大直径土压平衡盾构引起的地表变形及掘进控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文依托北京地铁14号线10.22m大直径土压平衡盾构长距离掘进控制工程实例,借鉴已有盾构控制技术进行快速施工创新,采用理论分析、数值计算、紧密结合现场测试和室内试验相结合的综合研究方法,提出了大直径盾构机快速掘进及管片配制安装产生地表变形沉降规律及关键控制技术,实现了月掘进平均492m,最快641m/月的最高水平。研究将有利于促进北京地铁从“双洞双线”转向“单洞双线”线路敷设方式的转变和建设方法的革新,意义重大。主要关键技术研究内容有六项。
     一、大盾构引起的地表变形规律和分布特征
     (1)地表沉降槽曲线符合Peck曲线(Gauss公式),地表沉降最大沉降大致在12.0mm到36.4mm之间;拱顶覆粘性土时,最大沉降值在12.0mm到25.9mm之间;拱顶覆砂性土时,最大沉降大致在20.4mm到36.4mm之间。
     (2)地表沉降槽宽度系数i与隧道埋深z大致成正比关系,隧道拱顶为粘性土时,比例系数k约为4.7,地层损失率平均为0.40%;拱顶为砂性土时,比例系数k约为3.5,地层损失率平均为0.45%。总体看来,地层损失率大致在0.31-1.04%之间。
     (3)地层损失Vs与浆液注入率大致成负指数关系:地表沉降最大值和沉降槽宽度均随注浆量、土仓压力的增大而减小;数据表明,浆液注入率控制在145-175%之间时,地表沉降控制较好。
     二、地表变形预测方法
     (1)本文建立的基于LS-SVM的地表沉降最大值以及地表沉降槽宽度预测模型可以考虑盾构法关键技术参数以及隧道埋深、拱顶覆土力学特性的影响,弥补了传统预测方法在此方面的不足,更贴合工程实际,便于工程推广应用。
     (2)本文计算分析表明,相比线性函数和多项式核函数,RBF核函数具有较强的统计学习及更高的泛化推广能力,尤其适应地表沉降最大值和沉降槽宽度的建模分析。
     (3)基于LS-SVM建模分析,可以写出地表最大沉降及沉降槽宽度与相关影响因素的显式表达,从而可以更加清晰认识相关要素与地表沉降关键特征参数的作用机理。
     三、大盾构始发关键技术
     (1)大盾构成功始发的实践证明,本工程主要依据工程经验选取旋喷方法进行端头加固可行的,反力架结构推力荷载考虑2.7的安全系数是偏于安全的,通过负环管片拼装前后的控制措施保证负环管片的成型质量以及在盾构台车轨道上方铺设钢板解决了台车轮组小半径曲线转弯问题的做法是合理的,对类似工程有较好参考价值。
     (2)针对大直径盾构沿350m曲线半径和27‰线路纵坡的困难始发条件,文中提出的始发反力架和基座安装精度指标是合理的,满足了始发要求。
     (3)理论建模计算分析表明,大直径盾构始发过程中其自重与托垫间的摩擦力产生的阻滞力矩不能满足刀盘旋转切削的掘进要求,必须在其托垫和盾构壳体之间采取抗扭矩措施。
     四、渣土改良技术和同步注浆浆液配比
     (1)注入浓度为5%泡沫和浓度为8%泥浆的渣土改良方案以及针对大直径盾构渣土搅拌进行的泥浆、泡沫系统设置、管路独立布置、添加口的数量和位置的设计,特别是渣土主动搅拌装置的配备是成功的,满足了生产需要。
     (2)实践表明,同步注浆采用双液浆方案,浆液配比为水:水泥:泥浆:缓凝剂=1:1:0.3:0.013,以及每环浆液的注入量为14.1-15.3m3/环的做法是成功的。
     五、隧道内部会车浮放式道场系统
     (1)突破传统固定式运输车场的限制,建立一种可适应不同坡度并可在曲线段快速敷设的可移动式隧道内双道岔四轨会车浮放式道场,是实现长大隧道高效水平运输的技术关键,有助于发挥盾构技术安全、迅速和环保的优点。
     (2)本文建立的车场位置和运输距离模型是本工程在距始发位置1km和1.7km处设置会车浮放式道场的理论基础,对于其他行业长大隧道的建设也有重要的参考价值。
     六、近接施工安全控制技术
     (1)构建以合理盾构掘进参数选择、地层渣土改良方案优化和综合注浆控制等为核心技术的主动控制技术体系,并依据环境条件复杂状况,配合实施邻近环境条件和建(构)筑物的现状检测、施工过程的数值化仿真以及必须的地层(和)或邻近建(构)物加固措施,依然是复杂环境条件下直径10.22m大盾构地层微扰动控制技术的核心。
     (2)对于大直径盾构在小半径曲线上的施工,主动“铰接”功能的配备和沿曲线长度范围内的合理操作顺序至关重要,这是大盾构姿态控制和减少对周围地层扰动的关键技术措施之一。而完善的信息化施工和监测数据的及时反馈分析,是有效指导大盾构掘进施工过程控制及盾尾同步注浆和二次补浆施工,严格控制地层沉降的保证。
Based on the long-distance tunneling practice of a10.22-m diameter earth pressure balance (EPB) shield on Beijing subway Line14, and making good use of the existing shield tunneling technologies and experiences, the ground surface movement law and corresponding control technologies of rapid tunneling of the big diameter shield was studied by means of theoretical analysis, numerical calculations, in-situ measurements and indoor tests. The highest level attained of the big diameter EPB shield tunneling is641m per month and on average the driving length is492m per month. The finding presented are of great significance and helpful to the innovation of line layout and construction method of Beijing subway from the traditional "double-tube-double-line" to the "single-tube-double-line". The six main technologies involved are as follows.
     1) The big diameter shield tunneling induced ground surface movement
     (1) The ground surface settlement trough conforms to the Peck curve (Gauss curve). The maximum settlement of ground surface is about12.0-36.4mm, which is12.0-25.9mm in case of clayey roof soil, and20.4-36.4mm in case of sandy roof soil.
     (2) The ground surface settlement trough width coefficient is proportional to the tunnel depth, and the coefficient of proportionality k is about4.7and the ground loss ratio0.40%on average in case of the clayey roof soil; and the coefficient k is about3.5and the ground loss ratio0.45%on average in case of the sandy roof soil. Overall the ground loss ratio is around0.31-1.04%.
     (3) There approximately exists the expositional relation between the ground loss Vs and the grout injection ratio; the ground surface maximum settlement and the settlement trough width decrease with the increase of the grout injection amount and the earth chamber pressure field observations show the grout injection ratio of145-175%attains a good control of the ground surface settlement.
     2) The ground surface movement prediction method
     (1) Based on the least square support vector machine (LS-SVM), the model was set up to predict the ground surface maximum settlement and the ground surface settlement trough width. Different from the traditional prediction methods the LS-SVM model, convenient for engineering applications, can take into account the effects of the crucial technical parameters of shield tunneling, the tunnel depth and mechanical properties of the roof soil on ground surface settlement.
     (2) Calculation results show the RBF kernel possesses the higher statistical learning and generalization ability in comparison with the linear and the polynomial kernels, and it is especially suitable to the modeling analysis of the ground surface maximum settlement and the settlement trough width.
     (3) Using the LS-SVM model, the explicit expressions of the ground surface maximum settlement (the settlement trough width) and relevant influence factors can be gotten. Therefore, the action mechanism between the important characteristic parameters of the ground surface settlement and corresponding influence factors can be more clearly displayed.
     3) The key start technologies of the big diameter shield
     (1) The successful launch of the big diameter shield shows that using jet grouting to reinforce ground is feasible mainly according to the engineering experiences and the safety factor of2.7for the thrust load of the reaction frame is on the safe side. It is sensible that adopting measures before assembling the partial segments to guarantee the erection quality of the segments, and that laying out steel plates on tracks to allow trolleys turning along the small radius curve. The above ways of doing provide good references for similar engineering projects.
     (2) The setting installment precisions of the starting reaction frame and the base are reasonable for the difficult launch conditions of the350-m radius curve and the27%o longitudinal slope, which meet the demand of the big diameter shield starting.
     (3) Theoretical modeling and calculations show the reverse torque from the friction between the shield and the base can't meet the demand of rotary cutting of the cutter head during the big diameter shield starting, and measures against turning around of the shield body must be taken.
     4) Technologies of soil conditioning and mix ratio of simultaneous backfilling grouting
     (1) The schemes and methodologies for soil conditioning and backfilling grouting meet the demand of convenient for engineering applications and are successful, including the soil conditioning plan with foam of5%concentration and slurry of8%concentration, and the equipment of slurry and foam device for mixing the conditioned soil, the separate layout of the pipelines, and the amount and locations of the additive injection ports.
     (2)The practice shows it is successful that the simultaneous backfilling grouting plan using the two-liquid type grout with mix ratio of water:cement:slurry:retarder=1:1:0.3:0.013, together with the injection amount per ring of14.1-15.3m3.
     5) In-tunnel movable trolley station system
     (1) Breaking through the limitations of the traditional fixed stations, a new type of in-tunnel movable double-turnout-four-track station, fitting for different slopes and easy for quick erection and crucial to the higher efficient in-tunnel horizontal transport, was put forward and help realize the advantages of safety, high-speed and environment protection of the big diameter shield tunneling.
     (2) The models for station locations and transport distance provide the results of station locations of1km and1.7km away from the starting shaft, which give good references for building long and big tunnels of other types.
     6) Control technologies of adjacent construction
     (1) The core of small disturbance of the10.22-m diameter shield tunneling centers on the active control system consisting of reasonable selection of shield driving parameters, well prepared plan of soil conditioning, comprehensive grouting and etc., together with performing status detections of nearby surroundings and adjacent structures, numerical simulation of the construction process, and taking necessary measures to reinforce the ground and structures in close proximity, according to complexities of the surrounding conditions.
     (2) The equipped function of the active articulation and reasonable manipulation of the shield machine is of paramount importance when tunneling along a small radius curve, which is one of the key technologies of the big diameter shield attitude control and of reducing tunneling induced ground disturbance. While perfect information construction and timely feedback of measured data are the guarantee of strict control of ground settlement by means of the simultaneous backfilling grouting and the secondary grout injection through segment holes.
引文
[l]王梦恕等.中国隧道及地下工程修建技术[M].北京:人民交通出版社,2010.
    [2]陈馈,洪开荣,吴学松.盾构施工技术[M].人民交通出版社,2009.
    [3][日]地盘工学会.盾构法的调查·设计·施工[M].北京:中国建筑工业出版社,2008.
    [4][日]土木学会.隧道标准规范[盾构篇]及解说[M].北京:中国建筑工业出版社,2011.
    [5]刘建航,侯学渊.盾构法隧道[M].北京:中国铁道出版社,1991.
    [6]尹旅超,朱振宏,李玉珍等.日本隧道盾构新技术[M].武汉:华中理工大学出版社,1999.
    [7]王梦恕.地下工程浅埋磅挖技术通论[M].合肥:安徽教育出版社,2004.
    [8]刘洪洲,盾构施工对软土地层沉降影响综述[J].公路隧道,2001,(3):5-10.
    [9]周文波.盾构法隧道施工技术及应用[M].北京:中国建筑工业出版社,2004.
    [10]姜忻良,赵志民,李园.隧道开挖引起土层沉降槽曲线形态的分析与计算[J],岩土力学,2004.
    [11]黄宏伟,张冬梅.盾构隧道施工引起的地表沉降及现场监控.岩石力学与工程学报[J].2001,20(增):1814-1820.
    [12]阳军生,刘宝琛.城市隧道施工引起的地表移动与变形[M].北京:中国铁道出版社,2002.
    [13]朱忠隆,张庆贺,易宏传.软土隧道纵向地表沉降的随机预测方法[J].岩土力学,2001,22(1),56-59.
    [14]徐方京.软士隧道与深开挖引起孔隙水压力与地层移动分析[D].同济大学,1991.
    [15]姜忻良,赵志民,李园.隧道开挖引起土层沉降槽曲线形态的分析与计算[J].岩土力学,2004,25(10):1542-1544.
    [16]王霆.地铁浅埋暗挖法施工对邻近管线的影响与控制[D].北京交通大学,2008.
    [17]岳广学,何平,蔡炜.隧道开挖过程中地层变形的统计分析[J].岩石力学与工程学报,2007,26(2):3793-3803.
    [18]张顶立,黄俊,地铁隧道施工拱顶下沉值的分析与预测[J].岩石力学与工程学报,2005,24(6):1703-1707.
    [19]Peck R. B. Deep excavations and tunneling in soft ground[C], State of the Art Report. Proceeding of the 7 International Conference on Soil Mechanics and Foundation Engineering, Mexico City, State of the Art Volume,1969,225-290.
    [20]Attewell, P. B. Engineering contract, site investigation and surface movements in tunneling works[C]. In soft ground tunneling, A. A. Balkeman,1981,5-12.
    [21]吴波.复杂条件下城市地铁隧道施工地表沉降研究[D].西南交通大学,2003.
    [22]秦建设.盾构施工开挖面变形与破坏机理研究[D].河海大学,2005.
    [23]肖龙鸽,王超峰,赵运臣.大直径泥水盾构施工引起的地表沉降分析和对策[J].现代隧道技术,2008,45(5):50-53.
    [24袁大军,尹凡,王华伟等.超大直径泥水盾构掘进对土体的扰动研究[J].岩石力学与工程学报,2009,28(10):2074-2080.
    [25]张成平,张顶立,王梦恕.浅埋暗挖隧道施工引起的地表塌陷分析及其控制[J].岩土力学与工程学报,2007,26(supp.2),3601-3608.
    [26]戴仕敏.超大直径土压平衡盾构隧道施工关键技术[J].施工技术,2011,40(18):1-5,17.
    [27]纪梅,谢雄耀.大直径土压平衡盾构掘进引起的地表沉降分析[J].地下空间与工程学报,2012,8(1):161-166.
    [28]吴韬.超大直径土压平衡盾构穿越铁路沉降分析[J].低温建筑技术,2013(7):124-127.
    [29]郑立用.城际铁路大直径土压平衡盾构掘进地层位移控制措施研究[J].长沙铁道学院学报(社会科学版),2013,14(2):203-204.
    [30]刘建航,侯学渊.盾构法隧道[M].北京:中国铁道出版社,1991.
    [31]Yoshikoshi, W., Watanabe, O. and Takagi, N. Prediction of ground settlements associated with shield tunnelling[J]. Soils and Foundations,1978,18(4):47-59.
    [32]O'Reilly, M. P. and New, B. M. Settlements above tunnels in the United Kingdom-their magnitude and prediction[C]. Proceeding of Tunnelling'82 Symposium, London,1982,173-181.
    [33]周文波.盾构法隧道施工对周围环境影响和防治的专家系统.地下工程与隧道,1993,(4),120-128.
    [34]Celestino, T. B., Gomes, R. A. M. P. and Bortolucci, A. A. Errors in ground distortions due to settlement trough adjustment[J]. Tunnelling and Underground Space Technology,2000,15(1): 97-100.
    [35]Vorster T E B, Klar A, Soga K, et al. Estimating the effects of tunneling on existing pipelinesfJ]. Journal of Geotechnical and Geoenvironmental Engineering,2005,131(11):1399-1410.
    [36]Jones, B. Low-volume-loss tunnelling for London ring main extension[J]. Proceedings of the ICE-Geotechnical Engineering,2010,163(3):167-185.
    [37]Ito T. and Hisatake M. Three dimensional surface subsidence caused by tunnel driving[C]. In: Elsenstein Z. ed. Proceedings of the Fourth International Conference on Numerical Methods in Geomeehanies. Rotterdam:A A Balkema,1982,551-559.
    [38]Rowe, R. K., Lo K. Y., and Rack, G J. A method of estimating surface settlement above shallow tunnels in soft soils[J]. Canadina Geoteehnical Jounral,1983,20, pp.11-22.
    [39]Lee K M, Rowe R K. Finite element modeling of the three dimensional ground deformations due to tunneling in soft cohesive soils:Part I-method of analysis[J]. Computers and Geotechnies,1990,10, 87-109.
    [40]Lee K M, Rowe R K. Finite element modeling of the three dimensional ground deformations due to tunneling in soft cohesive soils:Part Ⅱ-results[J]. Computers and Geotechnies,1990,10,111-113.
    [41]Dasari G R, Rawling C G, Bolton M D. Numerieal modeling of a NATM tunnel construction in London Clay[C]. Proceedings of International Symposium on Geotechnical Aspects of Underground Construction in soft Ground. London,1996.491-496.
    [42]张云,殷宗泽,徐永福.盾构法隧道引起的地表变形分析[J].岩石力学与工程学报,2002,21(3),388-392.
    [43]张海波,殷宗泽,朱俊高.地铁隧道盾构法施工过程中地层变位的三维有限元模拟[J].岩石力学与工程学报,2005,24(5):755-76.
    [44]Mair, R. J., Gunn M. J., Oreilly M P.软粘土中浅埋隧道周围地层运动[J]. 遂道译丛,1983, (10), 47-53.
    [45]Mair R. J.,Taylor R. N.,Bracegirdle A. Subsurface settlement profiles above tunnels in clays[J]. Geotechnique,1993,43(2):315-320.
    [46]Mair R. J., Taylor R. N., Bracegirdle A. Discussion:Subsurface settlement profiles above tunnels in clays[J]. Geotechnique,1995,45(2):361-362.
    [47]Imamura S., Hagiwara T., Mito T. Settlement trough above a model shield observed in a centrifuge[C]. Centrifuge 98, Tokyo,1998.713-719
    [48]Wu B R, Chiou S Y, Lee C J. Soil movements around parallel tunnels in soft ground[C].Centrifuge 98, Tokyo,1998.739-744
    [49]周小文,濮家骝,砂土中隧洞开挖引起的地面沉降试验研究[J].岩土力学,2002,23(5):559-563.
    [50]Clough, G.W. and Schmidt, B. Design and performance of excavations and tunnels in soft clay[C]. In Soft clay engineering. Edited by E.W. Brand and R.P. Brenner. Elsevier Scientific Publishing Company, Amsterdam,1981,569-636.
    [51]Sagaseta, C. Analysis of undrained soil deformation due to ground loss[J]. Geotechnique,1987,38(7): 301-320.
    [52]Verruijt A., Booker J. R. Surface settlements due to deformation of a tunnel in an elastic half plane[J]. Geotechnique,1996,46(4):753-756.
    [53]Loganathan N., Poulos H. G Analytical prediction for tunneling-induced ground movements in clays[J]. Journal of Geotechnical and Geoenvironmental Engineering,1998,124(9):846-856.
    [54]Lee K. M., Rowe R. K., Lo K. Y. Subsidence owing to tunnelling. I. Estimating the gap parameter[J]. Canadian Geotechnical Journal,1992,29(6):929-940.
    [55]Chi S. Y., Chern J. C., Lin C. C. Optimized back-analysis for tunneling-induced ground movement using equivalent ground loss model[J]. Tunnelling and Underground Space Technology,2001,16(3): 159-165.
    [56]卢海林,赵志民,方芃等.盾构法隧道施工引起土体位移与应力的镜像分析方法[J].岩土力学,2007,28(1):45-50.
    [57]王穗辉,潘国荣.人工神经网络在隧道地表变形预测中的应用[J].同济大学学报(自然科学版),2001,29(10):1147-1151.
    [58]吕传田,翟志国,苏清贵.北京铁路地下直径线盾构始发技术[J].中国工程科学,2010,(12):59-63.
    [59]李振武.大直径泥水盾构始发技术[J].铁路技术创新.2012,(3):23-25.
    [60]张伯阳.超大直径盾构隧道始发关键技术[J].地下空间与工程学报,2013,9(3):633-638.
    [61]樊姝芳.地铁区间隧道盾构始发掘进技术[J].施工技术,2011(1):86-89.
    [62]曹建辉.盾构法施工中的盾构始发技术[J].施工技术,2011(8):107-109.
    [63]Bezuijen A., SCHAM1NCE P. E. L., KLE1NJAN J. A. Additive Testing for Earth Pressure Balance Shields[C]. Geotechnical Engineering for Transportation Infrastructure, Balkema,1999,1991-1996.
    [64]Quebaud S., Sibai M., Henry J. P. Use of chemical foam for improvements in Drilling by earth-pressure balanced shields in granular soils [J]. Tunneling and Underground Space Technology.2000,13(2):173-180.
    [65]Guy Houlsby, Mair R. Easing the way soil conditioning [J]. Tunnels and Tunnelling International 2003, (6):48-50.
    [66]唐益群,宋永辉,周念清,黄雨,叶为民,张庆贺.土压平衡盾构在砂性土中施工问题的试验研究[J].岩石力学与工程学报,2005,24(1),52-56.
    [67]宋克志,汪波,孔恒等.无水砂卵石地层土压盾构施工泡沫技术研究[J].岩石力学与工程学报,2005,24(13):2328-2332.
    [68]黄平华.盾构工法中土质改良剂的应用技术[J].施工技术,2006,33(1):46-47.
    [69]金中林.泡沫注入工法在盾构法隧道施工中的应用[J].建筑施工,2006,28(6):5-6.
    [70]魏康林.土压平衡盾构施工中泡沫和膨润土改良土体的微观机理分析[J].现代隧道技术,2007,44(1):73-77.
    [71]汪国锋.北京地铁十号线土压平衡盾构土体改良技术应用研究[J].现代隧道技术,2009(4):77-81.
    [72]Thewes M., Budach C. Soil conditioning with foam during EPB tunnelling[J]. Geomechanics and Tunnelling,2010,3(3):256-267.
    [73]黄德中,周永习,黄俊.超大直径土压平衡盾构施工土体改良试验研究[J].中国市政工程,2010(增刊):128-131.
    [74]潘国灵,江涛,刘佳明,李朝,闫冬.泡沫在盾构隧道中的应用[J].低温建筑技术,2011,(9): 102-104.
    [75]Tao Li, Bo Liu, Yan Li, Changjun Song. Properties of foam and soil improvements for earth-pressure balance shield construction in red soils[C].1st International Conference on Civil Engineering, Architecture and Building Materials,2011,2834-2841.
    [76]Bo Liu, Li Huang, Guogang Qiao, Tao Li. Test research on modified-soils of foam-conditioned for metro shield tunneling engineering[C]. Advanced Materials Research,2011,1566-1571.
    [77]贺斯进.黄土盾构隧道膨润土泥浆渣土改良技术研究[J].隧道建设,2012,32(4):448-453.
    [78]王春河,张顶立.无水砂卵石盾构施工分区注入式渣土改良技术[J].铁道建筑技术,2013,(4):4-7.
    [79]邹翀.盾构隧道同步注浆技术[J].现代隧道技术,2003,40(1),26-30.
    [80]Shinichiro Imamura,Toshiyuki Hagiwara, Kenji Mito. Settlement trough above a model shield observed in a centrifuge[C]. Centrifuge 98, Tokyo,1998,23-25.
    [81]Yukinori K,Yutaka s, Noriyuki. Back-fill grouting model test for shield tunnel[J]. RTTIQR,1998, 39(1):35-39.
    [82]ToshiNomoto, Shinichiro Imamura, Toshiyuki Hagiwara. Shield tunnel construction in centrifuge[J]. Journal of Geotechnical and Geoemironmental Engineering,1999,125(4):289-300.
    [83]Bezuijen A., Talmon A. M., Kaalberg. F. J. Field measurement of grout pressures during tunneling of the Sophia rail tunnel[J]. Soil and Foundations,2004,44(1):39-48.
    [84]朱建春,李乐,杜文库.北京地铁盾构同步注浆及其材料研究.建筑机械化[J],2004,(11):26-29.
    [85]张海涛.盾构同步注浆材料试验及隧道上浮控制技术[D].同济大学地下建筑与工程系,2007.
    [86]梁精华.盾构隧道壁后注浆材料配比优化及浆体变形特性研究[D].河海大学,2006.
    [87]付磊.盾构隧道施工中的注浆材料特性研究及其引起的地层变形规律分析[D].河海大学,2006.
    [88]田焜.高性能盾构隧道同步注浆材料的研究与应用[D].武汉理工大学,2007.
    [89]田烷,丁庆军,陈跃庆,罗吉.盾构隧道大掺量粉煤灰同步注浆材料优化设计[J].隧道建设,2007,27(4):26-29.
    [90]苏华.南水北调中线穿黄隧道工程盾构施工壁后注浆浆材研究[D].长江科学院,2007.
    [91]赵天石.泥水盾构同步注浆浆液试验及应用技术研究[D].同济大学,2008.
    [92]梁小英.富水地层盾构施工同步注浆材料性能及配合比优化设计研究[D].长安大学,2007.
    [93]张长强,翟志国,陈明娟,金仲祥.富水砂卵石地层中大直径泥水盾构同步注浆技术[J].中国工程科学,2010,12(12):75-79.
    [94]黄忠辉,季倩倩,林家祥.超大直径泥水平衡盾构隧道抗浮结构试验研究[J].地下空间与工程学报,2010,2(6):250-254.
    [95]洪开荣,杜闯东,任成国.大直径泥水盾构复合地层速凝浆液的同步注入技术[J].北京交通大学学报,2011,3(35):33-38.
    [96]Yamaguchi I, Yamazaki I, Kiritani Y. Study of ground-tunnel interactions of four shield tunnels driven in close proximity in relation to design and construction of parallel shield tunnels[J].Tunnelling and Underground Space Technology,1998,13(3):289-304.
    [97]自廷辉.江中段近距离盾构施工相互影响及治理[J].上海建设科技,1999,(4):20-22.
    [98]李强,曾得顺.盾构千斤项推力变化对地面变形的影响[J].地下空间,2002,22(1):12-15.
    [99]徐永福,孙钧,傅德明等.外滩观光隧道盾构施工的扰动分析[J].土木工程学报,2002,(4):70-73.
    [100]张海波,殷宗泽,朱俊高.近距离叠交隧道盾构施工对老隧道影响的数值模拟[J].岩土力学,2005,26(2):282-286.
    [101]毕继红,江志峰,常斌.近距离地铁施工的有限元数值模拟[J].岩土力学,2005,26(2):277-281.
    [102]Li X.G, Yuan D. J. Response of a double-decked metro tunnel to shield driving of twin closely under-crossing tunnels[J]. Tunnelling and Underground Space Technology,2012,28(4):18-30.
    [103]Skempton A.W., MacDonald D.H. Allowable settlement of buildings [J].Proc. Institution of Civil Engineering,1956,13(6):19-32.
    [104]Burland J B, Wroth C P. Settlement of buildings and associated damage[C]. In:Proc. Conf. on Settlement of Structures. London, England:Pentech Press,1974,611-654.
    [105]Buriand J. B., Broms B. B., Mello V F. Behaviour of foundations and structures[C]. In:9 International Conference on Soil Mechanics and Foundation Engineering. Tokyo, Vol. State of the Art Report,1977,495-546.
    [106]Breth H. Chambosse G. Settlement behavior of buildings above subway tunnels in Frankfurt clay[C]. In:Proc, Conf. On Settlement of Structures. London, England:Pentech Press,1974,329-336.
    [107]Frischmann W W. Prediction of the Mansion House against damage causing by ground movements due to the Docklands Light Railway Extension[C]. In:Proc Inst. Civil Engineering,1994,65-76.
    [108]Boscardin M D, Cording E G. Building response to excavation-induced settlement J]. Journal of Geotechnical Engineering, ASCE,1989,115(1):1-21.
    [109]沈水龙.盾构法施工对地表建筑物的影响机理与建筑物加固设计[D].同济大学,1989.
    [110]Bezuijen A., Van Der Schrier J. The influence of a bored tunnel on pile foundations [C], Proceedings of CENTRIFUGE 94, Rotterdam:A. A. Balkema,1994,681-686.
    [111]Mair R J, Taylor R N. Burland J.B. Prediction of ground movements and assessment of risk building damage due to bored tunneling[C]. In:Proceedings Geotechnical Aspect of Underground Construction in soil Ground. Roterdam:The Netherlands Press,1996.
    [112]Forth R A, Thoriey C B. Hong Kong Island Line Predictions and Performance[C]. In:Proceedings Geotechnical Aspect of Underground Construction in Soil Ground. Roterdam:Balkema, 1996.677-682.
    [113]Miliziano, S., Soccodato, F.M., Burghignoli,A. Evaluation of damage in masonry buildings due to tunneling in clayey soils[C]. Geotechnical aspects of underground construction in soft ground in 3rd international symposium,2002,49-54.
    [114]王占生,王梦恕.盾构施工对周围建筑物的安全影响及处理措施[J].中国安全科学学报.2002.12(2):45-49.
    [115]刘波,叶圣国,陶龙光等.地铁盾构施工引起邻近墓础沉降的FLAC元数值模拟[J].煤炭科学技术,2002,30(10):9-11.
    [116]Mroueh H., Shahrour I. A full 3-D finite element analysis of tunneling-adjacent structures interaction [J]. Computers and Geotechnics,2003,30:245-253.
    [117]Mroueh H., Shahrour 1. Three-dimensional finite element analysis of the Interaction between tunneling and adjacent structures[C]. Geotechnical aspects of underground construction in soft ground in 3rd international symposium,2002,131-136.
    [118]谢晋水.地铁隧道用暗挖法穿越建筑群下的软流塑地层[J].铁道建筑,2004,(9):17-20.
    [119]韩煊.隧道施工引起地层位移及建筑物变形预测的实用方法研究[D].西安理工大学,2006.
    [120]MORTON J. D., KING K. H. Effects of tunneling on the bearing capacity and settlement of piled foundations [C]. Proceedings of Tunneling 79, London:IMM,1979,57-68.
    [121]Hergarden H. J. A. M., Van Der Poel T. J., Van Der Schrier J. S. Ground movements due to tunneling Influence on the pile foundations[C]. Proceedings of International Symposium on Geotechnical Aspects of Underground Construction in soft Ground, Rotterdam:Balkema,1996,519-524.
    [122]曾巧玲.地铁隧道施工对邻近桥桩基础的影响及其可靠度研究[D].北京交通大学,2010.
    [123]赵公明.盾构隧道施工对既有立交桥桩基的影响分析[J].城市建设理论研究,2011,(27):71-74.
    [124]O'Rourke T. D., Trautmann C. H. Buried pipeline response to tunneling ground movements[C]. Europipe'82. Basel, Switzerland,1982,9-15.
    [125]Kusakabe O, Kimura T, Ohta A, Takagi N, Nishio N. Centrifuge model tests on the influence of axisymmetric excavation on buried pipes[C]. Ground Movements and Structures, Proceedings of the 3rd International Conference,1985,113-128.
    [126]Attewell P B, Yeates J, Selby A R. Soil Movements Induced by Tunnelling and their Effects on Pipelines and Structures[M]. London:Blackie and Son Ltd.,1986.
    [127]Bracegirdle A, Mair R J, Nyren R J, Taylor R N. A methodology for evaluating potential damage to cast iron pipes induced by tunneling[C]. Proc. Geotechnical Aspects of Underground Construction in Soft Ground. London:Balkema,1996,659-664.
    [128]廖少明,刘建航.邻近建筑及设施的保护技术.基坑工程手册[M].北京:中国建筑工业出版社,1997.
    [129]Takagi, Nobuo, Shimamura, Kazunori, Nishio, Nobuaki. Buried pipe response to adjacent ground movements associated with tunneling and excavations[C]. Ground Movements and Structures. Proceedings of the 3rd International Conference,1985,97-112.
    [130]高田至郎.受地基沉降影响的地下管线的设计公式及应用.地下管线抗震[M].北京:学术书刊出版社,1990.
    [131]段光杰.地铁隧道施工扰动对地表沉降和管线变形影响的理论和方法研究[D].中国地质大学,2002.
    [132]高文华.基坑变形预测与邻近建筑及设施的保护研究.博士后出站报告,湖南大学,2001.
    [133]Vorster T E B, Klar A, Soga K. Estimating the effects of tunneling on existing pipelines[J]. Journal of geotechnical and geoenvironmental engineering,2005,131(11):1399-1410.
    [134]白李妍.隧道工程施工对城市管网和建筑物的影响及控制[D].北方交通大学,2000.
    [135]李大勇.软土地基深基坑工程邻近地F管线的性状研究[D].浙江大学,2001.
    [136]李大勇,龚晓南,张土乔.软土地基基坑周围地下管线保护措施的数值模拟[J].岩土工程学报,2001,23(6):736-740.
    [137]李大勇,龚晓南.软土地基深基坑工程邻近柔性接口地下管线的性状分析[J].土木工程学报,2003,(2),77-80.
    [138]吴波.复杂条件下城市地铁隧道施工地表沉降研究[D].西南交通大学,2003.
    [139]吴波,高波.地铁区间隧道施工对近邻管线影响的三维数值模拟[J].岩石力学与工程学报,2002,(2),2451-2456.
    [140]Yoo Chungsik, Kim Jae-Hoon. A web-based tunneling-induced building utility damage assessment system:TURISK[J]. Tunnelling and Underground Space Technology,2003, (18),497-511.
    [141]Klar A., Vorster T. E. B., Soga K., etal. Soil-pipe-tunnel interaction:Comparison between Winkler and elastic continuum solutions[R], Technical Report of the University of Cambrige,2004.
    [142]彭基敏,张孟喜.盾构法施工引起邻近地下管线位移分析[J].工业建筑,2005,35(9),50-53.
    [143]Hunter A. Effect of trenchless technologies on existing iron pipelines[J]. Proceedings of the Institution of Civil Engineers:Geotechnical Engineering,2005,158(3),159-167.
    [144]Vorster T. E. B., Klar A., Soga K. Estimating the effects of tunneling on existing pipelines. Journal of geotechnical and geoenvironmental engineering,2005,131(11):1399-1410.
    [145]骆建军,张顶立,王梦恕,张成平.地铁施工对管线的影响[J].中国铁道科学,2006,27(6),124-127.
    [146]毕继红,刘伟,江志峰.隧道开挖对地下管线的影响分析[J].岩土力学,2006,27(8),1317-1321.
    [147]Klar A.,Vorster T. E. B., Soga K., etal. Elastoplastic Solution for soil-pipe-tunnel interaction)!]. Journal of Geoteehnical and Geoenvironmental Engineering,2007,133(7):782-792.
    [148]吴为义,孙字坤,张土乔.盾构隧道施工对邻近地下管线影响分析[J].中国铁道科学,2008,29(3),58-62.
    [149]吴为义.盾构隧道周围地下管线的性状研究[D].浙江大学,2008.
    [150]Hongan Li, Xiaochun Ma. Analysis of Settlement Caused by TBM Construction in Sand Formations in Beijing[C]. Proceedings of the International Conference on Pipelines and Trenchless Technology, Resto, American Society of Civil Engineers (ASCE),2011,1884-1896.
    [I51]Vapnik V. N. The nature of statistical learning theory[M]. Springer-Verlag, New York,1995.
    [152]Suykens J. A. K., Gestel T.V., Brabanter J. D., Moor B. D., Vandewalle J. Least square support vector machines[M]. World scientific publishing Co., Pte. Ltd., Singapore,2002.
    [153]Brabanter K. D., Karsmakers P., Ojeda F., Alzate C., Brabanter J. D., Pelckmans K., Moor B. D., Vandewalle J., Suykens J. A. K. LS-SVM lab Toolbox User's Guide version 1.8, Katholieke Universiteit Leuven,2002. http://www.esat.kuluven.be/sista/lssvmlab/ESAT-SISTA Technical Report 10-146.
    [154]苏健行,龚国芳,杨华勇.土压平衡盾构掘进总推力计算与试验研究[J].工程机械,2008,39(1):13-16.
    [155]张照煌,李福田.全断面隧道掘进机施工技术[M].北京:中国水利水电出版社,2006.
    [156]莫振泽,李海波,周青春等.楔刀作用下岩石微观劣化的试验研究[J].岩土力学,2012,33(5):1333-1340.
    [157]林存刚,吴世明,张忠苗,等.盾构掘进速度及非正常停机对地面沉降的影响[J].岩土力学,2012,33(8):2472-2482.
    [158]祝恩阳,姚仰平.岩土塑性理论中功表达的近似性[J].岩土力学,2012,33(4):1075-1078.
    [159]乐贵平,江玉生.土压平衡盾构法施工掘进面平衡压力初探[C].中国土木工程学会第下一届、隧道及地下工程分会第十三届年会论文集.北京:中国土木工程学会,2004.
    [160]魏康林.土压平衡盾构施工中“理想状态土体”的探讨[J].城市轨道交通研究,2007(1):67-70.
    [161]秦建设,朱伟,林进也.盾构施工中气泡应用效果评价研究[J].地下空间,2004(3):285-289.
    [162]林健.土体改良降低土压平衡式盾构刀盘扭矩的机理研究[D].河海大学,2006.
    [163]马超.土压平衡盾构土体改良微观机理试验研究[D].北京工业大学,2012.