Evaluation of a software program for applying the American Board of Orthodontics objective grading system to digital casts. Am J Orthod Dentofacial Orthop,2008,133(2):283-289.
    [15]Israel M, Kusnoto B, Evans CA,et al. A comparison of traditional and computer-aided bracket placement. Angle Orthod,2011,81(5):828-835.
    [16]Richmond S, Shaw WC, O'Brien KD, et al. The development of the PAR index (peer assessment rating):reliability and validity. Eur J Orthod,1992,14(2): 125-139.
    [17]Vaden JL, Kokich VG. American Board of Orthodontics:past, present, and future. Am J Orthod Dentofacial Orthop,2000,117(5): 530-532.
    [18]Casko JS, Vaden JL, Kokich VG, et al. Objective grading system for dental casts and panoramic radiographs. American Board of Orthodontics. Am J Orthod Dentofacial Orthop,1998,114(5):589-599.
    [19]Pinskaya YB, Hsieh TJ, Roberts WE, et al. Comprehensive clinical evaluation as an outcome assessment for a graduate orthodontics Program. Am J Orthod Dentofacial Orthop,2004,126(5):533-543.
    [20]Nett BC, Huang GJ. Long-term posttreatment changes measured by the Ameriean Board of Orthodontics objective grading system. Am J Orthod Dentofacial Orthop,2005,127(4):444-450.
    [21]Hsieh TJ, Pinskaya Y, Roberts WE.Assessment of orthodontic treatment outeomes:early treatment versus late treatment.Angle Orthod,2005, 75(2):162-170.
    [22]Okunami T, Kusnoto B, BeGole E, et al. Assessing the Ameriean Board of Orthodontics objective grading system:Digital vs.Plaster dental casts. Am J Orthod Dentofacial OrthoP,2007,131(5):51-56.
    [23]Seott SA, Freer TJ. Visual application of Ameriean Board of Orthodontics Grading System. Aust Orthod J,2005,21(1):55-60.
    [24]Andrews LF. Straight-wire-the concept and the appliance. Los Angels:Wells Company,1989.
    [25]Proffit WR. Contemporary orthodontics.3rd ed. Saint Louis:Mosby; 2000:169-170.
    [26]Ho CT, Freer TJ. A computerized tooth-width analysis. J Clin Orthod,1999, 33(9):498-503.
    [27]Zilberman O, Huggare J, Parikakis KA. Evaluation of the validity of tooth size and arch width measurements using conventional and three-dimensional virtual orthodontic models. Angle Orthod,2003,73(3):301-306.
    [28]Santoro M, Galkin S, Teredesai M, et al. Comparison of measurements made on digital and plaster models. Am J Orthod Dentofacial Orthop,2003,124(1): 101-105.
    [29]Tomassetti JJ, Taloumis LJ, Denny JM, et al. A comparison of 3 computerized Bolton tooth-size analyses with a commonly used method. Angle Orthod,2001, 71(5):351-357.
    [30]Quimby ML, Vig KWL, Rashid RG, et al. The accuracy and reliability of measurements made on computer-based digital models. Angle Orthod,2004, 74(3):298-303.
    [31]Okunami TR, Kusnoto B, BeGole E, et al. Assessing the American Board of Orthodontics objective grading system:digital vs plaster dental casts. Am J Orthod DentoOrthop,2007,131(1):51-56.
    [32]Hildebrand JC, Palomo JM, Palomo L,et al. Evaluation of a software program for applying the American Board of Orthodontics objective grading system to digital casts. Am J Orthod Dento Orthop,2008,133(2):283-289.
    [33]Asquith J, Gillgrass T, Mossey P. Three-dimensional imaging of orthodontic models:a pilot study. Eur J Orthod,2007,29(5):517-522.
    [34]Stevens DR, Flores-Mir C, Nebbe B, et al. Validity, reliability, and reproducibility of plaster vs digital study models:comparison of peer assessment rating and Bolton analysis and their constituent measurements. Am J Orthod Dentofacial Orthop,2006,129(6):794-803.
    [35]Costalos PA, Sarraf K, Cangialosi TJ, et al. Evaluation of the accuracy of digital model analysis for the American Board of Orthodontics objective grading system for dental casts. Am J Orthod Dentofacial Orthop,2005,128(5): 624-629.
    [36]Santoro M, Galkin S, Teredesai M, et al. Comparison of measurements made on digital and plaster models. Am J Orthod Dentofacial Orthop,2003,124(1): 101-105.
    [37]Suarez C, Vilar T. The effect of constant height bra cket placement on marginal ridge levelling using digitized models.Eur J Orthod,2010,32(1):100-105.
    [38]Damon DH. The rationale, evolution and clinical application of the self-ligating bracket [J]. Clin Orthod Res,1998,1(1):52-61.
    [39]Harradine NW. Self-ligating brackets and treatment efficiency [J]. Clin Orthod Res,2001,4(4):220-227.
    [40]Damon DH. The Damon low-friction bracket:A biologically compatible straight-wire system[J]. J Clin Orthod,1998,32 (11):670-680
    [41]Turnbull NR, Birnie DJ. Treatment efficiency of conventional vs self-ligating brackets:Effects of archwire size and material [J]. Am J Orthod Dentofacial Orthop,2007,131(3):395-399.
    [42]高杨.Damon-3矫治器临床初步应用[J].青岛医药卫生,2007,39(6):427-428.
    [43]Casko JS, Vaden JL, Kokich VG, et al. Grading system for dental casts and panoramic radiographs:American Board of Orthodontics. Am J Orthod Dentofacial Orthop,1998,114(5):589-599.
    [44]Eliades T, Gioka C, Papaconstantinou S, et al. Premolar bracket position revisited:proximal and occlusal contacts assessment. World J Orthod,2005, 6(2):149-155.
    [45]Matthew I, Budi K, Carla A, et al. A comparison of traditional and computer-aided bracket placement methods. Angle Orthod,2011; 81(5): 828-835.
    [1]Moskow it z E M. In direct bonding w ith a th ermal cured composite [J]. Semin Orthod,2007,13(1):69-74.
    [2]Anoop S. Effective and Efficient Indirect Bonding:The Sondhi Method [J]. Seminars in Orthodontics,2007,13(1):43-57.
    [3]Sachdeva R, Fruge JF, Fruge AM, et al. SureSmile:a report of clinical findings[J]. J Clin Orthod,2005,39(5):297-314.
    [4]Garino F, Garino G B. Computer-aided interactive indirect bonding [J]. Prog Orthod,2005,6(2):214-223.
    [5]Ciuffolo F, Epifania E, Duranti G, et al. Rapid prototyping:a new method of preparing trays for indirect bonding [J]. AmJ Orthod Dento-facial Orthop, 2006,129(1):75-77.
    [6]张文健,王林,严斌等.计算机辅助正畸托槽间接粘结技术的研究[J]1口腔医学,2007,27(4):184-186.
    [7]Armstrong D, Shen G, Petocz P, et al. A comparison of accuracy in bracket positioning between two techniques—localizing the centre of the clinical crown andmeasuring the distance from the incisal edge. Eur J Orthod,2007, 29(1):430-436.
    [8]Casko JS, Vaden JL, Kokich VG, et al. Objective grading system for dental casts and panoramic radiographs. American Board of Orthodontics. Am J Orthod Dentofacial Orthop,1998,114(5):589-599.
    [9]郭宏铭,陈慧,周晶.数字化整合模型和激光快速成型技术在舌侧间接粘结系统中的初步应用[J].北京口腔医学,2011,19(2):95-97.
    [10]Hickham JH, Predictable indirect bonding[J]. J Clin Orthod,1993,27(4):215-218.
    [11]Echarri P, Kim TW. Double transfer tray s for indirect bonding [J]. J Clin Orthod,2004,38(1):8-131.
    [12]Masatada K, Kazuya W, Takako K. Quick Indirect Bonding System (Quick IDBS), An Indirect Bonding Technique Using a Double-Silicone Bracket Transfer Tray [J]. Semin Orthod,2007,13(1):11-18.
    [13]John TK. Prescription- Based Precision Full Arch Indirect Bonding[J]. Semin Orthod,2007,13(1):19-42.
    [14]Elliott MM. Indirect Bonding with a Thermal Cured CompositefJ]. Semin Orthod,2007,13(1):69-74.
    [15]Terry AG, Brent EL. Indirect Bonding:A Technique for Precision and Efficiency [J]. Semin Orthod,2007,13(1):58-63.
    [16]陈慧,郭宏铭,白玉兴,等.CAD/CAM转移托盘粘结托槽位置准确性研究.北京口腔医学,2012,20(5):270-273.
    [1]Costalos PA, Sarraf K, Cangialosi TJ, et al. Evaluation of the accuracy of digital model analysis for the American Board of Orthodontics objective grading system for dental casts [J]. Am J Orthod Dentofacial Orthop,2005,128(4):624-629.
    [2]Keating AP, Knox J, Bibb R, et al. A comparison of plaster, digi-tal and reconstructed study model accuracy [J]. J Orthod,2008,35(2):191-201.
    [3]Leifert MF, Leifert MM, Efstratiadis SS, et al. Comparison of space analysis evaluations with digital models and plaster dental casts [J]. Am J Orthod Dentofacial Orthop,2009,136(1):16.
    [4]Mullen SR, Martin CA, Ngan P, et al. Accuracy of space analysis with emodels and plaster models [J]. Am J Orthod Dentofacial Orthop,2007,132(3):346-352.
    [5]刘松林,许天民,林久祥.三维数字化牙颌模型的数据采集方法和测量可靠性[J].口腔正畸学,2008,15(2):137-140.
    [6]Swennen GR, Mommaerts MY, Abeloos J, et al. A cone-beam CT based technique to augment the 3D virtual skull model with a detailed dental surface [J]. Int J Oral Maxillofac Surg,2009,38(1):48-57.
    [7]Svendsen P, Quiding L, Landahl I. Blackout and other artefacts in computed tomography caused by fillings in teeth. Neuro radiology,1980,19(5):229-234.
    [8]Swennen GR, Barth EL, Eulzer C, et al. The use of a new 3D splint and double CT scan procedure to obtain an accurate anatomic virtual augmented model of the skull. Int J Oral Maxillofac Surg.2007,36(2):146-152.
    [9]Gateno J, Xia JJ, Teichgraeber JF, et al. Clinical feasibility of computer-aided surgical simulation (CASS) in the treatment of complex cranio-maxillofacial deformities. J Oral Maxillofac Surg,2007; 65(4):728-734.
    [10]Kusn oto B, Evans CA. Reliab ility of a 3D surface laser scanner for orthodon ticapp lications [J]. Am J Orthod Den tofacial Orthop,2002,122(4):342-348.
    [11]高洪涛,颜永年,祁鹏,等.医学牙颌石膏模型数字化技术研究[J].制造业自动化,2005,27(8):9-12.
    [12]Macchi A, Carrafiello G, Cacciafesta V, et al. Three-dimensional digital modeling and setup. Am J Orthod Dentofacial Orthop,2006,129(5):605-610.
    [13]周晶,郭宏铭.牙根三维牙颌模型重建系统的研究.北京口腔医学,2010,18(1):14-17.
    [14]Rangel F A, Maal T J, Berge S J, et al. Integration of difital dental cast in cone-beam computed tomography scans. ISRN Dent.2012,2012:949086.
    [15]Park TJ, Lee SH, Lee KS. A method for mandibular dental arch superimposition using 3D core beam CT and orthodontic 3D digital model. Korean J Orthod. 2012,42(4):169-181.
    [16]Quimby M, Vig K, Rashid R, et al. The accuracy and reliability of measurements made on computer-based digital models. Angle Ortho,2004,74(3):298-303.
    [17]Santoro M, Galkin S, Teredesai M, et al. Comparison of measurements made on digital and plaster models. Am J Orthod Dentofacial Orthop,2003,124 (1):101-105.
    [18]Mok CW, Zhou L, McGrath C, et al. Digital images as an alternative to orthodontic casts in assessing malocclusion and orthodontic treatment need. Acta Odontol Scand,2007,65(6):362-368.
    [19]Hajeer MY, Millett DT, Ayoub AF,et al. Current products and practice applications of 3D imaging in orthodontics. J Orthod,2004,31(6):154-162.
    [20]Bell A, Ayoub A, Siebert P. Assessment of the accuracy of a three-dimensional imaging system for archiving dental study models. J Orthod,2003,30 (3):219-223.
    [21]Mitchell D, Mitchell L. Oxford handbook of clinical dentistry.4th edn. New York:Oxford University Press, Inc.; 2005.
    [22]Paredes V, Gandia J, Cibrian R. Determination of Bolton tooth-size ratios by digitization, and comparison with the traditional method. Eur J Orthod,2006, 28(2):120-125.
    [23]Asquith J, Gillgrass T, Mossey P. Three-dimensional imaging of orthodontic models:a pilot study. Euro J Orthod,2007,29(5):517-522.
    [24]Lee S, Delong PR, Hodges JS.Predicting first molar width using virtual models of dental arches. Clin Anat,2008,21(1):27-32.
    [25]Okunami T, Kusnoto B, BeGole E. Assessing the American Board of Orthodontics objective grading system:digital vs plaster dental casts. Am J Orthod Dentofacial Orthop,2007,131(1):51-56.
    [26]Whetten J, Williamson P, Heo G,. Variations in orthodontic treatment planning decisions of Class Ⅱ patient between virtual 3-dimensional models and traditional plaster study models. Am J Orthod Dentofacial Orthop,2006, 130(4):485-491.
    [27]Ziberman O, Huggare JA, Parikakis KA. Evaluation of the validity of tooth size and arch width measurements using conventional and three-dimensional virtual orthodontic models [J]. Angle Orthod,2003,73(7):301-306.
    [28]Garino F, Garino GB. Digital treatment objectives:procedure and clinical application [J]. Prog Orthod,2004,5(2):248-258.
    [29]刘松林,许天民,林久祥.三维数字化牙颌模型的数据采集方法和测量可靠性[J].口腔正畸学,2008,15(3):137-139.
    [30]周洁珉,白玉兴,王邦康.数字化三维牙颌模型测量系统的可靠性对比研究[J].现代口腔医学杂志,2005,19(4):367-368.
    [31]Park K, Jung DW, Kim JY. Three-dimensional space changes after premature loss of a maxillary primary first molar. Int J Paediatr Dent,2009,19(6):383-389.
    [32]Tuncay OC. The Inv isalign System [M]. New Malden, UK:Qu intessence Publishing Co, Ltd,2006:25-31,55-66.
    [33]白玉兴,周洁珉,王邦康.国产无托槽隐形正畸矫治系统的开发与研制[J].北京口腔医学,2004,12(2):89-92.
    [1]Silverma E, Dietz VS, Gianelly AA, et al. Universal direct bonding system for both metal and plastic brackets[J]. Am J Orthod,1972,62(3):236-244.
    [2]Echarr IP, Kim TW. Double transfer trays for indirect bonding [J]. J Clin Orthod, 2004,38(1):8-131.
    [3]Cooper RB, Sorenson NA. Indirect bonding with adhesive precoated brackets [J]. J Clin Orthod,1993,27(3):164-166.
    [4]Miles PG Indirect bonding with a flowable light-cured adhesive[J]. J Clin Orthod, 200236(11):646-647.
    [5]Duncan WH. Indirect Bonding with Light-Cured Adhesive and a Hybrid Transfer Tray. Seminars in Orthodontics [J].2007,13(1):64-68.
    [6]Michael AT, James LD, Ellen AB. Bond strength analysis of custom base variables in indirect bonding techniques [J].Am J Orthod Dentofacial Orthop, 2008,133(1):915-920.
    [7]Anoop S. Effective and Efficient Indirect Bonding:The Sondhi Method [J]. Semin Orthod,2007,13(1):43-57.
    [8]Hickman JH. Predictable indirect bonding.J Clin Orthod,1993,27:215-217.
    [9]Aguirre M, King G, Waldron J. Assessment of bracket placement and bond strength when comparing direct bonding to indirect bonding techniques. Am J Orthod,1982,82(4):269-276.
    [10]Koo BC, Chung C, Vanarsdall RL. Comparison of the accuracy of bracket placement between direct and indirect bonding techniques. Am J Orthod Dentofac Orthop,1999,116:346-351.
    [11]Hodge TM, Dhopatkar AA and Rock W P. A randomized clinical trial comparing the accuracy of direct versus indirect bracket placement. J Orthod, 2004,31(2):132-137.
    [12]Kalange JT. Indirect bonding:a comprehensive review of the advantages [J].World J Orthod,2004,5(4):301-307.
    [13]袁文钧,贺红,李卫海,等.MBT托槽间接粘结法与光固化直接粘结法的比较研究[J].口腔医学研究,2002,18(6):421-422.
    [14]Daub J, Berzins DW, Linn B J, et al. Bond strength of direct and indirect bonded brackets after thermocycling [J]. Angle Orthod,2006,76 (2):295-300.
    [15]Polat O, Karaman AI, Buyukyukyilmaz T. In vitro evaluation of shear bond strengths and in v ivoana-lysis o f bond survival of indirect-bonding resins [J]. Angle Orthod,2004,74(3):405-409.
    [16]Thiyagarajah S, Spary DJ, Rock WP. A clinical comparison of bracket bond failures in association with direct and indirect bonding. J Orthod.2006, 33(3):198-204.
    [17]Miles PG, Weyant R J. A clinical comparison of two chemically-cured adhesives used for indirect bonding [J], J Orthod,2003,30 (4):331-336.
    [18]Hickham JH. Predictable indirect bonding[J]. J Clin Orthod,1993, 27(4):215-218.
    [19]Echarri P, Kim TW. Double transfer tray s for indirect bonding [J]. J Clin Orthod,2004,38(1):8-131.
    [20]Masatada K, Kazuya W, Takako K. Quick Indirect Bonding System (Quick IDBS), An Indirect Bonding Technique Using a Double-Silicone Bracket Transfer Tray [J]. Semin Orthod,2007,13(1):11-18.
    [21]John TK. Prescription-Based Precision Full Arch Indirect Bonding[J]. Semin Orthod,2007,13(1):19-42.
    [22]Elliott MM. Indirect Bonding with a Thermal Cured Composite[J]. Semin Orthod,2007,13(1):69-74.
    [23]Terry AG, Brent EL. Indirect Bonding:A Technique for Precision and Efficiency [J]. Semin Orthod,2007,13(1):58-63.
    [24]Sachdeva R, Fruge JF, Fruge AM, et al. SureSmile:a report of clinical findings[J]. J Clin Orthod,2005,39 (5):297-314.
    [25]Garino F, Garino GB. Computer-aided interactive indirect bonding [J]. Prog Orthod,2005,6(2):214-223.
    [26]Ciuffolo F, Epifania E, Duranti G, et al. Rapid prototyping:a new method of preparing trays for indirect bonding [J]. AmJ Orthod Dento-facial Orthop,2006, 129(1):75-77.
    [27]张文健,王林,严斌,等.计算机辅助正畸托槽间接粘结技术的研究[J].口腔医学,2007,27(4):184-186.
    [28]郭宏铭,陈慧,周晶.数字化整合模型和激光快速成型技术在舌侧间接粘结系统中的初步应用[J].北京口腔医学,2011,19(2):95-97.