麦长管蚜与小麦互作及其翅发育和飞行肌降解
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用生态学和生理学的试验方法对麦长管蚜Macrosiphum avenae (Fabricius)与不同小麦抗性品种互作关系和麦蚜翅型分化及飞行肌降解机制进行了研究。研究主要结果如下:
     (1)寄主对麦蚜种群及其生命参数的影响。抗性小麦能有效抑制麦蚜种群发展,刺激麦蚜有翅型的产生,减少麦蚜寿命,延长若蚜发育历期,降低成蚜繁殖力。此外,抗性寄主对害虫生理的影响可能有世代累加效应。EPG试验数据分析表明麦蚜取食活动受寄主影响较大,同时,从EPG数据还能得出生化抗性为主的抗性品种抗虫效果要优于以物理抗性为主的品种。通过对抗感小麦品种游离氨基酸分析,发现麦蚜种群数量与小麦游离氨基酸含量密切相关:有甘氨酸、缬氨酸等10种氨基酸与麦蚜种群密切相关,在这10种氨基酸中,以缬氨酸与麦蚜种群关系最为密切,其含量高低可以作为衡量小麦抗蚜性的指标之一。
     (2)麦蚜对寄主小麦的适应策略。田间系统调查表明:麦蚜种群对环境变化的有一定的适应性:当麦蚜迁入新的生境后,其飞行肌在几天之内降解,使麦蚜失去飞行能力,节约了大量能量,同时产下大量无翅蚜,种群在建立后1月之内达到高峰。寄主老化后,麦蚜有翅蚜明显增多,开始大量外迁,避免了因食物的匮乏而导致种群灭亡;同时田间定点观测表明:在抗性寄主上,因寄主的不适或其它抗生作用,可以促使麦蚜种群产生更多有翅蚜以逃离抗性寄主的危害。本研究还发现,随着寄主生育期的变化,麦蚜种群中红体色蚜在种群中的比例有所升高。
     (3)翅发育的形态和组织学特点。翅型分化发生在若蚜2龄时期,在此以前,无论有翅型还是无翅型均有翅原基组织,但2龄以后,一部分若蚜翅原基逐渐萎缩,直至消失,另外一部分若蚜翅原基得以继续发育,最终发育成翅。可见麦长管蚜翅型分化受母蚜生存环境的影响。
     (4)飞行肌降解机制研究。研究证实,飞行肌降解是由于肌细胞的凋亡引起,是麦蚜的主动生理反应。麦蚜在正常取食的条件下成蚜羽化后7日左右飞行肌细胞开始出现凋亡现象,9日后飞行肌开始出现可见的降解现象; 13日后,飞行肌降解完成。目前已经证实取食是诱导飞行肌降解的主要因素,抑制有翅成蚜的取食可以延迟飞行肌的降解,同时,麦蚜生殖活动也受到很大影响。
Using ecological investigation methods and insect physiological technology, the wing development, degeneration and the mechanism of interaction between Macrosiphum avenae (Fabricius) and wheat are investigated. The main conclusions are as follow.
     (1) The effect of hosts on wheat aphid population paramaters. The resistant wheat varieties could inhibits effectively the development of aphid population, stimulate reproducing alate, decrease aphid’s longevity and fecundity, extend nymph developmental duration. In addition, the antibiosis to aphid has cumulative effects as aphid generations continue. The EPG datas showed that the wheat variety has greater effect on aphid feeding. The effect of biochemical resistance was better than the effect of physical resistance. There was close relationship between number of aphid population and free amino acid of wheat by analyzing the content of free amino acid. The correlation was significant between number of aphid population and other 10 amino acid such as glycine, valine et al. The correlation was most significant between valine and aphid population. The content of free valine in wheat suggests the one of evaluation index of wheat resistance.
     (2) Adaptive strategies of wheat aphid to wheats. Aphid population has certain adaptability to the changing environment. When alate aphid was allowed to settle down their host pants, their flight muscles began to break down within a few days. Flight muscle degeneration obliged aphid to decrease the number of flight and save much energy for fecundity. In new habitate, the aphid burns a plenty of apterous aphid. The number of aphid population peak stage when aphid colonized new habitate after a month. The aphid burns alate nymph in order to find new habitate when the host plants mature. The emergence of alate and emigration of aphid avoid the aphid population’s extinction for lacking food. The results show that feeding resistante wheat of aphid will burn more alate nymph to leave the host palnt. In the aphid population, the proportion of red bodycolor aphid increased with the growth stage of hosts..
     (3) Morphological and histological examination of aphid wing formation. The wing dimorphism took place in 2nd instar. Both the wing types have wing primordia before 2nd instar. The primordia gradually atrophy until complete disappearpance from 2nd instar to 4th instar in the wingless aphid. The primordia gradually develop into wing from 2nd instar to 4th instar in the alate aphid. The external factors had an effect on aphid wing formation. The wing formation is controlled by mother aphid living environment.
     (4) Mechanisms of histolysis in indirect flight muscles of alate aphid. The research results showed that the histolysis of flight muscles was induced by muscular cell apotosis. The muscular cell apotosis was an active physiological response of aphid. In mormal feeding condition, the cell of flight muscle began apotosis at 7-day adult. Flight muscle began atrophy at 9-day adult. The histolysis of flight muscle was complete at 13-day adult. Feeding was one of the main factors which has quiet an effect on the histolysis of flight muscle. When alate aphid was kept off the host pant after the final ecdysis, the breakdown of their flight muscles was prevented, and few larvipositions followed.
引文
1.曹雅忠.蚜茧蜂对麦蚜控制作用的初步观察.植物保护,1987,13(2):28.
    2.曹雅忠,郭予元,胡毅,等.麦长管蚜自然种群生命表研究初报.植物保护,1989,16(4):239~243.
    3.曹雅忠.不同种麦蚜的生态习性与防治对策,河北农业生态,1993,(2):26~27.
    4.曹雅忠,胡毅,武豫清.麦长管蚜种群结构及繁殖力的研究.《中国植物保护研究进展》,北京:中国科学技术出版社,1996.
    5.曹雅忠,尹姣,李克斌,等.小麦蚜虫不断猖獗原因及控制对策的探讨.植物保护,2006,32(5):72~75.
    6.蔡青年,张青文,高希武,等.小麦体内次生物质对麦蚜的抗性作用研究.中国农业科学,2003,36(8):910~915.
    7.彩万志,庞雄飞,花保祯,等.普通昆虫学.北京:中国农业大学出版社,2001.
    8.陈若篪,丁锦华,谈涵秋,等.迁飞昆虫学.北京:农业出版社,1989.
    9.陈巨莲,倪汉祥,丁红建,等.麦长管蚜全纯人工饲料的研究.中国农业科学,2000,33(3):54~59.
    10.陈巨莲.小麦抗蚜生化机理和G蛋白在离体昆虫细胞中表达、纯化及活性测定(博士学位论文).北京:中国农业科学院,2001.
    11.陈巨莲,倪汉祥,孙京瑞,等.小麦几种主要次生物质对麦长管蚜几种酶活力的影响.昆虫学报,2003,46(2):144~149.
    12.陈峰.医用多元统计分析方法(第二版).北京:中国统计出版社,2007. 30.
    13.戴华国,程薇,吴晓毅,等.稻褐飞虱保幼激素酯酶活性的测定.南京农业大学学报,1997a,20(4): 108~110.
    14.戴华国,吴晓毅,冯从经,等.褐飞虱的交配行为及与保幼激素滴度的关系.昆虫学报,1997b, 40(增): 153~158.
    15.董庆周,魏凯,孟庆祥,等.宁夏地区麦长管蚜远距离迁飞的研究.昆虫学报,1987,30(3):277~284.
    16.戴华国,吴晓毅,武淑文.褐飞虱体内保幼激素滴度变化及其与翅型分化的关系.昆虫学报,2001,44(1):27~32.
    17.杜桂林,李克斌,尹姣,等.影响麦长管蚜体色变化的主导因素.昆虫知识,2007,44(3):353~357.
    18.高崇省.小麦品种抗性对麦长管蚜种群增长的影响.昆虫知识,1994,31(4):201~205.
    19.高崇省,刘绍友,侯有明.冬小麦品种中游离氨基酸种类及其与抗麦长管蚜的关系.西北农业学报,1998,7(1):23~26.
    20.国伟,沈佐锐.麦蚜迁飞的研究进展.中国农学通报,2004,20(6):251~254.
    21.韩文智.豆蚜在不同品种扁豆上的取食行为.昆虫学报,1990,33(1):28~34.
    22.韩心丽,严福顺.大豆蚜在寄主与非寄主植物上的口针刺吸行为.昆虫学报,1995,38(3):278~283.
    23.胡本明,梅长军,王祥胜,等.不同小麦品种麦蚜混合种群数量差异.安徽农学通报,2000,6(4):41~42.
    24.胡想顺,刘小凤,赵惠燕.刺探电位图谱(EPG)技术的原理与发展.植物保护,2006,32(3):1~4.
    25.胡想顺,赵惠燕,胡祖庆,等.禾谷缢管蚜在三个小麦品种上取食行为的EPG比较.昆虫学报,2007,50(11):1105~1110.
    26.胡想顺,赵惠燕,胡祖庆,等.麦长管蚜在3种小麦品种上取食行为的EPG比较.中国农业科学,2008,41(7):1989~1994.
    27.姜永幸,郭予元. EPG技术在刺吸式昆虫取食行为研究中的应用.植物保护,1994,2:33~35.
    28.江昌木,艾洪木,赵士熙.不同寄主营养条件下的瓜实蝇实验种群生命表[J].福建农林大学学报(自然科学版),2006,35(1):24~28.
    29.雷宏,徐汝梅. EPG—一种研究植食性刺吸式昆虫刺探行为的有效方法.昆虫知识,1996,33(2):116~120.
    30.李光博,曾士迈,李振岐.小麦病虫草鼠害综合防治.北京:中国农业科技出版社,1990.
    31.李素娟,张志勇,王兴运,等.用模糊识别技术鉴定小麦品种(系).植物保护,1998,24(5):15~16.
    32.李素娟,刘爱芝,武玉清,等.不同小麦品种上麦蚜及其天敌的数量变动.昆虫知识,2001,38(5):355~358.
    33.李克斌,罗礼智,曹雅忠,等.粘虫飞行肌降解与生殖关系的初步研究.中国学术期刊文摘,2001,7(5):662~664.
    34.李宁,刚存武,邱丹.西宁地区小麦蚜虫与蚜茧蜂的种群数量消长初步研究.青海师范大学学报(自然科学版),2004,2(2):65~67.
    35.李子玲,韦绥概,覃爱枝,等.寄主营养成分含量与甜菜夜蛾生长生殖的关系[J].西南农业大学学报(自然科学版),2006,28(6):986~989.
    36.李贤庆,郭线茹,李克斌,等.不同小麦品种(系)对麦长管蚜的抗性.昆虫学报,2006,49(6):963~968.
    37.李军,赵辉燕,李志刚,等.不同小麦品种对麦长管蚜的抗性.昆虫知识,2007,44(4):509~512.
    38.梁宏斌,张润志,贾玉龙,等.麦双尾蚜发生数量与小麦播种期的关系.昆虫学报,1999,42(增刊):97~101.
    39.刘绍友,侯有明,李定旭,等.小麦品种对麦长管蚜抗性机制的研究.西北农业学报1993,2(3):76~80.
    40.刘树生.连续低高温对两种蚜虫不利影响在代别之间的累加效应.昆虫学报,1994,37(4):501~503.
    41.刘勇.小麦-麦蚜-天敌互作关系研究(博士学位论文).杭州:浙江大学,2001a.
    42.刘勇,倪汉祥,孙京瑞.小麦抗虫品种对麦长管蚜种群及蚜茧蜂寄生和发育的影响.植物保护学报,2001b,28(3):201~203.
    43.刘向东,张立建,张孝羲,等.棉蚜对寄主的选择及寄主专化型研究.生态学报, 2002a,22(8):1281~1285.
    44.刘向东,张孝羲,翟保平.棉花和瓜类上棉蚜互相转换后取食行为的EPG研究.棉花学报,2002b,14(1):33~35.
    45.罗礼智,李光博,胡毅.粘虫飞行与产卵的关系.昆虫学报,1995,38(3):284~289.
    46.罗礼智.粘虫蛾飞行肌的发育:超微结构特征分析.昆虫学报,1996a,39(4):366~374.
    47.罗礼智.粘虫蛾飞行肌超微结构的研究.昆虫学报,1996b,39(2):366~374.
    48.马罡,马春森.三种麦蚜在温度梯度中活动行为的临界温度.生态学报,2007,27(6):2449~2459.
    49.欧阳迎春,李胜.保幼激素及其代谢产物的HPLC分离方法的改进和应用.昆虫学报,2003,46(3):282~287.
    50.石宇.不同类型寄生蜂翅面超微结构的比较研究(博士学位论文).杭州:浙江大学,2008.
    51.王承纶,相连英,张广学,等.大豆蚜的研究.昆虫学报,1962,11(1):31~44.
    52.王念慈,李照会,刘桂林.三种麦蚜数量变动规律的研究.山东农业大学学报,1986,17(2):53~59.
    53.王德锐,王运兵,王连泉.麦蚜混合种群数量变动规律的研究.河南农业科学,1986,4:17~20.
    54.王金福,程家安,李学骝.黑缘红瓢虫Chilocorus rubidus Hope对朝鲜球蜡蚧Didesmococcus koreanus Borchsenius控制作用的研究.浙江大学学报(农业与生命科学版),1987,13(1):63~69.
    55.王桂荣,赖凤香,傅强,等.稻褐飞虱致害性变异的研究.中国水稻科学,1999,13(4):229~232.
    56.王镜岩,朱圣庚,徐长法.生物化学.北京:高等教育出版社,2002
    57.王斌,陈建群,张鹏飞,等.棉蚜获毒后禁食对其保持并传播黄瓜花叶病毒的影响.昆虫学报,2003,46(3):259~266.
    58.王荫长.昆虫生理学.北京:中国农业出版社,2004.
    59.王冰,李克斌,尹姣,等.风雨对麦长管蚜自然种群发展的干扰作用.生态学报,2009,29(8):4317~4324.
    60.韦永贵,孙跃先,李克斌,等.麦长管蚜自然种群结构动态的初步研究.中国植保导刊,2008,28(6):5~8.
    61.仵均祥,姜金虎,沈宝成,等.小麦品种对麦蚜主要生命参数影响的研究.应用生态学报,1999,10(4):447~451.
    62.吴雄文,梁智辉.实用免疫学试验技术.武汉:湖北科学技术出版社,2002.
    63.夏静,罗守进.茶叶游离氨基酸含量测定中的提取方法.茶叶科学,1997,17(3):231~234.
    64.夏敬源.植物保护步入“公共植保、绿色植保”新世代.今日农业,2009,12:17~19.
    65.谢永寿,杨奇华,谢以铨,等.冬小麦品种中糖及氨基酸含量与抗麦长管蚜的关系.植物保护学报,1987,14(1):37~38.
    66.严福顺.蚜虫口针的刺探行迹和跟踪研究方法.动物学杂志,1995,30(3):40~44.
    67.阎凤鸣.化学生态学.北京:科学出版社,2003.
    68.姚青,张志涛.迁飞昆虫的研究进展.昆虫知识,1999, 36(4):239~243.
    69.杨崇良,罗瑞梧,尚佑芬.温度对麦蚜发生代数、繁殖力和存活力的影响.山东农业科学,1986,(6):15~17.
    70.杨效文,丁文山.温度和光照对麦蚜种群增长的影响.河南农业大学学报,1990,24(1):11~19.
    71.杨效文.麦长管蚜穗型蚜研究初报.华北农学报,1991,6(2):103~107.
    72.杨素钦,杨逸兰.北方冬麦区麦长管蚜远距离迁飞与气流运动的关系初探.病虫测报,1991,(2):11~16.
    73.杨璞,祝增荣,程家安.稻水象甲飞行肌发育、消解过程中的超微结构变化.昆虫学研究进展, 2005.
    74.杨璞,余海忠,程家安,等.昆虫飞行肌蛋白.昆虫知识,2005,42(6):726~731.
    75.杨璞,商晗武,程家安,等.激素对稻水象甲飞行肌和卵巢发育的影响.农业生物灾害预防与控制研究,2005:941~942.
    76.于洋,庞保平,高书晶,等.春小麦品种对麦长管蚜生长发育和繁殖的影响.应用生态学报,2006,17(2):354~356.
    77.袁锋.农业昆虫学.北京:中国农业出版社,2001.
    78.张广学,钟铁森.中国经济昆虫志第25册(同翅目蚜虫类一),北京:科学出版社,1983.
    79.张广学.西北农林蚜虫志昆虫纲同翅目蚜虫类.北京:中国环境科学出版社,1999.
    80.张向才,周广和,史明,等.麦蚜远距离迁飞和传毒规律的研究.植物保护学报,1985,12(1):9~16.
    81.张孝羲,程遐年.中国迁飞昆虫研究进展.纪念六足学会创建八十周年、江苏省昆虫学会四十周年论文集萃. 2000.
    82.张志勇,李素娟,张屹东,等.小麦不同生育期抗蚜机制研究.华北农学报,2000,15(1):57~61.
    83.张鹏飞,陈建群,张闲,等.棉蚜获得黄瓜花叶病毒的行为与取食过程的关系.昆虫学报,2001,44(4):395~401.
    84.赵惠燕,李东鸿,张改生,等. XZ系列杂种小麦对麦长管蚜抗性机制的研究.西北农林科技大学学报(自然科学版),2002,30(1):73~75.
    85.翟凤林,张发成.世界植物抗虫育种研究的进展.世界农业,1982,(8):40~42.
    86.朱弘复,张广学.棉蚜在棉田中的发生和扩散.昆虫学报,1956,6(3):253~270.
    87.邹运鼎,程扶玖,查光济.松针内含物与马尾松毛虫生存发育关系的研究[J].林业科学,1990,28(2):142~148.
    88.邹运鼎,马飞,孟庆雷,等.小麦各生育期的两种麦蚜种群动态研究.生物数学学报,1994a,9(3):78~83.
    89.邹运鼎,孟庆雷,马飞,等.“8455”小麦植株化学成分与麦蚜(长管蚜、二叉蚜)种群消长关系.应用生态学报,1994b,5(3):276~280.
    90.周乐峰,兰亦全,林时迟,等.稻水象甲Lissorhoptrus oryzophilus Kuschel卵巢、飞行肌及消长动态研究.华东昆虫学报,1999,8(2):4~5.
    91. Abouheif E. & Wray G. A. Evolution of the Gene Network Underlying Wing Polyphenism in Ants. Sci., 2002, 297: 249~252.
    92. Asano I, Sakiko H, Toru M. Morphological and Histological Examination of Polyphenic Wing Formation in the Pea Aphid Acyrthosiphon pisum (Hemiptera, Hexapoda). Zoomorphology, 2008, 127: 121~133.
    93. Bernard F., Lalouette A., Gullaud M., et al. Control of Apterous by Vestigial Drives Indirect Flight Muscle Development in Drosophila. Devel. Biol., 2003, 260: 391~403.
    94. Bhakthan N. M. G., Borden J. H., Nair K. K. Fine Structure of Degenerating and Regenerating Flight Muscles in a Bark Beetle, Ips confusus: I. Degeneration. J. Cell Sci., 1970, 6(3): 807~819.
    95. Borden J H, Slater C E. Induction of flight muscle degeneration by synthetic juvenile hormone in Ips confuses (Coleoptera: Scolytidae). J. Comp. Physiol., 1968, 61: 366~368.
    96. Boersma, M., Spaak, P. & De Meester, L. Predator-mediated Plasticity in Morphology, Life History, and Behaviour of Daphnia: the Uncoupling of Responses. Amer. Nat., 1998, 152: 237~248.
    97. Braendle C, Davis G K, Brisson J A, et al. Wing Dimorphism in Aphids. Heredity, 2006, 97: 192~199.
    98. Brisson J A, Stern D L. The Pea Aphid, Acyrthosiphon pisum: an Emerging Genomic Model System for Ecological, Developmental and Evolutionary Studies. Bioessays, 28: 747~755.
    99. Caillaud C M, Dedryver C A, Simon J C. The effect of resistant wheat (Triticum monococcum linens) on development and reproduction of Sitobion avenae. Bull. OILB SROP, 1993, 16(5): 123~129.
    100. Cai Q N, Han Y, Cao Y Z, et al. Detoxification of gramine by the Cereal Aphid Sitobion avenae. J. Chem. Ecol., 2009, 35: 320~325.
    101. Carter N, Mclean I F G, Watt A D, et al. Cereal aphids: a case study and review. Appl. Biol., 1980, 5: 272~349.
    102. Chambers, R. J., Sunderland, K. D., Wyatt, I. J., et al. The Effects of Predator Exclusion and Caging on Cereal Aphids in Winter Wheat. J. Appl. Ecol. 1983, 20: 209~224.
    103. Chudakova I V, Bocharova-Messner O M. Endocrine Regulation of the Condition of the Wing Musculature in the Imago of the House Cricket (Acheta domestica). Biol. Sci., 1968, 179: 157~159.
    104. Costello W. & Wyman R. Development of an Indirect Flight Muscle in a Muscle-specific Mutant of Drosophila melanogaster. Devel. Biol., 1986, 118(1): 247~258.
    105. Davis N T. Hormonal Control of Flight Muscle Histolysis in Dysdercus fulvoniger. Ann. Entomol. Soc. Amer., 1975, 68: 711~714.
    106. Dean G. J. Effect of Parasites and Predators on the Cereal Aphids, Metapolophim dirhodum (wlk.) and Macrosiphum avenae (F.) (Hem., Aphididae). Bull. Entomol. Res. 1974, 63: 411~412.
    107. Dewar A. M. Morph Determination and Host Alternation in the Apple-grass Aphid Rhopalosiphum insertum Walk. PhD thesis. Univ. Glasgow: 120.
    108. Dingle H. Migration Strategies of Insects. Science, 1972, 175: 1327~1335.
    109. Dingle H. Evolution of insect migration and diapause. New York, Pringer-Verlag, 1978.
    110. Dixon A. F. G. Aphid Ecology: Life Cycles, Polymorphism, and Population Regulation. Ann. Rev. Ecol. Syst., 1977, 8: 329~353.
    111. Dixon A. F. G. Reproductive Strategies of the Alate Morphs of the Bird Cherry-oat Aphid Rhopalosiphum padi L. J. Anim. Ecol. 1976, 45: 817~830.
    112. Edwards F J. Development and Histolysis of the Indirect Flight Muscles in Dysdercus intermedius. J. Insect Physiol., 1969, 15(9): 1591~1592.
    113. Edwards F J. Endocrine Control of Flight Muscle Histolysis in Dysdercus intermedius. J. Insect Physiol., 1970, 16: 2027~2031.
    114. Feytaud J. Contribution a l’etude du Termite lucefuge (Anatomie, Foundation de Colonies Nouvelles). Archs anat. Micr., 1912, 13: 481~607.
    115. Finlayson L H. Development and Degeneration. In: Insect Muscle. Academic Press, 1975.
    116. Fernandes J., Bate M., Vijayraghavan K. Development of the Indirect Flight Muscles of Drosophila. Develop., 1991, 113: 67~77.
    117. Fernandes J. & Vijayraghavan K. The Development of Indirect Flight Muscle Innervation in Drosophila melanogaster. Develop. 1993, 118(1): 215~227.
    118. Gabrys B, Tjallingii W F, Beek T A. Analysis of EPG Recorded Probing by Cabbage Aphid on Host Plant Parts with Different Glucosinolate Contents. J. Chem. Ecol., 1997, 23(7) : 1661~1673.
    119. Gabrys B, Pawluk M. Acceptability of Different Species of Brassicaceae as Hosts for the Cabbage Aphid. Entomol. Exp. Appl., 1999, 91:105~109.
    120. Ganassi S, Signa G, Mola L. Development of the Wing Buds in Megoura viciae: a Morphological Study. Bull. Insectol., 2005, 58: 101~105.
    121. Gilbert L I, Granger N A, Roe R M. The Juvenile Hormones: Historical Facts and Speculations on Future Research Dirctions. Insect Biochem. Mol. Biol., 2000, 30: 617~644.
    122. Gilbert S F. Ecological Developmental Biology: Developmental Biology Meets the Real World. Dev. Biol., 2001, 233: 1~12.
    123. Gillott C. Entomology, 3rd edn. Springer, Dordrecht, 2005.
    124. Hales D F. Juvenile Hormone and Aphid Polymorphism. In: Luscher M (ed) Phase and Caste Determination in Insects. Pergamon Press, Oxford, 1976.
    125. Harrison R G. Dispersal Polymorphisms in Insect. Ann. Rev. Ecol. Syst., 1980, 11: 95~118.
    126. Heikinheimo O. Wing Polymorphism in Symydobius oblongus and Myzocallis myricae. In: Holman J, Dixon A F G, Weismann L (eds) Population structure, genetics and taxonomy of aphids and thysanoptera. SPB Academic Publishing, Smolenice, 1987.
    127. Heming B S. Insect Development and Evolution. Cornell University Press, Ithaca, 2003.
    128. Hocking B. Autolysis of Flight Muscles in Mosquito. Nature, 1952, 169: 1101.
    129. Ishikawa A, Hongo S, Miura T. Morphological and Histological Examination of Polyphenic Wing Formation in the Pea Aphid Acyrthosiphon pisum (Hemiptera, Hexapoda). Zoomorphology, 2008,127(2): 121~133.
    130. Janet C. Anatomie du Corselet et Histolysis des Muscles Vibrateurs après le Vol Nuptial chez la Rein de la Fourmi (Lasius Niger). Paris: Limoges, 1907.
    131. John H B, Catherine E S. Induction of Flight Muscle Degeneration by Synthetic Juvenile Hormone in Ips confusus (Coleoptera: Scolytidae). J. Comp. Physiol., 1968, 61(3): 1432~1351.
    132. Johnson C G. Insect migration: Aspects of Its Physiology. In: Rockstein M ed. The Physiology of Insecta. 2nd edn. NewYork: Academic Press, Vol 3, 1974: 279~334.
    133. Johnson B. Studies on the Degeneration of the Flight Muscles of Alate Aphids-1. A Comparative Study of the Occurrence of Muscle Breakdown in Relation to Reproduction in Aphids. J. Insect Physiol., 1957, 1: 248~256.
    134. Johnson B. Studies on the Degeneration of the Flight Muscles of Alate Aphids-2. Histology and Control of Muscle Breakdown. J. Insect Physiol., 1959, 3: 367~377.
    135. Johnson B. Flight Muscle Autolysis and Reproduction in Aphids. Nature, 1953, 172: 813.
    136. Jones, M. G. Cereal Aphids, Their Parasites and Predators Caught in Cages over Oat and Winter Wheat Crops. Ann. Appl. Biol., 1972, 72: 13~25.
    137. Karlsson B. Nuptial gifts, Resource Budges and Reproductive Output in a Polyandrous Butterfly. Ecol., 1998, 79: 2931~2940.
    138. Kimmins F M, Tjallingii W F. Ultrastucture of Sieve Element Penetration by Aphid Stylets During Electrical Recording. Entomol. Exp. Appl., 1985, 39: 135~141.
    139. Kimura K. & Truman J. W. Postmetamorphic Cell Death in the Nervous and Muscular Systems of Drosophila melanogaster. J. Nurosci., 1990, 10(2): 403~411.
    140. Klingler J, Powell G, Thompson G A, et al. Phloem Specific Aphid Resistance in Cucumis melo line AR5:Effects on Feeding Behaviour and Performance of Aphis gossipii. Entomol. Exp. Appl., 1998, 86: 79~88.
    141. Kobayashi M, Ishikawa H. Breakdown of Indirect Flight Muscles of Alate Aphids (Acyrthosiphon pisum) in Relation to Their Flight, Feeding and Reproductive Behavior. J. Insect Physiol., 1993, 39(7): 549~554.
    142. Kobayashi M, Ishikawa H. Mechanisms of Histolysis in Indirect Flight Muscles of Alate Aphid. J. Insect Physiol., 1994, 40(1): 33~38.
    143. Kolbe W. Studies on the Occurrence of Different Aphid Species as the Cause of Creal Yield and Quality Losses. Pflanzenschuiz-Nachr, 1969, 22: 171~204.
    144. Kring J. B. Flight Behavior of Aphids. Annu. Entomol. 1972, 17: 461~492.
    145. Lees A D. Clonal Polymorphism in Aphids. In: Kennedy J S (ed) Insect Polymorphism. Royal Entomological Society, London, 1961.
    146. Lees A D. The Control of Polymorphism in Aphids. Adv. Insect Phisiol., 1966, 3: 207~277.
    147. Lei H, Xu R M. Cellular and Chemical Sampling During Phloem Finding and Host-plant Acceptance by Homopteran Insects. Entomol. Sin., 1995, 2(2): 145~162.
    148. Lobbia S, Niitsu S, Fujiwara H. Female-specific Wing Degeneration Caused by Ecdysteroid in theTussock Moth, Orgyia Recens: Hormonal and Developmental Regulation of Sexual Dimorphism. J. Insect Sci., 2003, 3:11~17.
    149. Marden J H. Variability in the Size, Composition and Function of Insect Flight Muscles. Annu. Rev. Physiol., 2000, 62: 157~178.
    150. McLean D L, Kinsey M G. A Technique for Electronically Recording of Aphid Feeding and Salivation. Nature, 1964, 202: 1358~1359.
    151. Mentink P J M, Kimmins F M, Harrewijn P, et al. Electrical Penetration Graphs Combined with Stylet Sutting in the Study of Host Plant Resistance to Aphids. Entomol. Exp. Appl., 1984, 36: 210~213.
    152. Miura T. Developmental Regulation of Caste-specific Characters in Social-insect Polyphenism. Evol. Dev., 7: 122~129.
    153. Muda A R B, Tugwell N P, Haizlip M B.稻水象甲的季节发生史和背中纵肌的退化与再生.稻水象甲译文集.北京:学苑出版社,1989.
    154. Muller C B, Williams I S, Hardie J. The Role of Nutrition, Crowding and Interspecific Interactions in the Development of Winged Aphids. Ecol. Entomol., 2001, 26: 330~340.
    155. Nair C N M, Prabhu K K. Entry of Proteins from Degenerating Flight Muscles into Oocytes in Dysdercus cingulatus. J. Insect Physiol., 1985, 31(2): 383~388.
    156. Nijhout H F. Control Mechanisms of Polyphonic development. BioScience, 1999, 49: 181~192.
    157. Nijhout H F. Development and Evolution of adaptive Polyphenism. Evol. Dev. 2003, 5: 9~18.
    158. Nuesch H. Control of Muscle Development. In: Kerkut G A, Gilbert L I eds. Comprehensive Insect Physiology Biochemistry and Pharmacology. Oxford: Pergamon Press, 1985, 2: 425~452.
    159. Page K L. Matheson T. Wing Hair Sensilla Underlying Aimed Hindleg Scratching of the Locust. J. Exp. Biol. 2004, 207, 2691~2703.
    160. Prado E, Tjallingii W F. Effects of Previous Plant Infestation on Sieve Element Acceptance by Two Aphids. Entomol. Exp. Appl., 1997, 82(2): 189~200.
    161. Quick D L J. Parasitc Wasps. Chapman and Hall, London, 1997.
    162. Rabbinge, R., Ankersmit, G. W., Pak, G. A. Epidemiology and Simulation of Population Development of Sitobion avenae in winter wheat. Netherlands J. Plan. Pathol., 1979, 85: 197~220.
    163. Richard A. L. & Carroll M. W. Programmed Cell DeathⅢ: Neural Control of the Breakdown of the Intersegmental Muscles of Silmoths. J. Insect Physiol., 1965a, 11(5): 601~610.
    164. Richard A. L. & Carroll M. W. Programmed Cell DeathⅣ: The Influence of Drugs on the Breakdown of the Intersegmental Muscles of Silkmoths. J. Insec. Physiol., 1965b, 11(6): 803~809.
    165. Richard A. L. & Carroll M. W. Programmed Cell DeathⅤ: Cytolytic enzymes in relation to the breakdown of the intersegmental muscles of silkmoths. J. Insec. Physiol., 1965b, 11(7): 831~844.
    166. Richard A L, Zahra Z. Programmed Cell Death and Apoptosis: Origins of the Theory. Mol. Cell Biol., 2001, 2:545~550.
    167. Roff D A. The Evolution of Wing Dimorphism in Insects. Evol., 1986, 40: 1009~1020.
    168. Rush H O, Acchia N J, Timothy A M. Programmed Cell Death in Flight Muscle Histolysis of theHouse Cricket. J. Insect Physiol., 2007, 53: 30~39.
    169. Ruth G. J., Walter L. D., Akey C. F. H., et al. Insemination-induced histolysis of the flight musculature in fire ants(solenopsis, spp.): An ultrastructural study. Amer. J. Anatom., 1978, 151(4): 603~610.
    170. Sameshima S, Toru M, Tadao M. Wing Disc Development During Caste Differentiation in the Ant Pheidole megacephala (Hymenoptera: Formicidae). Evol. Dev., 2004, 6(5): 336~341.
    171. Sauge M H, Lacroze J P, Poessel J L, et al. Induced Resistance by Myzus persicae in the Peach Cultivar‘Rubira’. Entomol. Exp. Appl., 2002, 102: 29~37.
    172. Schwartz L M, Truman J W. Hormonal Control of Rates of Metamorphic Development in the Tobacco Hornworm Manduca sexta. Devel. Biol., 1983, 99: 103~114.
    173. Schwartz L M, Kosz L., Kay B. K. Gene Activation Is Required for Developmentally Programmed Cell Death. PNAS, 1990, 87: 6594~6598.
    174. Smith H S, Debach P D E. The Measurement of the Effect of Entomophagous Insects on Population Densities of the Host. J. Econo. Entomol., 1942, 35: 845~849.
    175. Socha R, ?ula J. Differential Allocation of Protein Resources to Flight Muscles and Reproductive Organs in the Flightless Wing-polymorphic Bug, Pyrrhocoris apterus (L.) (Heteroptera). J. Comp. Physiol., 2008, 178(2): 179~188.
    176. Srihari T, Gutman E, Novak V J A. Effect of Ecdysterone and Juvenoid on the Developmental Involution of Flight Muscles in Acheta domestica. J. Insect Physiol., 1975, 21: 1~8.
    177. Sogawa, K., Liu, G. J., Teng, K., et al. Resistance to the white backed planthopper, Sogatella furcifera in Chinese japonica rice Chun-jiang 06. Chin. J. Rice Sci. 2003, 17: 56~66.
    178. Stjernholm, F, Karlsson B. Flight Muscle Breakdown in the Green-veined White Butterfly, Pieris napi (Lepidoptera : Pieridae) . Eur. J. Entomol., 2008, 105(1): 87~91.
    179. Sutherland O R W. The Role of Crowding in the Production of Winged Forms by Two Strains of the Pea Aphids, Acyrthosiphon pisum. J. Insect Phisiol., 1969, 15: 1385~1410.
    180. Suzzoni J. P., Passera L., Stranbi A. Etude Morpho-anatomique et Physiologique de la“soldtisation”chez la Fourmi Pheidole pallidula. Bull. Int. Sect. Franc. Union Interationale pour l’Etude des Insectes Sociaux, Barcelone, 147~156.
    181. Sutherland, O. R. W. The Role of Crowding in the Production of Winged Forms by Two Strains of the Pea Aphid, Acrythosiphon pisum. J. Insect Physiol., 1969, 15: 1385~1410.
    182. Sutherland O R W. An Intrinsic Factor Influencing the Alate Production by Two Strains of the Pea Aphids, Acyrthosiphon pisum. J insect Physiol, 1970, 16: 1349~1354.
    183. Tagu D, Sabater-Munoz B, Simon J C. Deciphering Reproductive Polyphenism in Aphids. Invertebr. Reprod. Dev., 2005, 48: 71~80.
    184. Tanaka S. De-alation and Its Influences on Eggs Production and Flight Muscle Histolysis in a Cricket (Velarifictorous parvus) that Undergoes Inter-reproductive Migration. J. Insect Physiol., 1991, 37: 517~523.
    185. Tanaka S. Effects of Suppressed Oviposition Activity and Flight Muscle Histolysis on FoodConsumption and Ovarian Development in a Aing-dimorphic Cricket: an Explanation for Sporadic Conclusions Related to Physiological Trade-offs. J. Insect Physiol., 2001, 47(1):83~84.
    186. Taylor L. R. Longevity, Fecundity and Size; Control of Reproductive Potential in a Ploymorphic Migrant, Aphis fabae Scop. J. Anim. Ecol. Syst. 1975, 2: 45~46.
    187. Tanaka S. De-alation, Flight Muscle Histolysis, and Oocyte Development in the Striped Ground Cricket, Allonembius fasciatus, Physiol. Entomol., 1986. 11: 453~458.
    188. Tjallingii W F. Electronic Recording of Penetration Behavior by Aphids. Entomol. Exp. Appl., 1978, 24: 721~730.
    189. Tjallingii W F. Electrical Nature of Recorded Signals During Stylet Penetration by Aphids. Entomol. Exp. Appl., 1985a, 38: 177~186.
    190. Tjallingii W F. Membrane Potentials as an Indication for Plant Cell Penetration by Aphid Stylet. Entomol. Exp. Appl., 1985b, 38: 187~193.
    191. Tjallingii W F. Electrical Recording of Stylet Penetration Activities. In: Minks A K, Harrewijn P. Aphids, Their Biology, Natural Enemies and Control. Amsterdam: Elsevier Science Publishers B. V. Amsterdam, 1988: 95~108.
    192. Tjallingii W F. Salivary Secretion by Aphids Interacting with Proteins of Phloem Wound Responses. J. Exp. Botany, 2006, 57: 739~745.
    193. Tosh C R, Powell G, Hardie J. Decision Making by Generalist and Specialist Aphids with the Same Genotype. J. Insect Physiol., 2003, 49: 659~669.
    194. Tsuji H, Kawada K. Development and Degeneration of Wing Buds and Indirect Flight Muscles in the Pea Aphids (Acyrthosiphon pisum (Harris)). Jpn. J. Appl. Entomol. Zool., 1987, 31: 247~252.
    195. Unnithan G & Nair K. Ultrastructure of juvenile hormone-induced degenerating flight muscles in a bark beetle, Ips paraconfusus. Cell and Tissue Research, 1977, 185(4): 481~490.
    196. Visalakshy P N G, Jayanth K P. Histolysis and Development of Flight Muscles in Zygogramma Bicolorata, an Effective Natural Enemy of Parthenium hysterophorus. Entomon., 1999, 24(1): 21~25.
    197. Visalakshy P N G. Development and Degeneration of Flight Muscles in Neochetina eichhorniae (Coleoptera: Curculionidae), Potential Biocontrol Agent of the Aquatic Weed, Eichorniae crassipes. Biocontrol Sci. Tech., 2004, 14(4): 6.
    198. Whitten J. Metamorphic Changes in Insects. In: Etkin W, Gibert L I (eds) Metamorphosis: a Problem in Developmental Biology. Appleton-Century-Crofts, New York, 1968.
    199. Wheeler D. & Nijhout H. F. Imagineal Wing Discs in Larvae of the Soldier Caste of Pheidole bicarinata (Hymenoptera: Formicidae). Int. J. Insect Morphol. Embryol., 10: 131~139.
    200. Wilson A C C, Dunbar H E, Davis G K, et al. A Dual-genome Microarray for the Pea Aphids Acyrthosiphon pisum, and Its Obligate Bacyerial Symbiont, Buchnera aphidicola. BMC Genomics, 2006, 7: 50.
    201. Wratten S. D. The Nature of the Effects of the Aphids Sitobion avenae and Metopolophium dirhodum on the Growth of Wheat. Ann. Appl. Biol., 1975, 79:27~34.
    202. West-Eberhard M J. Developmental Plasticity and Evolution. Oxford University Press, Oxford, 2003.