不确定非线性系统的通用输出反馈控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
十多年来,人们对不确定非线性下三角系统通过状态反馈的设计方法做了许多工作,并取得了大量的成果。对于系统仅有部分状态或输出可测的情况,如何设计一个能够实现非线性系统全局渐进稳定的控制器,仅通过状态反馈的方法显然是不可能的。这种情况,对于线性系统来说,利用分离原理可以通过状态反馈控制器结合状态观察器来解决。但是分离原理对于非线性系统不再适用。在许多实际问题中,系统的所有状态均可测量且可用于反馈的假设往往是不现实的,故难以应用状态反馈控制律来对系统进行控制。有时即使系统的状态可以直接测量,但考虑到实施控制的成本和系统的可靠性等因素,如果可以用系统输出反馈来达到闭环系统的性能要求,则更适合于选择输出反馈的控制方式。因此,不确定性非线性系统的输出反馈镇定研究及其控制器设计具有重要的理论意义和实际应用价值。
     本文针对一些可以利用微分几何的方法转化为下三角系统的不确定性系统,运用基于非辨识自适应的通用控制的思想设计输出反馈控制器,实现了不确定非线性系统的全局镇定。这个自适应系统的直接思想是只要系统输出不为零调节器就增加控制器增益,最终,控制器增益达到足够大,直至系统稳定。控制器增益被确定为单调非减。数值只是决定控制器增益的增长速度。因此,这种基于非辨识的通用自适应控制,解决了基于辨识的自适应不能处理不确定项有非线性属性的难题。
     论文按照以下结构组织:
     第一章:介绍所研究课题的背景知识,国内外相关研究状况和本课题研究的理论意义和实际应用,并说明本文的主要工作。
     第二章:介绍论文所涉及的基础理论,包括基本概念、主要引理和重要不等式。具体说来,着重介绍了通用控制和通用输出反馈自适应调节的概念以及设计方法,Barbalat引理,Young不等式,以及几个论文中多次用到的引理和不等式。
     第三章:研究了一类由不可测状态相互关联的m个子系统组成的不确定非线性关联系统,其子系统是下三角系统,带有未知参数,增长速率未知,满足线性增长条件,采用分散控制策略,通过设计一种通用输出反馈控制器,引入由估计误差驱动的动态增益,实现了经由通用输出反馈的全局分散控制。
     第四章:研究了一类不确定项由一个有界光滑函数乘以一个未知常数来主导的非完整系统,采用State-scaling技术,把系统转化为下三角结构,应用通用输出反馈自适应调节的思想,引入了动态增益来处理未知参数和光滑函数对系统全局镇定的影响,通过构建一个降阶自适应观测器和一个非辨识输出反馈控制器实现了不确定非完整系统的全局自适应镇定。
     第五章:对论文内容进行总结,并提出进一步研究的方向。
Over the past decades,tremendous progress has been achieved to control a class of nonlinear lower triangular systems with uncertainties via state feedback through a systematic design way.When only a part of the state or the output of the system is measurable,how to design the controller to globally asymptotically stabilize nonlinear systems becomes more realistic.In the case of linear systems,the separation principle allows output feedback problems to be solved by combining state feedback controller with state observers.However,the separation principle does not hold for nonlinear systems~([46]).In many practical problems,the assumptions that all states of the nonlinear systems can be measured and can be used in feedback design are often unrealistic, such that it is difficult to apply state feedback control law here.Sometimes,even if the states of the nonlinear systems can be measured directly,but taking into account the costs of the implementation and other factors,the output feedback control approach are adopted more,if it can achieve the stabilization of the closed-loop system.
     This dissertation studies a class of nonlinear systems which can be transformed into the lower triangular systems,with the aid of the differential geometric approach~([3]).The intuitive idea behind this adaptive system is the tuner increases the controller gain as long as the output of the system is not zero,then eventually,the controller gain becomes sufficiently large and the system is stabilized.Performs has partially been determined offiine.Partially in the sense that it has been decided that the controller gain will be monotonically nondecreasing.The data only determine how fast the controller gain will indeed increase.In such a case,the idea of universal control to design adaptive control for the systems with a nonidentifier based tuner will address the problem which is hard to identify these unknown parameters,as the unknown parameters occur nonlinearly.
     In our thesis contents are organized as follows:
     In chapter 1,introduce the background of this topic,internal and overseas research situations, theoretical and Practical significance,the main contributions of this dissertation.
     In chapter 2,introduce thesis involved basic theory,including basic concepts,the main lemma and inequality important.Universal control,universal adaptive regulation control,Barbalat's lemma,Young's inequality,and so on.
     In chapter 3,for a class of large-scale uncertain nonlinear systems interconnected by the uncertain states.Each sub-system is a lower triangular system under linear growth conditions, with unknown parameters and unknown rate.We show that under linear growth conditions,there is a decentralized universal output feedback controller rendering the closed-loop system globally stabilization.Use global decentralized control approach,the introduction of dynamic gain which will be driven by the estimation error.
     In chapter 4,for a class of nonholonomic uncertain systems in chained form,with uncertainties was dominated by a smooth function multiplied by an unknown constant.Using of the state-scaling~([78][79]) technique,we transform it into a lower triangular system.Using the idea from universal control,in order to deal with the unknown constant and smooth function,dynamic gains are introduced.Then the universal output feedback domination design is applied to design a reduced-order adaptive observer and an universal output feedback controller,such that all the state of non system can be regulated to zero.
     In chapter 5,we summarize the dissertation and discuss open problems for future research.
引文
[1]程代展.非线性系统的几何理论[M].北京:科学出版社,1988.
    [2]冯纯伯,费树眠.非线性控制系统分析与设计[M].北京:电子工业出版社,1998.
    [3]Alberto Isidori(著),王奔,庄圣贤(译).非线性控制系统(第三版)[M].北京:电子工业出版社,2005.
    [4]陈启宗(著),王纪文,杜正秋,毛剑琴(译).线性系统理论与设计[M].北京:科学出版社,1988.
    [5]黄琳,秦化淑.复杂控制系统理论:构想与前景[J].自动化学报,1993,19(2):129-137.
    [6]R.Marino,P.Otmei.Global adaptive output feedback control of nonlinear system[J].IEEE Transactions on Automatic Control,1993,38(1):17-48.
    [7]R.W.Broekett.Feedback ivariants for nonlinear system[C].In proceeding Ⅶ IFAC,Helsikni,Fininad.1978,1115-1120.
    [8]R.Su.On the linear equivalents of nonlinear systmes[J].System & Control Letters,1982,2:48-52.
    [9]A.J.Krener,.A.Isidori.Linearization by output injection and nonlinear observers[J].System & Control Letters,1983,3:47-52.
    [10]W.M.Boothby.Some comments on global linearization of nonlinear systems[J].System & Control Letters,1984,4:143-147.
    [11]W.P.Dayawansa.W.M.Boothby,D.Elliott.Global state and feedback equivalence of nonlinear system[J].System & Control Letters,1985,5:229-234.
    [12]A.Isidori,A.Ruberti.On the Synthesis of linear input-output response for nonlinear system[J].System & Control Letters,1984,4:17-22.
    [13]R.Marnio.On the largest feedback linearizable subsystem[J].System & Control Letters,1984,6(5):345-351.
    [14]A.Isidori.The matching of a prescribed linear input-output behavior in a nonlinear syestm[J].IEEE Transactions on Automatic Control,1985,30(3):258-265.
    [15]W.Rugh.An extended linearization approach to nonlinear system inversion[J]:IEEE Transactions on Automatic Control,1986,31(8):725-733.
    [16]W.T.Baumann.Feedback control of multiinput nonlinear systems by extented linearization [J].IEEE Transactions on Automatic Control,1988,33(2):193-197.
    [17]王强德,陈卫田,魏春玲.一类不确定非线性系统的鲁棒自适应控制[J].控制理论与应用,2000,17(2):244-248.
    [18]王强德,魏春玲,王华建.一类非线性参数系统的鲁棒自适应控制[J].控制理论与应用,2002,19(2):197-202.
    [19]Z.P.Jiang.Robust exponential regulation of nonholonomic systems with uncertainties [J].Automatica,2000,36(1):189-209.
    [20]Y.G.Liu,J.F.Zhang.Reduced-order observer-based control design of nonlinear stochastic systems[J].System & Control Letters,2004,52(2):123-135.
    [21]A.Isidori,W.Lin.Global L_2-gain design for a class of nonliear systems[J].System &Control Letters,1998,37:295-302.
    [22]A.Isidori,B.Schwartz,T.J.Tran.Semiglobal L_2 performance bounds for disturbance attenuation in nonlinear systems[J].IEEE Transactions on Automatic Control,1999,44(8):1535-1545.
    [23]王强德,井元伟,张嗣瀛.一类不确定非线性系统的鲁棒自适应ε-输出跟踪控制[J].控制与决策,2004,19(6):711-713.
    [24]冯纯伯,张侃健.非线性系统的鲁棒控制[M].北京:科学出版社,2004.
    [25]Z.P.Jinag,J.B.Pomet.Combining backstepping and time-varying techniques for a new set of adaptive controllers[C].Proceeding of the 33~(th) Conference on Decision and control,Lake Buena,Vista.1994,2207-2212.
    [26]W.J.Dong,W.L.Xu.Adaptive traking control of uncertain nonholonomic dynamic sys- tem[J].IEEE Transactions on Automatic Control,2001,46(3):450-454.
    [27]Y.C.Chang,B.S.Chen.Adaptive tracking control for nonholonomic caplygin systems [J].IEEE Transactions on Control Systems Technology,2002,10(I):96-104.
    [28]武玉强,周颖.高频增益矩阵符号未知的多变量系统自适应控制[J].自动化学报,2004,30(1):120-125.
    [29]Y.G.Liu,S.S.Ge.Output-feedback adaptive stabilization for nonlinear systems with unknown direction control coefficients[C].Proceeding of the American Conference,Portland,OR,USA.2005,4696-4701.
    [30]王强德,井元伟,张嗣瀛.Adaptive output tracking control of a claSS of nonlinear system[C].第五届全球华人智能控制与自动化大会论文集(一).2 004,6:876-880.
    [31]王强德,井元伟,张嗣瀛.一类非线性系统的全局自适应输出跟踪控制[J].东北大学学报,2004,25(9):517-820.
    [32]王强德,井元伟,张嗣瀛.含有非线性参数的非线性系统的自适应控制[C].中国 控制与决策学术年会论文集.2004,5:1-3.
    [33]解学军,吴昭景,王强德.Performance analysis in robust model reference adaptive control with unknown high frequency gain[C].第五届全球华人智能控制与自动化大会论文集(一).2004:511-414.
    [34]王强德,井元伟,张嗣瀛.控制方向未知的非线性系统的自适应输出跟踪控制.控制与决策,2006,21(3):718-721.
    [35]王强德,井元伟,张嗣瀛.Adaptive and practical output tracking control of nonlinear systems[J].自动化学报,2004,30(3):357-363.
    [36]王强德,井元伟,张嗣瀛.Adaptive practical output tracking of a class of nonlinear systems[J].Journal of control theory and applications,2004,2(2):117-120.
    [37]C.Y.Su,M.Oya,R.Katoh.Robust adaptive motion/force control of uncertain nonholonomic mechanical systems[C].Proceeding of the American Conference,Arlington,VA.2001,3268-3272.
    [38]Y.Zhang,C.Y.Wen,Y.C.Son.Robust adaptive control of nonlinear discrete-time systems by backstepping without overparameterizaton[J].Automatica,2001,37(3):551-558.
    [39]W.M.Hsddad,T.Hayakawa,V.S.Chellaboina.Robust adaptive control for nonlinear uncertain systems[J].Automatica,2003,39(3):551-556.
    [40]Z.H.Qu.Adaptive and robust control of uncertain systems with nonlinear parameterization [J].IEEE Transactions on Automatic Control,2003,48(10):1817-1823.
    [41]王强德,井元伟,张嗣瀛,王忠锐.非线性参数化系统的鲁棒自适应输出跟踪控制[C].第二十三届中国控制会议论文集.2004,8:718-721.
    [42]W.Lin.Adaptive control of nonlinearly parameterized systems:a nonsmooth feedback framework[J].IEEE Transactions on Automatic Control,2002,47(5):757-774.
    [43]W.Lin.Adaptive output tracking of inherently nonlinear systems with nonlinear parameterization [J].IEEE Transactions on Automatic Control,2003,48(10):1737-1749.
    [44]X.D.Ye.Global adaptive control of nonlinearly parametrized systems[J].IEEE Ttransactions on Automatic Control,2003,48(1):169-173.
    [45]R.Michino,I.Mizumoto,Y Tao,et al.High gain adaptive output feedback control for time-varying nonlinear systems with higher order relative degree[C].Proceeding of the 5~(th) Asian Control Conference.2004:2024-2031.
    [46]M.Krsti(?),I.Kanellakopoulos,P.V.Kokotovi(?).Nonlinear and Adaptive Control Design [M].John Wiley,1995.
    [47]F.Mazenc,L.Praly,W.P.Dayawansa.Global stabilization by output feedback:exam- pies and counterexamples [J].System & Control Letters,1994,23:119-125.
    [48]C.Qian.A homogeneous domination approach for global output feedback stabilization of a class of nonlinear systems[C].Proc.of 2005 ACC,Portland,2005,4708-4715.
    [49]I.Mareels,W.J.Polderman.Adaptive Systems An Introduction[M].BirkhAauser,Boston,1996.
    [50]S.Sastry,M.Bodson.Adaptive Control:Stability,Convergence and Robustness[M].Prentice Hall International,UK,1989.
    [51]W.Lin,R.Pongvuthithum.Global stabilization of cascade systems by C~0 partial state feedback[J].IEEE Transactions on Automatic Control,2002,47:1356-1362.
    [52]E.J.Davison.The decentralized stablization and control of a class of unknown nonlinear time-varying systems [J].Automatica,1974,10(3):309-316.
    [53]H.K.Khalil,A.Saberi,Decentralized stabilization of nonlinear interconnected systems using high-gain feedback[J].IEEE Transactions on Automatic Control,1982,27:265-268.
    [54]P.Ioannou.Decentralized adaptive control of interconnected systems[J].IEEE Transactions on Automatic Control,1986,31:29-298.
    [55]W.Bachmann,D.Konik.On stabilization of interconnected systems using output feedback[J].System & Control Letters,1984,5:89-95.
    [56]A.Saberi,H.K.Khalil.Decentralized stabilization of interconnected systems using output feedback[J].Int.J.Contr.,1985,41:1461-1475.
    [57]D.Z.Zheng.Decentralized output feedback stabilization of a class of nonlinear interconnected systems[J].IEEE Transactions on Automatic Control,1989,34:1297-1300.
    [58]Z.P.Jiang.Decentralized and adaptive nonlinear tracking of large-scale systems via output feedback[J].IEEE Transactions on Automatic Control,2000,45:2122-2128.
    [59]S.Jain,F.Khorrami,Decentralized adaptive output-feedback design for large-scale nonlinear systems[J].IEEE Transactions on Automatic Control,2001,42:729-735.
    [60]Z.P.Jiang,F.Khorrami,D.Hill.Decentralized nonlinear output-feedback stabilization with disturbance attenuation [J].IEEE Transactions on Automatic Control,2001,46:1623-1629.
    [61]B.Labibi,B.Lohmann,A.K.Sedigh,P.J.Maralani.Output feedback decentralized control of large-scale systems using weighted sensitivity functions minimization[J].Systems & Control Letters,2002,47:19-198.
    [62]J.C.Willems,C.I.Byrnes.Global adaptive stabilization in the absence of information on the sign of the high frequency gain[C].Lecture Notes in Control and Information Sciences,Springer-Verlag,Berlin.1984,62:49-57.
    [63]C.I.Byrnes,J.C.Willems.Adaptive stabilization of multivariable linear systems[C].Proc.of the 23rd IEEE CDC,Las Vegas.1984,1574-1577.
    [64]A.Ilchmann.Non-identifier based high gain adaptive control[M].Lecture Notes in Control and Information Sciences,Vol.189,Springer-Verlag,New York,1993.
    [65]B.Martensson.The order of any stablizing regulator is sufficient a priori information for adaptive stabilization[J].Systems & Control Letters,1985,6:87-91.
    [66]I.Mareels.A simple selftuning controller for stably invertible systems[J].System &Control Letters,1984,4:5-16.
    [67]R.D.Nussbaum.Some remarks on a conjecture in parameter adaptive control[J].System & Control Letters,1983,3:243-246.
    [68]C.Qian,W.Lin.Output feedback control of a class of nonlinear systems:a nonseparation principle paradigm[J].IEEE Transactions on Automatic Control,2002,47:1710-1715.
    [69]M.T.Frye,C.J.Qian,R.Colgren.Decentralized control of large-scale uncertain nonlinear systems by linear output feedback[J].Communications in information and systems,2004,4(3):191-210.
    [70]L.Praly,Z.P.Jiang Linear output feedback with dynamic high gain for nonlinear systems [J].System & Control Letters,2004,53:107-116.
    [71]P.Krishnamurthy,F.Khorrami.Dynamic high gain scaling:state and output feedback with application to systems with ISS appended dynamices driven by all states[J].IEEE Transactions on Automatic Control,2004,49:2219-2239.
    [72]B.Yang,W.Lin.Further results on global stabilization of uncertain nonlinear systems by output feedback[C].Proc.of the 6th IFAC Symp.on Nonlinear Control Systems,Stuttgart,Germany.2004,95-100.
    [73]C.Qian,C.B.Schrader,W.Lin.Globalregulation of a class of uncertain nonlinear systems using time-varying output feedback[C].Proc.of 2003 Amer.Control Conf.Denver,CO.,2003,1542-1547.
    [74]C.Qian,W.Lin.Nonsmooth output feedback stabilization and tracking of a class of nonlinear systems[C].Proc.of the 42th IEEE CDC,Maui,Hawaii.2003,43-48.
    [75]H.Lei,W.Lin,Universal output feedback control of nonlinear systems with unknown growth rate[J].Automatica,2006,42:1783-1789.
    [76]R.W.Brockett.Asymptotical stability and feedback stabilization[A].In:Differential Geometric Cont rol Theory[C].New York,1983.
    [77]Qiangde Wang,Chunling Wei,Siying Zhang.The output feedback control for uncertain nonholonomic systems[J].Journal of control theory and applications,2006,4(2):128-132.
    [78]Z.Jiang.Robust exponential regulation of nonholonmic systems with uncertainties[J].Automatica,2000,36(2):189-209.
    [79]V.I.Arnold Geometrical Methods of Ordinary Differetial Equations[M].Belin,Springer,1987.
    [80]E.P.Ryan.A nonlinear universal servomechanism[J].IEEE Transactions on Automatic Control,1994,39:753-761.
    [81]E.Bullinger,F.Allgower.Adaptive λ-tracking for nonlinear systems with higher relative degree[C].Proc.of The 39th IEEE Conf.on Decision and Control,Sydney,Australia.2000,4771-4776.