基于极值动力学的优化方法及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,对NP难的组合优化问题寻求高效的解决方法已成为优化领域的一个极具挑战性的研究课题。除了传统的运筹学方法,现代启发式方法正在得到越来越多的研究人员的关注和重视,已经广泛地应用于基础研究和实际工程领域。现有的大多数启发式方法,如进化算法、人工生命、模拟退火算法和禁忌算法等,都是从生物进化、统计物理和人工智能等领域发展而来。
     极值动力学优化算法(Extremal Optimization,EO)是近年来出现的一种新颖的、通用的、基于局部搜索的启发式方法,该方法是从统计物理学发展而来。众所周知,模拟退火算法(Simulated An-nealing,SA)是模拟系统处于平衡态的一种优化方法,与SA不同的是,EO算法的理论基础建筑在Bak-Sneppen生物进化模型之上,该模型模拟处于远离平衡态的系统,具备自组织临界性(Self-Organized Criti-cality,SOC)。SOC是指不管系统处于何种初始状态,不需要调整任何参数,整个系统就可以演化到一个自组织临界状态,在该状态下,系统呈现出幂律分布(Power-law)。遗传算法通过对交配池中的所有可能解实施选择、杂交和变异等遗传操作来达到寻优的目的,而EO算法总是不断地变异近似解的最差组成部分(即所谓的极值动力学机制)来达到寻优的目的。正是这种内在的极值动力学机制,使得EO具备很强的爬山能力,尤其在求解带有相变点(Phase transitions)的组合优化问题时EO更是展现出强大的优势。EO算法的特点是收敛速度快,局部搜索能力强,只有变异算子,无可调参数(对于基本EO算法)或只有一个可调参数τ(对于τ-EO算法)。目前EO算法已经被成功地应用于求解一些NP难的组合优化问题,如二分图,旅行商问题,图着色,旋转玻璃和动态组合优化问题。但是,国外对于EO算法在数值优化和多目标优化问题方面的研究并不多,国内学者对EO算法的研究更少之甚少。
     本文主要研究求解无约束或带约束数值优化问题的EO算法,并将求解单目标优化问题的EO算法扩展到多目标优化领域。本文的主要工作包括:
     (1)本文从分析EO算法的机理入手,提出了一种求解约束连续优化问题的新算法――带自适应Le′vy变异的基于种群的EO算法(PEO),通过求解6个经典的约束连续优化问题,实验结果证实了PEO能与3种流行的优化算法相匹敌,不失为一种求解数值约束优化问题的有效方法。
     (2)为了弥补标准粒子群算法容易陷入局部极值点的不足,本文提出了一种新颖的混合粒子群-极值动力学优化算法(PSO-EO),该算法有效地结合了PSO的全局搜索能力和EO的局部搜索能力,使得标准PSO算法可以跳出局部极值点,从而弥补了标准PSO算法的不足。迄今为止,还没有文献提出将EO和PSO结合起来的优化算法。通过求解6个经典的复杂单峰/多峰函数,PSO-EO算法被证实了具有避免早熟收敛的特点,是一种求解复杂数值优化问题的有效算法。
     (3)由于EO算法只有变异操作,因此,变异算子对EO算法的性能好坏起到了重要作用。本文将高斯变异和柯西变异有效地结合起来,提出了一种新颖的适合于求解数值优化问题的变异算子――混合高斯-柯西变异,该算子将“粗调”和“微调”很好地结合起来,并且省去了决定何时在不同变异之间进行切换的麻烦。
     (4)本文将基于Pareto支配概念的适应度评价方法引入到EO,提出了一种新颖的多目标极值动力学优化方法(Multiobjective Extremal Op-timization,MOEO),使EO算法成功地扩展到多目标优化领域。接着,用MOEO算法解决了多目标连续优化问题(包括无约束问题和带约束问题),实验结果表明MOEO非常适合于求解多目标连续优化问题,能够与3种经典的多目标进化算法(即NSGA-II,SPEA2和PAES)相匹敌。最后,提出了一种适合于求解多目标0/1背包问题的MOEO算法。实验结果表明MOEO算法具有快速的收敛能力和良好的多样化性能,具有与3种经典的多目标进化算法(即NSGA,SPEA和NPGA)相竞争的优势。
     (5)本文利用MOEO算法解决了4个经典的机械组件设计问题。实验结果表明:MOEO算法找到的非劣解集在收敛性和多样性方面有着良好的性能,能够与3种经典的多目标进化算法(NSGA-II,SPEA2和PAES)相匹敌。因此,MOEO算法是一个能解决实际工程优化问题的行之有效的方法。
     (6)本文将MOEO算法应用于求解5个经典的股票投资组合优化问题。实验结果表明:MOEO找到的近似Pareto前沿具有良好的收敛性能和多样化性能,能够与算法NSGA-II和SPEA2相匹敌,比PAES更优。因此,MOEO算法是一个能解决实际管理决策优化问题的有效方法。
In recent years, the studies on NP-hard combinatorial optimization problems have beena challenge subject in optimization community. In addition to traditional operations research,the modern heuristics have been attractive in fundamental research and real applications. Theapproaches to evolutionary algorithm (EA), artificial life, simulated annealing (SA) and Tabusearch et al. are developed from the natures of biological evolution, statistical physics andartificial intelligence et al..
     Recently, a novel general-purpose local search optimization approach, so-called“Ex-tremal Optimization (EO)”has been proposed based on the fundamentals of statisticalphysics. In contrast to SA which is inspired by equilibrium statistical physics, EO is basedon Bak-Sneppen (BS) model of biological evolution which simulates far-from equilibriumdynamics in statistical physics. The BS model is one of the models that show the natureof self-organized criticality (SOC). The SOC means that regardless of the initial state, thesystem always tunes itself to a critical point having a power-law behavior without any tun-ing control parameter. In contrast to genetic algorithms (GAs) which operate on an entire“gene-pool”of huge number of possible solutions, EO successively eliminates those worstcomponents in the sub-optimal solutions. The extremal dynamics mechanism in EO pro-vide significant hill-climbing ability, which enables EO to perform well particularly at thephase transitions. EO has many advanced features,such as fast convergence speed, strongability of local search, only mutation operator, no adjustable parameter for basic EO or onlyone adjustable parameterτforτ-EO. EO has been successfully applied to some NP-hardcombinatorial optimization problems such as graph bi-partitioning, traveling salesman prob-lem(TSP), graph coloring, spin glasses and dynamic combinatorial problems. However, sofar there have been only limited papers studying on the mechanism of EO applied to numer-ical optimization problems or multiobjective optimization problems(MOPs).
     This paper makes an investigation on the mechanism of EO for solving the uncon-strained or constrained numerical optimization problems, and further extends EO to dealwith the MOPs. The main research work includes:
     (1) Based on the analysis on the mechanism of EO, this paper presents a new algorithmnamed population-based EO with adaptive Le′vy mutation (PEO). Compared with threestate-of-the-art stochastic search methods with six benchmark functions, it has beenshown that our approach is a good choice to deal with the numerical constrained opti-mization problems.
     (2) To overcome the limitation of standard PSO, this paper proposes a novel hybrid algo-rithm, called hybrid PSO-EO algorithm, through introducing EO to PSO. The hybridapproach elegantly combines the exploration ability of PSO with the exploitation abil-ity of EO and thus the hybrid algorithm can help standard PSO to jump out of the localoptima. The proposed approach is validated using six complex unimodal/multimodalbenchmark functions. The simulation results demonstrate that the proposed approachis capable of avoiding premature convergence. Thus, the hybrid PSO-EO algorithmcan be considered a good alternative to solve complex numerical function optimiza-tion problems.
     (3) Since there is merely mutation operation in EO, the mutation operator plays a keyrole in EO search. In this paper, we present a new mutation method based on mixingGaussian mutation and Cauchy mutation, called hybrid Gaussian-Cauchy mutation.The new mutation operator combines the advantages of coarse-grained search andfine-grained search. Unlike some switching algorithms which have to decide whento switch between different mutations during search, the hybrid GC mutation does notneed to make such decisions.
     (4) In order to extend EO to solve the MOPs, in this work, we propose a novel multiob-jective optimization algorithm, called Multiobjective Extremal Optimization (MOEO),through introducing the fitness assignment based on Pareto optimality to EO. In thispaper, MOEO has been successfully applied to solving unconstrained or constrainedMOPs. The simulation results indicate that the proposed approach is highly competi-tive with three state-of-the-art multiobjective evolutionary algorithms (MOEAs), i.e.,NSGA-II, SPEA2 and PAES. This paper also successfully extends MOEO to solvethe multiobjective 0/1 knapsack problems. The experimental results demonstrate thatthe proposed approach is highly competitive with three state-of-the-art MOEAs, i.e.,NSGA,SPEA and NPGA.
     (5) The proposed MOEO algorithm is applied to handling four mechanical component de-sign problems reported in the specialized literature. The experimental results demon- strate that MOEO can find the nondominated solutions with good performance in bothaspects of convergence and diversity. The results also show that MOEO is highlycompetitive with NSGA-II, SPEA2 and PAES. Thus MOEO can be considered a goodalternative to solve engineering MOPs.
     (6) The MOEO algorithm is applied to solving five benchmark stock portfolio optimiza-tion problems. It is demonstrated that MOEO is highly competitive with NSGA-II andSPEA2, and superior to PAES. As a consequence, MOEO is an effective method fordealing with MOPs in the fields of managements and decision-making.
引文
[1] S. Boettcher, A. G. Percus. Extremal Optimization: Methods Derived from Co-Evolution. Proceed-ings of the Genetic and Evolutionary Computation Conference,pp.825-832, 1999.
    [2] S. Boettcher, A.G. Percus. Nature’s Way of Optimizing. Artificial Intelligence, 2000, 119: 275-286.
    [3] S.Boettcher,A. G. Percus. Extremal Optimization: an Evolution Local-Search Algorithm. Proceed-ings of the 8th INFORMS Computing Society Conference, 2003.
    [4] S.Boettcher,A. G. Percus. Extremal Optimization for Graph Partitioning. Physical Review E,2001,64, 026114.
    [5] S.Boettcher, A. G. Percus. Optimization with Extremal Dynamics. Physical Review Letters,2001,86: 5211-5214.
    [6] P. Bak, K. Sneppen. Punctuated Equilibrium and Criticality in a Simple Model of Evolution. PhysicalReview Letters, 1993, 71 (24):4083-4086.
    [7] P. Bak, C. Tang, K. Wiesenfeld. Self-Organized Criticality. Physical Review Letters, 1987, 59: 381-384.
    [8] S. Boettcher, A.G. Percus. Extremal Optimization at the Phase Transition of the 3-Coloring Problem.Physical Review E, 2004, 69: 066703.
    [9] S. Boettcher. Extremal Optimization for the Sherrington-Kirkpatrick Spin Glass. European PhysicsJournal B, 2005, 46: 501-505.
    [10] S. Boettcher. Large-Scale Applications and Theory of Extremal Optimization. Available athttp://www.physics.emory.edu/faculty/boettcher/.
    [20] M. E. Menai, M. Batouche. Efficient Initial Solution to Extremal Optimization Algorithm forWeighted MAXSAT Problem. IEA/AIE, 2003, pp. 592-603 (2003)
    [12] T. Zhou, W.-J. Bai, L.-J. Cheng, B.-H. Wang. Continuous Extremal Optimization for Lennard-JonesClusters. Physical Review E, 2004,72: 016702.
    [13] Yong-Zai Lu, Min-Rong Chen, Yu-Wang Chen. Studies on Extremal Optimization and its Applica-tions in Solving Real World Optimization Problems. 2007 IEEE Series Symposium on ComputationIntelligence, Hawaii, USA, April 1-5, 2007.
    [14] Min-Rong Chen, Yong-Zai Lu, Genke Yang. Population-Based Extremal Optimization with Adap-tive Le′vy Mutation for Constrained Optimization. Proceedings of 2006 International Conference onComputational Intelligence and Security (CIS’06), pp. 258-261, 2006.
    [15] Yu-Wang Chen, Yong-Zai Lu,Peng Chen. Optimization with Extremal Dynamics for the TravelingSalesman Problem, Physica A, 2007, doi:10.1016/j.physa.2007.06.014.
    [16] Yu-Wang Chen, Yong-Zai Lu,Genke Yang. Hybrid Evolutionary Algorithm with Marriage of Ge-netic Algorithm and Extremal Optimization for Production Scheduling. International Journal of Ad-vanced Manufacturing Technology, 2007, doi:10.1007/s00170-006-0904-9.
    [17] I. Moser and T. Hendtlass. Solving Problems with Hidden Dynamics-Comparison of Extremal Op-timization and Ant Colony System. Proceedings of 2006 IEEE Congress on Evolutionary Computa-tion (CEC’2006), pp. 1248-1255, 2006.
    [18] S. Meshoul and M. Batouche. Ant Colony System with Extremal Dynamics for Point Matching andPose Estimation. In Proceedings of the Sixteenth International Conference on Pattern Recognition,pp. 823-826, 2002.
    [19] S. Meshoul and M. Batouche. Robust Point Correspondence for Image Registration Using Op-timization with Extremal Dynamics. DAGM-Symposium,Lecture Notes in Computer Science,2002,2449:330-337.
    [20] S. Meshoul and M. Batouche. Combining Extremal Optimization With Singular Value Decomposi-tion For Effective Point Matching. IJPRAI, 2003, 17(7): 1111-1126.
    [21] E. Yom-Tov, A. Grossman, G.F. Inbar. Movement-Related Potentials during the Performance of aMotor Task 1: The Effect of Learning and Force on the Movement-Related Potentials. BiologicalCybernetics, 2001, 85(5): 395-399.
    [22] J. Duch and A. Arenas. Community Detection in Complex Networks Using Extremal Optimization.Physical Review E, 2005, 72: 027104.
    [23] C. A. Coello Coello, G. T. Pulido, M. S. Leehuga. Handling Multiple Objectives with Particle SwarmOptimization. IEEE Transactions on Evolutionary Computation, 2004, 8(3):256-279.
    [24] J. H. Holland. Adaptation in Natural and Artificial Systems. The University of Michigan Press, AnnArbor, 1975.
    [25] A. E. Eiben and J. E. Smith. Introduction to Evolutionary Computing. Springer, Berlin, 2003.
    [26] J. R. Koza. Genetic Programming: On the Programming of Computers by Means of Natural Selec-tion, MIT Press, Cambridge,1992.
    [27] D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading, 1989.
    [28] M. Dorigo, V. Maniezzo, and A. Colorni. Ant system: Optimization by a colony of cooperatingagents. IEEE Transactions on Systems, Man and Cybernetics, 1996, 26:29–41.
    [29] F. Hoffmeister and T. Ba¨ck. Genetic Algorithms and Evolution Strategies: Similarities and Differ-ences. In H.-P. Schwefel and R. Ma¨nner, editors, Parallel Problem Solving from Nature-PPSN I,Lecture Notes in Computer Science 496, pp. 455–469. Springer, Berlin, 1991.
    [30] H.-P. Schwefel and T. Ba¨ck. Artificial Evolution: How and Why? In D. Quagliarella, J. Pe′riaux,C. Poloni, and G. Winter, editors, Genetic Algorithms and Evolution Strategyin Engineering andComputer Science: Recent Advances and Industrial Applications, pp. 1–19. Wiley, Chichester,1998.
    [31] D. B. Fogel. On the Philosophical Differences between Evolutionary Algorithms and Genetic Al-gorithms. In D.B. Fogel and W. Atmar, editors, Proceedings of the Second Annual Conference onEvolutionaryPr ogramming, pp. 23–29. Evolutionary Programming Society, La Jolla, 1993.
    [32] K. Deb. Multi-Objective Optimization using Evolutionary Algorithms, John Wiley & Sons, Chich-ester, UK, 2001.
    [33] C.A. Coello Coello and G.B. Lamont, editors. Applications of Multi-Objective Evolutionary Algo-rithms. World Scientific, Singapore, 2004.
    [34] C.A. Coello Coello, D.A. Van Veldhuizen, and G.B. Lamont. Evolutionary Algorithms for SolvingMulti-Objective Problems. Kluwer Academic Publishers, New York, May 2002.
    [35] Y. Collette and P. Siarry. Multiobjective Optimization. Principles and Case Studies. Springer, Aug.2003.
    [36] C.A. Coello Coello. A Short Tutorial on Evolutionary Multiobjective Optimization, Proceedings ofthe 1st international conference on evolutionary multi-criterion optimization (EMO 2001), Lecturenotes in computer science, 1993, Zurich Switzerland, Springer, pp. 21-40, 2001.
    [37] E. Zitzler, M. Laumanns, and S. Bleuler, A tutorial on evolutionary multiobjective optimization, InXavier Gandibleux et al., editor, Metaheuristics for Multiobjective Optimisation, pp. 3–37, Berlin,Springer. Lecture Notes in Economics and Math-ematical Systems Vol. 535, 2004.
    [38] C.A. Coello Coello. Evolutionary Multiobjective Optimization: a Historical View of the Field. IEEEComputational Intelligence Magazine, 2006, 1(1): 28-36.
    [39] Vanveldhuizen D A, Lamont. GB. Multiobjective Evolutionary Algorithms: Analyzing the State-of-the-Art, IEEE Transactions on Evolutioanry Computation, 2000,8:125-147.
    [40] C.A. Coello Coello. A Comprehensive Survey of Evolutionary-Based Multiobjective OptimizationTechniques. Knowledge and Information Systems. An International Journal, 1999, 1(3): 269–308.
    [41] H.A. Abbass and R. Sarker. The Pareto Differential Evolution Algorithm. International Journal onArtificial Intelligence Tools, 2002,11(4):531–552.
    [42] S. Bleuler, M. Laumanns, L. Thiele, and E. Zitzler. PISA―A Platform and Programming Lan-guage Independent Interface for Search Algorithms. In Carlos M. Fon-seca et al., editor, Evolu-tionary Multi-Criterion Optimization. Second International Conference, EMO 2003, Faro, Portugal,Springer. Lecture Notes in Computer Science. vol. 2632, pp. 494–508, Apr. 2003.
    [43] D. Bu¨che, S. Mu¨ller, and P. Koumoutsakos. Self-Adaptation for Multi-Objective Evolutionary Al-gorithms. In Carlos M. Fonseca et al., editor, Evolutionary Multi-Criterion Optimization. SecondInternational Conference, EMO 2003, pp. 267–281, Faro, Portugal, Springer. Lecture Notes inComputer Science. vol. 2632, Apr. 2003.
    [44] C.A. Coello Coello and A.D. Christiansen. Two New GA-based Methods for Multiobjective Opti-mization. Civil Engineering Systems, 1998, 15(3):207–243.
    [45] C.A. Coello Coello and N. Cruz Corte′s. Solving Multiobjective Optimization Problems Using anArtificial Immune System. Genetic Programming and Evolvable Machines 2005,2:163–190.
    [46] C.A. Coello Coello and A. Herna′ndez Aguirre. Design of Combinational Logic Circuits through anEvolutionary Multiobjective Optimization Approach. Artificial Intelligence for Engineering, Design,Analysis and Manufacture, 2002, 16(1):39–53.
    [47] C.A. Coello Coello and G. Toscano Pulido. Multiobjective Optimization Using a Micro-GeneticAlgorithm. In Lee Spector et al., editor, Proceedings of the Genetic and Evolutionary Computa-tion Conference, (GECCO’2001), pp. 274–282, San Francisco, California, Morgan KaufmannPublishers, 2001.
    [48] D.W. Corne, N.R. Jerram, J.D. Knowles, and M.J. Oates. PESA-II: Region-based Selection in Evo-lutionary Multiobjective Optimization. In Lee Spector et al., editor, Proceedings of the Genetic andEvolutionary Computation Conference (GECCO’2001), pp. 283–290, San Francisco, California,Morgan Kaufmann Publishers, 2001.
    [49] K. Deb. Multi-Objective Genetic Algorithms: Problem Difficulties and Construction of Test Prob-lems. Evolutionary Computation, 1999,7(3):205–230.
    [50] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler. Scalable Multi-Objective Optimization Test Prob-lems. In Congress on Evolutionary Computation (CEC’2002), vol. 1, pp. 825–830, Piscataway,New Jersey, May 2002. IEEE Ser-vice Center.
    [51] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler. Scalable Test Problems for Evolutionary Multi-objective Optimization. In Ajith Abraham, Lakhmi Jain, and Robert Goldberg, editors, Evolution-ary Multiobjective Optimization. Theoretical Advances and Applications, pp. 105–145. Springer,USA, 2005.
    [52] C. M. Fonseca, P. J. Fleming. Genetic Algorithms for Multiobjective Optimization: Formula-tion,Discussion and Generalization. Proceedings of the Fifth International Conference on GeneticAlgorithms. S. Forrest, Ed. San Mateo, CA: Morgan Kauffman, pp. 416-423,1993.
    [53] N. Srinivas, K. Deb. Multiobjective Optimization Using Nondominated Sorting in Genetic Algo-rithms. Evolutionary Computation, 1994, 2(3): 221-248.
    [54] J. Horn, N. Nafpliotis, and D.E. Goldberg. A Niched Pareto Genetic Algorithm for MultiobjectiveOptimization. In Proceedings of the First IEEE Conference on Evolutionary Computation, IEEEWorld Congress on Computational Intelligence, Vol. 1, pp. 82–87, Piscataway, New Jersey, IEEEService Center, June 1994.
    [55] K. Deb, A. Pratab, S. Agrawal,T. Meyarivan. A Fast and Elitist Multiobjective Genetic Algorithm:NSGA-II. IEEE Transactions on Evolutionary Computation 2002, 6(2): 182-197.
    [56] J. Knowles, D. Corne. The Pareto Archived Evolution Strategy: A New Baseline Algorithm forMultiobjective Optimization. Proceedings of the 1999 Congress on Evolutionary Computation. Pis-cataway, NJ: IEEE Press, pp. 98-105,1999.
    [57] E. Zitzler, L. Thiele. Multiobjective Optimization Using Evolutionary Algorithms-A ComparativeCase Study. Proceedings the Seventh International Conference on Parallel Problem Solving FromNature, PPSN-V [M], Berlin Springer, 1998.
    [58] E. Zitzler, M. Laumanns, L. Thiele. SPEA2: Improving the Performance of the Strength Pareto Evo-lutionary Algorithm. Technical Report 103, Computer Engineering and Communication NetworksLab (TIK), Swiss Federal Institute of Technology (ETH) Zurich, Gloriastrasse 35, CH-8092 Zurich,May 2001.
    [59] D.W. Corne, J.D. Knowles, and M.J. Oates. The Pareto Envelope-Based Selection Algorithm forMultiobjective Optimization. In Marc Schoenauer et al., editor, Proceedings of the Parallel Prob-lem Solving from Nature VI Conference, pp. 839–848, Paris, France, Springer. Lecture Notes inComputer Science, No. 1917. 2000.
    [60] J. Knowles and E.J. Hughes. Multiobjective Optimization on a Budget of 250 Evaluations. In Car-los A. Coello Coello et al., editor, Evolutionary Multi-Criterion Optimization. Third InternationalConference, EMO 2005, pp. 176–190, Guanajuato, Me′xico, Springer. Lecture Notes in ComputerScience Vol. 3410, Mar. 2005.
    [61] F. Rivas-Da′valos and M.R. Irving. An approach Based on the Strength Pareto Evolutionary Algo-rithm 2 for Power Distribution System Planning. In Carlos A. Coello Coello et al., editor, Evo-lutionary Multi-Criterion Optimization. Third Inter-national Conference, EMO 2005, Guanajuato,Me′xico, Springer. Lecture Notes in Computer Science, Vol. 3410, pp. 707–720, 2005.
    [62] K. Chiba, S. Obayashi, K. Nakahashi, and H. Morino. High-Fidelity Multidisciplinary Design Op-timization of Wing Shape for Regional Jet Aircraft. In Carlos A. Coello Coello et al., editor, Evo-lutionary Multi-Criterion Optimization. Third International Conference, EMO 2005, Guanajuato,Me′xico, Springer. Lecture Notes in Computer Science, Vol. 3410, pp. 621–635, 2005.
    [63] E. Jose′ Solteiro Pires, P.B. de Moura Oliveira, and J. Anto′nio Tenreiro Machado. Multi-ObjectiveGenetic Manipulator Trajectory Planner. In Gu¨nther R. Raidl et al., editor, Applications of Evo-lutionary Computing. Proceedings of Evoworkshops 2004: EvoBIO, EvoCOMNET, EvoHOT,EvoIASP, EvoMUSART, and EvoSTOC, Coimbra, Portugal, Springer. Lecture Notes in ComputerScience, Vol. 3005, pp. 219–229, 2004.
    [64] A. Molina-Cristobal, I.A. Griffin, P.J. Fleming, and D.H. Owens. Multiobjective Controller Design:Optimising Controller Structure with Genetic Algorithms. In Proceedings of the 2005 IFAC WorldCongress on Automatic Control, Prague, Czech Republic, July 2005.
    [65] T. Kipouros, D. Jaeggi, B. Dawes, G. Parks, and M. Savill. Multi-Objective Optimisation of Turbo-machinery Blades Using Tabu Search. In Carlos A. Coello Coello et al., editor, Evolutionary Multi-Criterion Optimization. Third International Conference, EMO 2005, Guanajuato, Me′xico, Springer.Lecture Notes in Computer Science Vol. 3410, pp. 897–910, 2005.
    [66] T. Hanne and S. Nickel. A Multiobjective Evolutionary Algorithm for Scheduling and Inspec-tion Planning in Software Development Projects. European Journal of Operational Research, 2005,167(3):663–678.
    [67] M.S. Osman, M.A. Abo-Sinna, and A.A. Mousa. An Effective Genetic Algorithm Approach Multi-objective Resource Allocation Problems (MORAPs). Applied Mathematics and Computation, 2005,163(2):755–768.
    [68] M. Lahanas. Application of Multiobjective Evolutionary Optimization Algorithms in Medicine. InCarlos A. Coello Coello and Gary B. Lamont, editors, Applications of Multi-Objective EvolutionaryAlgorithms, pp. 365–391. World Scientific, Singapore, 2004.
    [69] J. David Schaffer. Multiple Objective Optimization with Vector Evaluated Genetic Algorithms, InGenetic Algorithms and their Applications: Proceedings of the First International Conference onGenetic Algorithms, pp. 93–100, Lawrence Erlbaum, 1985.
    [70] T. P. Runarsson, X. Yao. Stochastic Ranking for Constrained Evolutionary Optimization. IEEETransactions on Evolutionary Computation, 2000,4: 284-294.
    [71] S. B. Hamida, M. Schoenauer. ASCHEA: New Results Using Adaptive Segregational ConstraintHandling. In Proceedings of the Congress on Evolutionary Computation 2002 (CEC’2002), pp.884-889, 2002.
    [72] E. Mezura-Montes and C. A. Coello Coello. A Simple Multimembered Evolution Strategy to SolveConstrained Optimization Problems. IEEE Transactions on Evolutionary Computation, 2205, 9(1):1-17.
    [73] X. Yao, Y. Liu, G. Lin. Evolutionary Programming Made Faster. IEEE Transactions on EvolutionaryComputation, 1999, 3(2): 82-102.
    [74] C. Y. Lee, X. Yao. Evolutionary Algorithms with Adaptive Le′vy Mutations. In Proceedings of the2001 Congress on Evolutionary Computation, pp.568-575,2001.
    [75] R. Mantegna. Fast, Accurate Algorithm for Numerical Simulation of Le′vy Stable Stochastic Process.Physical Review E, 1994, 49(5): 4677-4683.
    [76] C.W. Reyolds. Flocks, Herds and Schools: a Distributed Behavioral Model. Computer Graphics,1987, 21(4): 25-34.
    [77] J. Kennedy,R.C. Eberhart. Particle Swarm Optimization. Proceedings of the 1995 IEEE InternationalConference on Neural Networks, IEEE Service Center, Piscat away, pp. 1942-1948,1995.
    [78] R.C. Eberhart,J. Kennedy. A New Optimizer Using Particle Swarm Theory. In Proceedings of theSixth International Symposium on Micromachine and Human Science, Nagoya, Japan. pp. 39-43,1995.
    [79] M.M. Millonas. Swarm Phase Transition and Collective Intelligence, MA: Addison Wesley, 1994.
    [80] Y. Shi,R.C. Eberhart. Empirical Study of Particle Swarm Optimization. Proceedings of Congress onEvolutionary Computation, 1999,pp.1945-1950.
    [81] Y. Shi,R.C. Eberhart. A Modified Particle Swarm Optimizer. Proceedings of IEEE InternationalConference on Evolutionary Computation,Anchorage, 1998,pp.69-73.
    [82] R.C. Eberhart, Y. Shi. Particle Swarm Optimization: Developments, Applications and Resources[A]. Proceedings of the IEEE Congress on Evolutionary Computation [C]. Piscataway, NJ: IEEEService Center , 2001, pp. 81-86.
    [83] M. Clerc. The Swarm and the Queen : towards a Deterministic and Adaptive Particle Swarm Opti-mization[A]. Proceedings of the Congress on Evolutionary Computation [C]. Piscataway, NJ: IEEEService Center,1999,pp.1951-1957.
    [90] P. J. Angeline. Evolutionary Optimization versus Particle Swarm Optimization: Philosophy andPerformance Differences. Evolutionary Programming VII, Lecture Notes in Computer Science(1147),1998, pp.601-610.
    [85] P.N.Suganthan. Particle Swarm Optimizer with Neighborhood Operator, Proceedings of Congresson Evolutionary Computation, Washington DC,1999,pp.1958-1962.
    [86] R.C. Eberhart,J. Kennedy. A Discrete Binary Version of the Particle Swarm Algorithm, In: Systems,Man, and Cybernetics (1997), IEEE International Conference on Computational Cybernetics andSimulations, 1997,Vol.5, pp. 4104-4108.
    [87] M.Clerc. Discrete Particle Swarm Optimization-Illustrated by the Travelling Salesman Problem.Available at http://www.mauricecelerc.net.
    [88] Y. Shi,R.C. Eberhart.Experimental Study of Particle Swarm Optimization. Proceedings of SCI2000Conference, Orlando, 2000.
    [89] Y. Shi,R.C. Eberhart. Evolving Artificial Neural Networks. Proceedigns of International Conferenceon Neural Networks and Brain, Bejing, 1998,pp.5-13.
    [90] P. J. Angeline. Using Selection to Improve Particle Swarm Optimization. Proceedings of the IEEECongress on Evolutionary Computation, Anchorage, Alaska, USA. pp. 84-89, 1998.
    [91] M. L?vbjerg, T. K. Rasmussen, T. Krink. Hybrid Particle Swarm Optimiser with Breeding and Sub-populations. Proceedings of the Genetic and Evolutionary Computation Conference, San Francisco,Morgan Kaufmann Publishers, pp. 469-476, 2001.
    [92] K. E. Parsopoulos, V. P. Plagianakos, G. D. Magoulas, M. N. Vrahatis. Stretching Technique forObtaining Global Minimizers through Particle Swarm Optimization. Proceedings of the Workshopon Particle Swarm Optimization, Indianapolis, IN, pp. 22-29, 2001.
    [93] K. E. Parsopoulos and M. N. Vrahatis. Initializing the Particle Swarm Optimizer Using the Nonlin-ear Simplex Method. Advances in Intelligent Systems, Fuzzy Systems, Evolutionary Computation,WSEAS Press. pp. 216-221, 2002.
    [94] N. Higashi and H. Iba. Particle Swarm Optimization with Gaussian Mutation. Proceedings of theIEEE Swarm Intelligence Symposium 2003, Indianapolis, Indiana, USA. pp. 72-79, 2003.
    [95] X. H. Shi, Y.H. Lu, C.G. Zhou, H.P. Lee, W.Z. Lin, Y.C. Liang. Hybrid Evolutionary AlgorithmsBased on PSO and GA. Proceedings of IEEE Congress on Evolutionary Computation 2003, Can-bella, Australia. pp. 2393-2399, 2003.
    [96] S. K. S. Fan and E. Zahara. A Hybrid Simplex Search and Particle Swarm Optimization for Uncon-strained Optimization. European Journal of Operational Research, 2007,181:527-548.
    [97] Y. Jiang, T. Hu, C. Huang, X. Wu. An Improved Particle Swarm Optimization Algorithm. AppliedMathematics and Computation, 2007, doi:10.1016/j.amc.2007.03.047.
    [98] R. Brits, A.P. Engelbrecht, F. van den Bergh. Locating Multiple Optima Using Particle Swarm Op-timization. Applied Mathematics and Computation, 2007,189:1859-1883.
    [99] P.S. Shelokar, Patrick Siarry, V.K. Jayaraman, B.D. Kulkarni. Particle Swarm and Ant Colony Algo-rithms Hybridized for Improved Continuous Optimization. Applied Mathematics and Computation,2007,188:129-142.
    [100] T. Xiang, K. Wong, X. Liao, A Novel Particle Swarm Optimizer with Time-Delay. Applied Math-ematics and Computation, 2007,186:789-793.
    [101] T. Xiang, X. Liao, K. Wong. An Improved Particle Swarm Optimization Algorithm Com-bined with Piecewise Linear Chaotic Map. Applied Mathematics and Computation, 2007,doi:10.1016/j.amc.2007.02.103.
    [102] B. Niu, Y. Zhu, X. He, H. Wu. MCPSO: A Multi-Swarm Cooperative Particle Swarm Optimizer.Applied Mathematics and Computation, 2007,185:1050-1062.
    [103] X. Yang, J. Yuan, J. Yuan, H. Mao. A Modified Particle Swarm Optimizer with Dynamic Adapta-tion. Applied Mathematics and Computation, 2007,189:1205-1213.
    [104] I. Das, J. Dennis. A Close Look at Drawbacks of Minimizing Weighted Sum of Objectivesfor Pareto Set Generation in Multicriteria Optimization Problems. Structure Optimization, 1997,14(1):63-69.
    [105] E. Ahmed, M. F. Elettreby. On Multiobjective Evolution Model. International Journal of ModernPhysics C 2004, 15 (9):1189-1195.
    [106] R. L. Galski,F. L. de Sousa, F. M. Ramos, I. Muraoka. Spacecraft Thermal Design with the Gener-alized Extremal Optimization Algorithm. Proceedings of inverse problems, design and optimizationsymposium, Rio de Janeiro, Brazil, 2004.
    [107] R. L. Galski, F. L. de Sousa, F. M. Ramos. Application of a New Multiobjective EvolutionaryAlgorithm to the Optimum Design of a Remote Sensing Satellite Constelation. Proceedings of the5th International Conference on Inverse Problems in Engineering: Theory and Practice, Cambridge,Vol II, G01, UK, 11-15th July, 2005.
    [108] F. L. de Sousa, F.M. Ramos. Function Optimization Using Extremal Dynamics. In 4th InternationalConference on Inverse Problems in Engineering Rio de Janeiro, Brazil, 2002.
    [109] F. L. de Sousa, V. Vlassov, F. M. Ramos. Generalized Extremal Optimization: An Application inHeat Pipe Design. Applied Mathematical Modeling, 2004, 28: 911-931.
    [110] Min-Rong Chen, Yong-Zai Lu. A Novel Elitist Multiobjective Optimization Algorithm:Multiobjective Extremal Optimization. European Journal of Operational Research, 2007,doi:10.1016/j.ejor.2007.05.008.
    [111] K. Deb, A. Patrap, S. Moitra. Mechanical Component Design for Multi-Objective Using ElitistNon-dominated Sorting GA. KanGAL Report 200002, Indian Institute of Technology Kanpur, India,2000.
    [112] C. A. Coello Coello. An Empirical Study of Evolutionary Techniques for Multiobjective Optimiza-tion in Engineering Design. Ph.D. Thesis, Department of Computer Science, Tulane University, NewOrleans, LA, 1996.
    [113] P. A. N. Bosman, D. Thierens. The Balance Between Proximity and Diversity in MultiobjectiveEvolutionary Algorithms. IEEE Transactions on Evolutionary Computation, 2003, 7(2): 174-188
    [114] E. Zitzler, L. Thiele. Multiobjective Evolutionary Algorithms: a Comparative Case Study and theStrength Pareto Approach. IEEE Transactions on Evolutionary Computation, 1999, 3(4): 257-271.
    [115] E. Zitzler, K. Deb, L. Thiele. Comparison of Multiobjective Evolutionary Algorithms: EmpiricalResults. Evolutionary Computation, 2000,8(2): 125-148.
    [116] M. K. Jensen. Reducing the Run-Time Complexity of Multiobjective EAs: The NSGA-II and OtherAlgorithms, IEEE Transactions on Evolutionary Computation, 2003, 7(5): 503-515.
    [117] K. Deb. An Efficient Constraint Handling Method for Genetic Algorithms. Computer Methods inApplied Mechanics and Engineering 2000, 186(2-4): 311-338.
    [118] W. Stadler, J. Dauer. Multicriteria Optimization in Engineering: a Tutorial and Survey. StructuralOptimization: Status and Future. pp. 209-249. American Institute of Aeronautics and Astronau-tics,1992.
    [119] R. Arman`anzas and J. A. Lozano. A Multiobjective Approach to the Portfolio Optimization Prob-lem, in 2005 IEEE Congress on Evolutionary Computation (CEC’2005),IEEE Service Center, Ed-inburgh, Scotland, pp. 1388-1395, 2005.
    [120] H. H. Hoos and T. Stu¨tzle. Stochastic Local Search - Foundations and Applications. Morgan Kauf-mann, 2005.
    [121] S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi. Optimization by Simulated Annealing. Science,1983, 220: 671–680.
    [122] M. Dorigo and T. Stu¨tzle. Ant Colony Optimization. The MIT Press, 2004.
    [123] C. A. Coello Coello, D. A. Van Veldhuizen, and G. B. Lamont. Evolutionary Algorithms for Solv-ing Multi- Objective Problems. New York: Kluwer Academic Publishers, May 2002.
    [124] K. Deb. Multi-Objective Optimization Using Evolutionary Algorithms. Chichester, UK: John Wi-ley & Sons, 2001.
    [125] T. J. Chang, N. Meade, J. E. Beasley, and Y. M. Sharaiha. Heuristics for cardinality constrainedportfolio optimisation. Computers and Operations Research, 2000, 27(13):1271–1302.
    [126] C. R. Harvey, J. C. Liechty, M. W. Liechty, and P. Mu¨ller. Portfolio Selection with Higher Moments.Duke University, 2004. Working paper.
    [127] H. M. Markowitz. Portfolio Selection. Journal of Finance, 1952,7:77-91.
    [128] H. M. Markowitz. Portfolio Selection: Efficient Diversification of Investments. New York: Wiley,1959.
    [129] J. E. Beasley. OR-Library: Distributing Test Problems by Electronic Mail. Journal of the Opera-tional Research Society, 1990, 41:1069–1072.
    [130] L. N. DeCastro and F. J. Von Zuben. Recent Developments in Biologically Inspired Computing,Hershey, PA Idea Group Publishing, 2005.
    [131] J. L. Cohon. Multiobjective Programming and Planning. New York:Academic Press, 1978
    [132] R. E. Steuer. Multiple Criteria Optimization:Theorty, Computation and Application. New York:Wilety, 1986.
    [133] J. Koski. Multicriterion Optimization in Structural Design. New York: Wilety,1984.
    [134] A. Baykasoglu. Applying Multiple Objective Tabu Search to Continuous Optimization Problemswith a Simple Neighbourhood Strategy. International Journal for Numerical Methods in Engineer-ing, 2006, 65:406-424.
    [135] J.A.Miller, W.D.Potter, R.V.Gandham, C.N.Lapena. An Evaluation of Local ImprovementOperators for Genetic Algorithms. IEEE Trans. on Systems, Man and Cybernetics, 23(5):1340–1351.1993.
    [136] P.Moscato. On Evolution, Search, Optimization, GAs and Martial Arts: Toward Memetic Algo-rithms. CalTech, Pasadena, CA: CalTech Concurrent Computation Program Report 826,1989.
    [137] S.A. Kauffman. The Origins of Order: Self–Organization and Selection in Evolution. New York:Oxford University Press.1993.
    [138] 夏蔚军.制造业供应链中的评价、调度与协同优化.博士学位论文,上海交通大学,2006.
    [139] 贾武,范文涛,丁义明.自组织临界性模型-Bak-Sneppen模型的研究进展及其展望.系统工程理论与实践,2006,26(12):1-8.
    [140] 汪祖柱,基于演化算法的多目标优化方法及其应用研究.博士学位论文,安徽大学,2005.
    [141] 崔逊学.多目标进化算法及其应用,北京:国防工业出版社,2006.
    [142] 崔逊学.一种求解高维优化问题的多目标遗传算法及其收敛性分析.计算机研究与发展,2003,40:901-906.
    [143] 崔逊学,林闯.一种基于偏好的多目标调和遗传算法(英文).软件学报,2005,16:761-770.
    [144] 崔逊学.多目标进化算法的研究现状与群体多样性研究. Complexity Problems–Proceedings ofCCAST (World Laboratory) Workshop, 2001.
    [145] 崔 逊 学,林 闯.基 于 多 目 标 遗 传 算 法 的 多 播 服 务 质 量 路 由 优 化.计 算 机 研 究 与 发展,2004,41:1144-1150.
    [146] 崔逊学,李淼,方廷健.基于免疫原理的多目标进化算法群体多样性研究.模式识别与人工智能,2001,14:291-296.
    [147] 崔逊学,林闯,方廷健.多目标进化算法的研究与进展.模式识别与人工智能,2003,16:306-314.
    [148] 崔逊学,林闯.一种带约束的多目标服务质量路由算法.计算机研究与发展,2004,41:1368-1375.
    [149] 崔逊学,方廷健. 多目标进化算法的研究.中国科学基金, 2002,16(1):17-19.
    [150] 谢涛,陈火旺,康立山.多目标优化的演化算法.计算机学报,2003,26(8):997-1003.
    [151] 谢涛,陈火旺.多目标优化与决策问题的演化算法.中国工程科学,2002,4(2):59-68.
    [152] 王跃宣,刘连臣,牟盛静,吴澄.处理带约束的多目标优化进化算法.清华大学学报(自然科学版),2005,45(1):103-106.
    [153] 张利彪,周春光,马铭,刘小华.基于粒子群算法求解多目标优化问题.计算机研究与发展,2004,41(7):1286-1291.
    [154] 孟红云,刘三阳.基于自适应邻域选择的多目标免疫进化算法.系统工程与电子技术,2004,26(8):1107-1111.
    [155] 熊盛武,刘麟,王琼,史旻. 改进的多目标粒子群算法.武汉大学学报(理学版),2005,51(03):308-312.
    [156] 申晓宁, 胡维礼.一种多目标优化合作型协同进化算法,计算机仿真, 2007,24(02):157-161.
    [157] 申晓宁,郭毓,陈庆伟,胡维礼.一种子群体个数动态变化的多目标优化协同进化算法.控制与决策,2007,(09):1011-1016.
    [158] 金欣磊.基于PSO的多目标优化算法研究及应用.博士学位论文,浙江大学,2006.
    [159] 蓝艇, 刘士荣, 顾幸生.基于进化算法的多目标优化方法. 控制与决策,2006,21(06):601-605.
    [160] 张勇德, 黄莎白.多目标优化问题的蚁群算法研究. 控制与决策,2005,20(02):170-173.
    [161] 李艳君,吴铁军.一种混合动力学系统多目标优化控制问题的求解方法.自动化学报,2002,28(04):606-609.
    [162] 郑金华,史忠植,谢勇. 基于聚类的快速多目标遗传算法.计算机研究与发展,2004,41(07):1081-1087.
    [163] 马清亮,胡昌华,杨青. 一种用于多目标优化的混合遗传算法.系统仿真学报,2004,16(05):1038-1040.
    [164] 万丽英.证券投资组合优化模型及其算法研究.硕士学位论文,大连理工大学,2005.
    [165] 张丽平. 粒子群优化算法的理论及实践.博士学位论文,浙江大学, 2005.