腺病毒介导的siRNA沉默β-catenin对人羊膜间充质干细胞增殖的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     构建含绿色荧光蛋白(GFP)标记、β-连环蛋白(β-catenin)特异的RNAi重组腺病毒表达载体,利用包装好的重组腺病毒感染羊膜间充质干细胞(AMSC),在转录后水平有效的抑制β-catenin的表达,探讨siRNA干扰(β-catenin对AMSC增殖的影响。
     方法
     利用脂质体将设计合成好的三个β-catenin siRNA干扰片段瞬时转染AMSC,利用免疫印迹(Western Blot)筛选最优的β-catenin siRNA干扰片段;然后编码针对最优干扰片段,即CTNNB1短发卡RNA (short hairpin RNA, shRNA)的单链DNA,并通过退火反应获得目的基因双链DNA,将目的基因连接至腺病毒穿梭质粒中构建阳性重组质粒pAdTrack-si-β-catenin,经PmeI酶切线性化后使其在BJ5183菌中与腺病毒骨架质粒进行同源重组从而获得重组腺病毒载体pAd-si-β-catenin,利用脂质体将经Pac I酶切线性化后的重组腺病毒质粒转染至HEK293细胞,包装重组腺病毒、空斑实验测定病毒滴度。重组腺病毒感染AMSC, Western Blot法检测AMSC中β-catenin及GSK-3β的表达情况,CKK-8法检测β-catenin沉默表达对AMSC增殖的影响。
     结果
     1. β-catenin siRNA干扰片段瞬时转染AMSC可以有效抑制β-catenin的表达,通过Western Blot成功的筛选出了最优的目的基因靶序列,设计并合成了shRNA的DNA双链,并成功构建出重组腺病毒表达载体p Ad-si-β-catenin;成功的包装、扩增出重组腺病毒,获得高滴度重组腺病毒。
     2.重组腺病毒感染AMSC后,在荧光倒置显微镜下可以观察到GFP表达,通过Western Blot检测到重组腺病毒感染AMSC后可以有效的抑制β-catenin基因的表达,感染组β-catenin明显少于对照组。
     3.重组腺病毒感染AMSC后,通过CKK-8法检测细胞生长曲线,与对照组相比,感染组细胞的增殖受到明显抑制。
     结论
     构建的特异RNAi重组腺病毒能够有效的抑制β-catenin基因的表达,减少了细胞内β-catenin的水平,且β-catenin的沉默表达可以明显抑制AMSC的增殖。
OBJECTIVE
     To construct recombinant adenovirus containing Green fluorescent protein and P-catenin silenced specifically by RNAi, to inhibit the expression of P-catenin in the post-transcriptional, to investigate the effects of β-catenin siRNA on proliferation of amniotic mesenchymal stem cell (AMSC).
     METHODS
     In the first part, we designed and synthesized three interference fragment, P-catenin siRNA was transfected instantaneously into AMSC by liposome, selected the most efficient interference fragment by Western blot. Then encoded single-stranded DNA matching targeting genes CTNNB1short hairpin RNA (shRNA) and acquired targeting genes double-stranded DNA. Then cutted targeting genes by two endonucleases and directional linked to the pAd track-cmv vector. Afterward, the correct recombinant was linearized by Pmel, following co-transformation with the backbone vector pAdEasy-1in E.coli BJ5183. The homologous recombinant was linearized by Pad, and then transfected into HEK293cell line to pack the adenovirus. And detected the viral titer by plaque assay. In the second part, the adenovirus infected AMSC. The expression of β-catenin and GSK-3P were assayed by Western blot. The change of cell proliferation was determined by CKK-8.
     RESULTS
     1. Transfection of β-catenin siRNA to AMSC could effectively inhibit the expression of P-catenin, we selected the best target gene sequence successfully by Western blot, designed and synthesized targeting genes double-stranded DNA. And we constructed recombinant adenovirus vector pAd-si-β-catenin successfully. We packaged and amplified recombinant adenovirus successfully, and we obtained the adenovirus supernatant of high titer.
     2. After AMSC infected by the adenovirus, we could observed the expression of GFP in infection group, and by Western blot we could detected that the expression of P-catenin was inhibited effectively, and the expression of β-catenin in infection group was less than control group obviously.
     3. After AMSC infected by the adenovirus, we could detected cell growth curve. And compared with control group, the cell proliferation of infection group was inhibited effectively.
     CONCLUSION
     The β-catenin-targeting RNAi recombination adenovirus is efficient to inhibit the expression of P-catenin gene in AMSC and to decrease the expression of β-catenin in AMSC. And P-catenin silenced could inhibit effectively cell proliferation in AMSC.
引文
[1]Mucke L. Neuroscience:Alzheimer's disease[J]. Nature,2009,461(7266):895-897.
    [2]李海生,陈振锋,牟心红.骨髓间充质干细胞移植治疗阿尔茨海默病研究进展[J].中国老年学杂志,2010,24:112.
    [3]Feng Z, Zhao G, Yu L. Neural stem cells and Alzheimer's disease:challenges and hope[J]. American journal of Alzheimer's disease and other dementias,2009,24(1):52-57.
    [4]程欣,罗焕敏.干细胞移植治疗阿尔茨海默病的研究进展[J].基础医学与临床,2011,31(2):218-221.
    [5]Zhao C, Deng W, Gage F H. Mechanisms and functional implications of adult neurogenesis[J]. Cell,2008,132(4):645-660.
    [6]Sugaya K, Merchant S. How to approach Alzheimer's disease therapy using stem cell technologies[J]. Journal of Alzheimer's Disease,2008,15(2):241-254.
    [7]Schwartz R E, Reyes M, Koodie L, et al. Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells[J]. Journal of Clinical lnvestigation, 2002,109(10):1291-1302.
    [8]Mezey E, Chandross K. J, Harta G, et al. Turning blood into brain:cells bearing neuronal antigens generated in vivo from bone marrow[J]. Science,2000,290(5497):1779-1782.
    [9]Scherjon S A, Kleijburg-van der Keur C, de Groot-Swings G M J S, et al. Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta[J]. Stem cells,2004, 22(7):1338-1345.
    [10]Alviano F, Fossati V, Marchionni C, et al. Term amniotic membrane is a high throughput source for multipotent mesenchymal stem cells with the ability to differentiate into endothelial cells in vitro[J]. BMC developmental biology,2007,7(1):11.
    [11]Pan H C, Yang D Y, Chiu Y T, et al. Enhanced regeneration in injured sciatic nerve by human amniotic mesenchymal stem cell[J]. Journal of clinical neuroscience,2006,13(5): 570-575.
    [12]Ishikane S, Ohnishi S, Yamahara K, et al. Allogeneic Injection of Fetal Membrane-Derived Mesenchymal Stem Cells Induces Therapeutic Angiogenesis in a Rat Model of Hind Limb lschemia[J]. Stem Cells,2008,26(10):2625-2633.
    [13]徐启飞,周初松Wnt/p-catenin信号通路对神经干细胞增殖分化的影响[J].颈腰痛杂志,2009,29(6):572-575.
    [14]段晓春,武永康,董伦,等β-catenin干涉质粒的构建及抑制U251细胞增殖的实验研究[J].中国医师协会神经外科医师分会第四届全国代表大会论文汇编;2009:84-87.
    [15]林常敏,李宇.β-连环蛋白在毛囊形态发生及毛囊干细胞增生分化的作用[J].医学研究生学报,2004,17(4):358-360.
    [16]杨鹏高,胡孝辉,高丰厚,等.人P-catenin-EGFP融合表达慢病毒载体构建及在毛囊干细胞中的表达[J].上海交通大学学报,2009,29(9):1030-1034.
    [17]刘向荣,赵尚峰,吉训明,等siRNA沉默β-catenin对人胶质瘤细胞系SHG44增殖和凋亡的作用[J].中华肿瘤防治杂志ISTIC,2010,17(6):420-422.
    [18]Hirsch C, Campano L M, Wohrle S, et al. Canonical Wnt signaling transiently stimulates proliferation and enhances neurogenesis in neonatal neural progenitor cultures[J]. Experimental cell research,2007,313(3):572-587.
    [19]Lie D C, Colamarino S A, Song H J, et al. Wnt signalling regulates adult hippocampal neurogenesis[J]. Nature,2005,437(7063):1370-1375.
    [20]徐启飞,周初松.Wnt/p-catenin信号通路对神经干细胞增殖分化的影响[J].颈腰痛杂志,2008,29(6):572-575.
    [21]文萍,胡卫华,窦骏Wnt/β-catenin信号通路在肿瘤干细胞中作用研究进展[J].中国医药生物技术ISTIC,2007,2(6):455-457.
    [22]郑婷婷,刘义,于岚,等.靶向siRNA阻断Wnt/β-catenin信号通路对子宫内膜异位症裸鼠模型异位子宫内膜VEGF和MMP-9表达的影响[J].华中科技大学学报(医学版),2011,40(1):22-27.
    [23]郑勤,徐瀚峰.Wnt/β-catenin信号通路在肝癌中的研究进展[J].国际消化病杂志,2010,30(002):76-78.
    [24]Zechner D, Fujita Y, Hulsken J, et al. β-Catenin signals regulate cell growth and the balance between progenitor cell expansion and differentiation in the nervous system[J]. Developmental biology,2003,258(2):406-418.
    [25]Chenn A, Walsh C A. Increased neuronal production, enlarged forebrains and cytoarchitectural distortions in β-catenin overexpressing transgenic mice[J]. Cerebral Cortex, 2003,13(6):599-606.
    [26]Khan M A, Berti L. Alzheimer's Disease Affects Progenitor Cells through Aberrant β-Catenin Signaling[J]. The Journal of Neuroscience,2009,29(40):12369-12371.
    [27]He P, Shen Y. Interruption of β-catenin signaling reduces neurogenesis in Alzheimer's disease[J]. The Journal of Neuroscience,2009,29(20):6545-6557.
    [28]Wexler E M, Geschwind D H, Palmer T D. Lithium regulates adult hippocampal progenitor development through canonical Wnt pathway activation[J]. Molecular psychiatry,2007, 13(3):285-292.
    [29]LUO Huan-min, DENG Hui, HUANG Feng. Therapeutic mechanism investigation of RNA interference in Alzheimer's disease[J]. Chinese Journal of Pathophysiology,2005,21(2): 408-411.
    [30]曾雪爱,洪炎国,黄俊山.RNA干扰技术在生物医学领域中的应用[J].生物医学工程与临床,2011,15(2):189-192.
    [31]王长印,董振芳,宋晓斐.RNA干扰技术及其在临床医学中的应用进展[J].山东医药,2005,45(5):69-71.
    [32]李钶.RNA干扰对脂联素在3T3-L1脂肪细胞中表达的影响[J].中国糖尿病杂志,2007.15(10):589-590.
    [33]曾雪爱,洪炎国,黄俊山.RNA干扰技术在生物医学领域中的应用[J].生物医学工程 与临床,2011,15(2):189-192.
    [34]Duxbury M S, Whang E E. RNA interference:a practical approach[J]. Journal of Surgical Research,2004,117(2):339-344.
    [35]Hammond S M, Caudy A A, Hannon G J. Post-transcriptional gene silencing by double-stranded RNA[J]. Nature Reviews Genetics,2001,2(2):110-119.
    [36]程艳洁.RNA干扰介导Prohibitin基因沉默对人大肠癌细胞株生物学特性的影响[D].福建医科大学,2010.
    [37]邹欣.构建β-catenin特异的RNAi慢病毒载体研究Wnt/β-catenin信号通路对小鼠胰岛p细胞增殖的影响[D].福建医科大学,2009.
    [38]邹欣,陈刚,沈小燕,等.用RNA干扰慢病毒研究Wnt/β-连环蛋白信号通路对小鼠胰岛p细胞增殖的影响[J].中华糖尿病杂志,2010,2(2):137-141.
    [39]苏晓霁siRNA表达载体介导的RNA干扰抑制新型隐球菌cap10基因的表达[D].福建医科大学,2009.
    [40]毕杨,黄佳祎,吴明军,等β-catenin腺病毒载体的构建及鉴定[J].重庆医科大学学报,2007,32(6):561-564.
    [41]Woodworth C D, Isom H C. Transformation of differentiated rat hepatocytes with adenovirus and adenovirus DNA[J]. Journal of virology,1987,61(11):3570-3579.
    [42]Khan S N, Hidaka C, Sandhu H S, et al. Gene therapy for spine fusion[J]. The Orthopedic clinics of North America,2000,31(3):473-484.
    [43]Nadeau I, Kamen A. Production of adenovirus vector for gene therapy[J]. Biotechnology advances,2003,20(7):475-489.
    [44]Fire A, Xu S Q, Montgomery M K, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans[J]. nature,1998,391(6669):806-811.
    [45]白爱民,贾艳敏,张晓菁siRNA为基础的RNAi在肿瘤基因治疗中的应用进展[J].中华肿瘤防治杂志,2007,14(12):953-955.
    [46]Kishida T, Asad AH, Gojo S, et al. Seqence-special gene silencing in murine muscle induced by electroporation-mediated transfer of short interfering RNA[J]. Gene Med,2004,6: 105-110.
    [47]Brummelkamp T R, Bernards R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells[J]. Science Signaling,2002,296(5567):550-553.
    [48]Uprichard S L, Boyd B, Althage A, et al. Clearance of hepatitis B virus from the liver of transgenic mice by short hairpin RNAs[J]. Proceedings of the National Academy of Sciences of the United States of America,2005,102(3):773-778.
    [49]He T C, Zhou S, Da Costa L T, et al. A simplified system for generating recombinant adenoviruses[J]. Proceedings of the National Academy of Sciences,1998,95(5):2509-2514.
    [50]黄佳祎,毕杨,左国伟,等.腺病毒载体介导的HBx表达对HepG2细胞中PPARy定位的影响[J].第三军医大学学报,2008,30(18):1693-1696.
    [51]陈恒君,李惠,陈瑾,等.人Dickkopfl基因腺病毒载体的构建及感染黑色素瘤后(3-catenin表达的研究[J].第三军医大学学报,2010,32(12):1286-1289
    [52]Yu J Y, Taylor J, DeRuiter S L, et al. Simultaneous inhibition of GSK3a and GSK3P using hairpin siRNA expression vectors[J]. Molecular Therapy,2003,7(2):228-236.
    [53]Elbashir S M, Martinez J, Patkaniowska A, et al. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate[J]. The EMBO journal, 2001,20(23):6877-6888.
    [54]Pekarik V. Design of shRNAs for RNAi-a lesson from pre-miRNA processing:possible clinical applications[J]. Brain research bulletin,2005,68(1):115-120.
    [55]郑群,徐立红.经典Wnt信号通路中β-连环蛋白的影响因素[J].细胞生物学杂志,2009,31(2):183-90.
    [56]Toledo E M, Colombres M, Inestrosa N C. Wnt signaling in neuroprotection and stem cell differentiation[J]. Progress in neurobiology,2008,86(3):281-296.
    [57]De Boer J, Wang H J, Van Blitterswijk C. Effects of Wnt signaling on proliferation and differentiation of human mesenchymal stem cells[J]. Tissue engineering,2004,10(3-4): 393-401.
    [58]Caplan A I, Bruder S P. Mesenchymal stem cells:building blocks for molecular medicine in the 21st century[J]. Trends in molecular medicine,2001,7(6):259-264.
    [59]Zechner D, Fujita Y, Hulsken J, et al. β-Catenin signals regulate cell growth and the balance between progenitor cell expansion and differentiation in the nervous system[J]. Developmental biology,2003,258(2):406-418.
    [60]Chenn A, Walsh C A. Increased neuronal production, enlarged forebrains and cytoarchitectural distortions in P-catenin overexpressing transgenic mice[J]. Cerebral Cortex, 2003,13(6):599-606.
    [61]Moon R T, Kohn A D, De Ferrari G V, et al. WNT and β-catenin signalling:diseases and therapies[J]. Nature Reviews Genetics,2004,5(9):691-701.
    [62]Fodde R, Brabletz T. Wnt/beta-catenin signaling in cancer stemnessand malignant behavior[J]. Curr Opin Cell Biol,2007,19(2):150-158.
    [63]Staal F J T, Clevers H C. WNT signalling and haematopoiesis:a WNT-WNT situation[J]. Nature Reviews Immunology,2005,5(1):21-30.