孤齿锥齿轮传动动态接触特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
弧齿锥齿轮广泛应用于航空和汽车工业的机械传动系统中,其工作性能对整个传动系
    统有着至关重要的影响。弧齿锥齿轮的工作性能与其接触特性有关,包括齿面啮合迹、瞬
    时传动比和接触区形态,其中齿面啮合迹是最为基础的方面,它是决定弧齿锥齿轮瞬时传
    动比和载荷谱,并进而深入研究其寿命和热传导的基础。
     根据所求齿面啮合这是否与时间有关,可以将齿面啮合迹分为齿面静态啮合迹和齿面
    动态啮合迹。目前齿面啮合迹的研究大都属于静态范围。齿面动态啮合迹的研究几乎无人
    涉及。
     本文以弧齿锥齿轮齿面动态啮合迹的求解作为切入点,研究弧齿锥齿轮传动系统的多
    种参数对弧齿锥齿轮接触特性的影响。为此,首先从弧齿锥齿轮齿面几何分析出发建立齿
    面,然后形成了计入轮齿弹性的啮合分析数值方法(Numerical method of Elastic Tooth Contact
    Analysis,简称NETCA),最后以弧齿锥齿轮传动系统为研究对象,重点考虑轮齿啮合力变
    化及传动系统其它参数的变动对弧齿锥齿轮齿面动态啮合迹的影响,主要成果及创新点如
    下:
     1.形成了弧齿锥齿轮弹性啮合分析的数值方法
     (1)任意状态下两坐标系之间的坐标变换矩阵
     根据弧齿锥齿轮在安装位置时齿面啮合基点重合、基点处的单位法矢必须共线的要求,
    推导出了两坐标系之间的坐标变换矩阵。这一推导过程的本质,就是根据同一刚体上某点
    处的单位法矢在两个不同坐标系下的位置关系,找到两坐标系之间的坐标变换矩阵。其意
    义在于可以将这一坐标变换矩阵推广至任意状态下两坐标系之间的坐标变换,并直接用于
    弧齿锥齿轮传动系统动态分析时所进行的弹性轮齿啮合分析之中。
     (2)齿面啮合点求解的局部坐标法
     齿面啮合点即为齿面啮合切点,该点处的齿面间距等于零。齿面啮合点的求解可以采
    用局部坐标法。其基本原理是取对耦齿面中的某一齿面——第一齿面作为基准,在其上建
    立齿面坐标系,将另一齿面——第二齿面的坐标点也转换到此坐标系中,并计算两齿面沿
    某一坐标轴方向对应点间的最小间距。令第一齿面固定不动而调整第二齿面所在的齿轮绕
    其轴线的转角,以使齿面最小间距趋近于零,则可求得齿面啮合点。
     (3)加速搜寻啮合点的逐点搜索法和减小搜索范围的打伞法
     采用局部坐标法求解啮合点时,齿面最小间距的搜索可以有多种策略。而逐点搜索法
    速度较快。这一方法从齿面上某点开始计算齿面间距,通过比较与其相邻各点的齿面间距,
    取其中齿面间距较小的点作为下一次搜索的起点,逐步向着齿面间距最小的方向逐点搜索。
    为了防止齿面求解的结果为局部最小,可以将齿面适当分块,首先在每一子块中求局部最
    小间距,然后取所有子块中的最小值为全局最小。
     在每一子块中采用逐点搜索法求解齿面间距的局部最小值时,可以采用打伞法以减小
    搜索范围。其原理是以前一点为中心——“伞把”,形成一较小的、大小可变的搜索区间—
    —“伞顶”,以加快对耦齿面对应点的求解。
     (4)调整齿面间隙和求解载荷分配的两点递推法
     齿面间隙与齿轮转角之间,或者多对轮齿同时承担外扭矩时,各对轮齿所承载的扭矩
    与齿轮的转角之间,都存在着明显的函数关系。但是,当给定轮齿间隙或外扭矩值反求齿
    轮转角时,因无法明确表达其间的函数关系而难于求解。两点递推法是解决这类问题的有
    效方法。其本质是改进的弦截法。其基本原理是根据己有的两点,自动采取外推或内推的
    
    
     摘要
    方法,得到下一点的自变量值,并根据函数收敛的具体情况,减少外椎或内椎时自变量变
    动的程度,使因变量逐步趋于收敛。在判明自变量与因变量间呈单调关系时,都可以预先
    给定函数值,采用两点递推法求反函数,并且不用区分单调递增与单调递减的不同。
     (5)载荷作用下接触点求解的拟赫兹法
     两弹性体在外载荷作用下的接触问题通常采用赫兹法。赫兹法假设初始接触点即为最
    大变形量发生处,或最大压力处。但是齿面弹性变形会导致齿轮的转动以及啮合点位置的
    变动。定义以赫兹法为基础,计入齿面弹性变形对啮合点位置的影响以求解齿面啮合点的
    数值计算方法为拟赫兹法。此时啮合点的求解要通过迭代才能求得。
     (6)轮齿弹性变形时齿面啮合点的求解
     齿面啮合点求解时,计入轮齿弯曲弹性变形和接触弹性变形的综合影响,以尽可能真
    实地反映齿面实际接触的情况。轮齿弯曲弹性变形的计算采用I;’lw- tttlgn ouse公式,轮齿接
    触弹性变形采用拟赫兹法。
     2.将弧齿锥齿轮弹性轮齿啮合分析的数值方法与传动系统的动态分析相结合,模拟弧
     齿锥齿轮的齿面动态啮合迹:
     (l)只考虑啮合点法向力作用时齿面动态啮合迹的求解
     以弧齿锥齿轮及其转子系统为研究对象,将轮齿啮合力视为外载荷,建立有限元动力
    学模型。实际求解时,计及弯扭耦合和轮齿啮合力与齿轮运动状态的耦合,交替进行动力
    学方程的求解和弹性轮齿的啮合分析,以求得弧齿椎齿轮的
Spiral bevel gears are widely used in the mechanical transmission systems of aviation and
     motor industry. Their working performances have a vital influence on the whole transmission
     systems. The working performances of spiral bevel gears are closely related with their tooth
     contact characterics, including the meshing track, instant transmission ratio and tooth contact
     pattern. Of the above contact characterics, the meshing track is the most basic one. It decides the
     instant ratio of the meshing gears and the load spectrum on the gear tooth. It is also the basis of
     deep research for gear life and heat conduction.
     Meshing track can be classified into static meshing track and dynamic meshing track,
     depending on whether the meshing track is related with time or not. So far most researches on the
     meshing track belong to the static range. Dynamic meshing track is barely touched.
     This paper takes the dynamic meshing track as the cut-in point and investigates the various
     kinds of parameters of the spiral bevel gear transmission system to the tooth contact characteristics.
     To realize these ends, first the tooth surface is formed on the basis of tooth geometry analysis.
     Second a numerical tooth contact analysis is set up considering the elasticity of the contacting
     teeth. Third the spiral bevel gear transmission system is taken as the research object and the
     dynamic meshing track is studied with the changing meshing forces mainly and other parameters
     of the transmission system considered. The important achievements and creations are in following.
     1. Numerical method of Elastic Tooth Contact Analysis (NETCA) of spiral bevel gears is
     achieved.
     (a) Conversion coordinate matrix between two random coordinate systems.
     Conversion coordinate matrix between two coordinate systems is deducted to the
     requirements of the superposition of the tooth surface base point and the unit vector of the base
     point when the mating spiral bevel gears are mounted initially. The essence of the deduction is to
     find the conversion matrix according to the relationship of the same unit vector of a rigid body in
     the different two coordinate systems. The conversion matrix can be extended to the relationship
     between two random coordinate systems and then used directly in the Elastic Tooth Contact
     Analysis in the dynamic analysis of the spiral bevel gear transmission system.
     (b) Local Coordinate Method for finding the meshing points.
     Meshing point is just the tangential point of tooth surface, where the tooth gap is zero. Local
     Coordinate Method can find meshing point. The mechanism of the method is to take one of the
     mating surfaces as the reference surface or the first surface and build a surface coordinate system
     on it. Points of the other tooth surface or the second surface should be converted into the above
     surface coordinate system and the minimum gap between the mating surfaces along some
     coordiate axis is calculated. By regulating the rotational angle of the second surface gear and
     assuming the first surface gear stationary, the minimum gap tends to be zero, and the meshing
     point can be got.
     (c) Point-Point Search Method for quickly-finding the meshing points and Umbrella Method
    
    
     III
    
    
    
    
    
    
    
    
    
     for reducing search range.
     There are several ways of finding the minimum gap between the mating tooth surfaces when
     Local Coordinate Method tries to find the meshing points. Point-Point Search Method proves to be
     more quickly. From calculating the gap of some point on one of the mating surfaces, Point-Point
引文
[1] M. L. Baxter. Basic Geometry and Tooth Contact of Hypoid Gears. Industrial Mathematics, 1961, 11(2): 1~28.
    [2] M. L. Baxter. Second Order Surface Generation. Industrial Mathematics, 1973, 23(2): 85~106.
    [3] 天津齿轮机床研究所、西安交通大学编译.格里森锥齿轮技术资料译文集第一、三分册,北京:机械工业出版社,1986.
    [4] 郑昌启.局部共轭原理及其在弧齿锥齿轮切齿计算中的应用,机械工程学报,1979,15(2):73~106.
    [5] 郑昌启.弧齿锥齿轮和准双曲面齿轮的齿面接触分析计算原理.机械工程学报,1981,17(2):1~12.
    [6] 高业田、曾韬.等距共轭曲面原理及其应用.机械工程学报,1983,19(3):51~60.
    [7] 吴序堂.准双曲面齿轮啮合原理及其在刀倾半展成加工中的应用.西安交通大学学报,1981,15(1):9~24.
    [8] 吴序堂.格里森制曲线齿锥齿轮变性半展成切齿原理.西安交通大学学报,1984,18(5):1~14.
    [9] 吴序堂.准双曲面齿轮的变性全展成加工法原理(上).齿轮,1984,8(2):1~8.
    [10] 吴序堂.准双曲面齿轮的变性全展成加工法原理(下).齿轮,1984,8(3):1~8.
    [11] 吴序堂.格里森准双曲面齿轮刀倾全展成切齿法的研究.机械工程学报,1985,21(2):54~69.
    [12] 郑昌启.弧齿锥齿轮和准双曲面齿轮.北京:机械工业出版社,1988.
    [13] 曾韬.螺旋锥齿轮的设计和加工.哈尔滨:哈尔滨工业大学出版社,1989.
    [14] 董学朱.准双曲面齿轮切齿调整计算的改进(一).齿轮,1985,9(6):1~4.
    [15] 董学朱.准双曲面齿轮切齿调整计算的改进(二).齿轮,1986,10(1):40~43.
    [16] 董学朱.准双曲面齿轮变性半展成切齿调整计算新方法.齿轮,1987,11(4):1~7.
    [17] 董学朱.弧齿锥齿轮变性全展成切齿调整计算新方法.齿轮,1987,11(6):6~10.
    [18] 董学朱.准双曲面齿轮刀倾半展成切齿调整计算新方法.齿轮,1988,12(2):1~6.
    [19] 董学朱.弧齿锥齿轮半展成切齿调整计算新方法.齿轮,1988,12(4):1~5.
    [20] 董学朱.准双曲面齿轮刀倾全展成切齿调整计算方法.齿轮,1988,12(5):1~6.
    [21] 熊矢.弧齿锥齿轮和准双曲面齿轮的精确计算法中的齿面修正方向.齿轮,1986,10(5):18~20.
    [22] 刘以行.对准双曲面齿轮副接触斑痕和齿面曲率修正量关系的研究.齿轮,1983,7(3):27~32.
    [23] 蒲致祥.弧齿锥齿轮桥形接触区修正的实践.齿轮,1988,12(3):46~47.
    [24] 毛世民.格里森制准双曲面齿轮刀倾半展成加工法的研究(学位轮文).西安:西安交通大学,1985
    [25] (苏)李特文著,丁淳译.齿轮啮合原理(第一版).上海:上海科学技术出版社,1964.
    [26] (苏)李特文著,卢贤占、高业田、王树人译.齿轮啮合原理(第二版).上海:上海科学技术出版社,1984.
    [27] F. L. Litvin. Gear Geometry and Applied Theory. Prentice Hall, NJ., 1994.
    [28] F. L. Litvin and Y. Gutman. Methods of Synthesis and Analysis for Hypoid Gear-Drivers of "Formate" and "Helixform", Parts 1. ASME Journal of Mechanical Design, 1981, 103(1): 83~88.
    [29] F. L. Litvin and Y. Gutman. Methods of Synthesis and Analysis for Hypoid Gear-Drivers of "Formate" and "Helixform", Parts 2. ASME Journal of Mechanical Design, 1981, 103(1): 89~101.
    [30] F. L. Litvin and Y. Gutman. Methods of Synthesis and Analysis for Hypoid Gear-Drivers of "Formate" and "Helixform", Parts 3. ASME Journal of Mechanical Design, 1981, 103(1): 102~113.
    [31] F. L. Litvin and Y. Gutman. A Methods of Local Synthesis of Gears Grounded on the Connections Between the Principal and Geodetic Curvature of Surfaces. ASME Journal of Mechanical Design, 1981, 103(1): 114~125.
    [32] F. L. Litvin, Y. Zhang, M. Lundy and C. Heine. Determination of Settings of a Tilted Head Cutter for Generation of Hypoid and Spiral Bevel Gears. ASME Journal of Mechanisms, Transmissions and Automation in Design, Design, 1988, 110(4): 495~500.
    [33] F. L. Litvin and H. T. Lee. Generation and Tooth Contact Analysis of Spiral Bevel Gears with Predesigned Parabolic Functions of Transmission Errors. NASA Contractor Report 4259(AVSCOM technical report 89-C-014),1989.
    
    
    [34] F. L. Litvin and Y. Zhang. Local Synthesis and Tooth Contact Analysis of Face-Milled Spiral Bevel Gears. NASA Contractor Report 4342(AVSCOM technical report 90-C-028), 1990.
    [35] Z. H. Fong and C, B. Tsay. Kinematical Optimization of Spiral Bevel Gears. ASME Journal of Mechanical Design, 1992, 114(3): 498~506.
    [36] 吴序堂,王小椿.点啮合共轭齿面失配传动性能的预控.齿轮,1988,12(3):1~7.
    [37] 王小椿,吴序堂.曲线齿锥齿轮小轮齿面的二阶展成.齿轮,1988,12(4):23~28.
    [38] 郭晓东、郑昌启、林超.锥齿轮设计制造现代应用技术的研究.重庆大学学报,1993,16(1):37~44.
    [39] 何乃翔.点接触啮合曲面的微分几何特性与啮合运动——点啮合的三阶分析.齿轮,1986,10(4):18~20.
    [40] 王小椿.线接触曲面的三阶接触分析.西安交通大学学报,1983,17(5):1~12、
    [41] 王小椿.点啮合曲面的三阶接触分析.西安交通大学学报,1983,17(3):1~13.
    [42] 王小椿、吴序堂、点啮合接触齿面三阶接触分析的进一步探讨.西安交通大学学报,1987,21(2):1~13.
    [43] 王小椿、吴序堂.弧齿锥齿轮和准双曲面齿轮的三阶接触分析和优化切齿计算.齿轮,1989,13(2):1~10.
    [44] 王小椿、吴序堂.空间点啮合齿面的接触特性对安装误差的敏感性分析.西安交通大学学报,1990,24(6):45~57.
    [45] 吴序堂、王小椿、李峰.曲线齿锥齿轮三阶接触特性分析法的原理及传动质量评价.机械工程学报,1994,30(3):47~54.
    [46] X. C. Wang and S.K. Ghosh. Advanced Theories of Hypoid Gears. Elsevier Science B.V.,1994.
    [47] 李润方、龚剑霞著.接触问题数值方法及其在机械设计中的应用.重庆:重庆大学出版社,1991.
    [48] 何乃翔.在载荷作用下螺旋锥齿轮及准双曲面齿轮轮齿接触分析.齿轮,1986,10(5):21~25.
    [49] 郑昌启、黄昌华、吕传贵.螺旋锥齿轮加载接触分析计算原理.机械工程学报:1993,29(4):50~54.
    [50] 吴希浪译、阎晶晶校.锥齿轮和准双曲面齿轮轮齿计算应力的精确计算方法.齿轮,1987,11(1):21~26.
    [51] 陈良玉、王延忠、郑夕健、鄂中凯、蔡春源.弧齿锥齿轮的齿根应力精确计算方法研究.机械工程学报英文版,1994年,第4期。
    [52] 李润方、黄昌华、陈大良.运转中啮合轮齿的三维应力应变数值分析及实验研究.机械工程学报,1994,30(2):38~44.
    [53] 李润方、黄昌华、郑昌启、郭晓东.弧齿锥齿轮和准双曲面齿轮轮齿接触有限元分析.机械工程学报英文版,1995年,第1期。
    [54] 黄昌华、李润方、郑昌启.螺旋锥齿轮啮合轮齿应力场分析.机械传动,1992,16(2):9~13.
    [55] 黄昌华、温诗铸、郑昌启.螺旋锥齿轮的润滑与轮齿加载接触分析LLTCA.机械工程学报英文版,1995年,第2期。
    [56] E L, Litvin, J. S, Chen, J. Lu and R. F. Handschuh. Application of Finite Element Analysis for Determination of Load Share, Real Contact Ratio, Precision of Motion and Stress Analysis. ASME Journal of Mechanical Design, 1996, 118(4): 561~567.
    [57] C. Gosselin, L. Cloutier and Q, D, Nguyen. A General Formulation for the Calculation of the Load Sharing and Transmission Error under Load of Spiral Bevel and Hypoid Gears. Mechanism and Machine Theory, 1995, 30(3): 433~450.
    [58] G. D. Bibel, A. Kumar, S. Reddy and R. Handschuh. Contact Stress Analysis of Spiral Bevel Gears Using Finite Element Analysis. ASME Journal of Mechanical Design. 1995, 117(2A): 235~240.
    [59] B. Falah, C. Gosselin and L.Cloutier. Experimental and Numerical Investigation of the Meshing Cycle and Contact Ratio in Spiral Bevel Gears. Mechanism and Machine Theory, 1998, 33(1/2): 21~37.
    [60] P. Gagnon and C. Gosselin. Analysis of Spur and Straight Bevel Gear Teeth Deflection by the Finite Strip Method. ASME Joumal of Mechanical Design, 1997, 119(3):421~426.
    
    
    [61] L. E. Wilcox. An Exact Analytical Method for Calculating Stresses in Bevel and Hypoid Gear Teeth. Gleason Machine Division, Rochester, N. Y., 1981.
    [62] T. F. Conry and A. Seireg. A Mathematical Programming Technique for the Evaluation of Load Distribution and Optimal Modification for Gear Systems. ASME Journal of Engineering for Industry, 1973, 95B(4): 1115-1122.
    [63] T. F. Conry and A. Seireg, A Mathematical Programming Method for Design of Elastic Bodies in Contact. ASME Journal of Engineering for Industry, 1971, 95B(4): 387~392.
    [64] 方宗德.齿轮轮齿承载接触分析(LTCA)的模型与方法.机械传动,1998,22(2):1~3.
    [65] 方宗德.修形斜齿轮的承载接触分析.航空动力学报,1997,12(3):251~254.
    [66] 方宗德、田行斌.准双曲面齿轮有摩擦承载接触分析,汽车工程,1999,21(3):184~187.
    [67] Y. Zhang and Z. Fang. Analysis of Tooth Contact and Load Distribution of Helical Gears with Crossed Axes. Mechanism and Machine Theory, 1999, 34(1): 41~57.
    [68] F. L. Litvin and N. X. Chen, Computerized Determination of Curvature Relations and Contact Ellipse for Conjugate Surfaces. Journal of Computer Methods in Applied Mechanics and Engineering, 1995, 125(1-4):151~170.
    [69] N. Chen. Curvatures and Sliding Ratios of Conjugate Surfaces. ASME Journal of Mechanical Design, 1998, 120(1): 126~132.
    [70] M. Sugimoto, N. Mauryama, A. Nakayama and M. Hitami. Effect of Tooth Contact and Gear Dimensions on Transmission Errors of Loaded Hypoid Gears. ASME Journal of Mechanical Design, 1991,113(2): 182~186.
    [71] C. J. Gosselin and L. Cloutier. The Generating Space for Parabolic Motion Error Spiral Bevel Gears Cut by the Gleason Method. ASME Journal of Mechanical Design, 1993, 115(3): 483~489.
    [72] R. L. Huston and J. J. Coy, Ideal Spiral Bevel Gears -- A New Approach to Surface Geometry. ASME Journal of Mechanical Design, 1981, 103(1): 127~133.
    [73] Y. C. Tasi and P. C. Chin, Surface Geometry of Straight and Spiral Bevel Gears. ASME Journal of Mechanisms, Transmissions and Automation in Design, 1987, 109(4): 443~449.
    [74] F. L. Litvin and I. H. Seol. Kinematic and Geometric Models of Gear Drivers. ASME Journal of Mechanical Design, 1996, 118(3): 554~550.
    [75] R. L. Huston and J. J. Coy. Surface Geometry of Circular Cut Spiral Bevel Gears. ASME Journal of Mechanical Design, 1982, 104(4): 743~748.
    [76] R. L. Huston, Y. Lin and J. J. Coy, Tooth Profile Analysis of Circular Cut Spiral Bevel Gears. ASME Journal of Mechanisms, Transmissions and Automation in Design, 1983, 105(1): 132~137.
    [77] C. Y. Lin, C. B. Tsay and Z. H. Fong, Mathematical Model of Spiral Bevel and Hypoid Gears Manufactured by the Modified Roll Method. Mechanism and Machine Theory. 1997, 32(2): 121~136.
    [78] Z. H. Fong and C. B. Tsay. A Mathematical Model for the Tooth Geometry of Circular-Cut Spiral Bevel Gears. ASME Journal of Mechanical Design, 1991, 113(2): 174~181.
    [79] Z. H. Fong and C. B. Tsay. A Study on the Tooth Geometry and Cutting Machine Mechanisms of Spiral Bevel Gears. ASME Journal of Mechanical Design, 1991, 113(3): 346~351.
    [80] F. L. Litvin, J. S. Chen, T. M. Sep and J. C. Wang. Computerized Simulation of Transmission Error and Shift of Bearing Contact for Face-Milled Hypoid Gear Drive. ASME Journal of Mechanical Design, 1995, 117(2A): 262~268.
    [81] Simon Vilmos. The Influence of Misalignments on Mesh Performances of Hypoid Gears. Mechanism and Machine Theory. 1998, 33(8): 1277~1291.
    [82] F. L. Litvin and V. Kin. Computerized Simulation of Meshing and Bearing Contact for Single-Enveloping Worm-Gear Drives. ASME Joumal of Mechanical Design, 1992, 114(2): 313~316.
    
    
    [83] C. B. Tsay and Z. H. Fong. Tooth Contact Analysis for Helical Gears with Pinion Circular Arc Teeth and Gear Involute Shaped Teeth. ASME Journal of Mechanisms, Transmissions and Automation in Design, 1989, 111(2): 278~284.
    [84] 方宗德、杨宏斌.准双曲面齿轮传动的轮齿接触分析.汽车工程,1998,20(6):350~355.
    [85] 王三民、纪名刚.弧齿锥齿轮切齿和啮合过程的数字仿真.航空动力学报,1997,12(4):404~406.
    [86] 方宗德.修形斜齿轮的轮齿接触分析.航空动力学报,1997,12(3):247~250.
    [87] F. L. Litvin, Y. Zhang and J. Kieffer. Identification and Minimization of Deviations of Real Gear Tooth Surfaces. ASME Journal of Mechanical Design, 1991, 113(1): 55~62.
    [88] F. L. Litvin, C. Kuan and J. C. Wang. Minimization of Deviation of Gear Real Tooth Surfaces Determined by Coordinate Measurements. ASME Journal of Mechanical Design, 1993, 115(4): 995~1001.
    [89] Y. Zhang and F. L. Litvin. Computerized Analysis of Meshing and Contact of Gear Real Tooth Surfaces. ASME Journal of Mechanical Design, 1994, 116(3): 667~682.
    [90] V. Kin. Computerized Analysis of Gear Meshing Based on Coordinate Measurement Data. ASME Journal of Mechanical Design, 1994, 116(3): 738~744.
    [91] C. Y. Lin, C. B. Tsay and Z. H. Fong Computer-Aided Manufacturing of Spiral Bevel and Hypoid Gears with Minimum Surfaces Deviation. Mechanism and Machine Theory, 1998, 33(6): 785~803.
    [92] C. Gosselin, T. Nonaka, Y. Shiono, A. Kubo and T. Tatsuno. Identification of the Machine Settings of Real Hypoid Gear Tooth Surfaces. ASME Journal of Mechanical Design, 1998, 120(3): 429~440.
    [93] Y. Zhang, F. L. Litvin and K. F. Handschuh. Computerized Design of Low-Noise Face-Milled Spiral Bevel Gears. Mechanism and Machine Theory, 1995, 30(8): 1171~1178.
    [94] 方宗德、杨宏斌.准双曲面齿轮传动优化切齿设计.汽车工程,1998,20(5):302~307.
    [95] 阎颂、吴继泽.压力角、螺旋角、齿面接触区对弧齿锥齿轮强度影响的研究,汽车工程,1995,21(3):113~118.
    [96] 阎颂、吴继泽.接触区等对弧齿锥齿轮强度影响的研究.机械传动,1996,13(11):26~29.
    [97] 王延中、陈良玉、蔡春源、鄂中凯、张宝骧.螺旋锥齿轮噪声预测与降噪方法研究.机械设计与制造,1998,27(2):33~34.
    [98] 高建平、方宗德、杨洪斌.螺旋锥齿轮边缘接触分析.航空动力学报,1998,13(3):289~292.
    [99] 寺内喜男、宫尾羲治、藤井亮.械论(C编),昭54,45(393):566~574.
    [100] 寺内喜男、宫尾羲治、藤井亮.机论(C编),昭54,45(406):675~840.
    [101] 寺内喜男、宫尾羲治、藤井亮.机论(C编),昭54,45(424):1663~1671.
    [102] 彭文生.螺旋锥齿轮动态特性的实验研究.第一届全国齿轮动力学会议论文集.华中理工大学,1987.
    [103] 清野慧、藤井康治、铃木羲友.机论(C编),昭55,45(406):668~674.
    [104] 陈良玉、蔡春源、鄂中凯.弧齿锥齿轮的动态特性分析.东北工学院学报,1993,14(5):460~463.
    [105] 陈良玉、鄂中凯、郭星辉、王延中.弧齿锥齿轮的离心应力和变形.东北工学院学报,1993,14(6):543~545.
    [106] 晏砺堂、朱梓根、李其汉.高速旋转机械振动.北京:国防工业出版社,1994.
    [107] 晏砺堂、李其汉.盘形锥齿轮的横向振动特性.航空动力学报,1988,3(2):~.
    [108] 李其汉、晏砺堂、赵福安.盘形锥齿轮振动特性和故障分析.航空学报,1987,8(10):B482~B486.
    [109] 朱梓根、李其汉.变厚锥形壳的固有频率.航空学报,1988,9(3):A188~A192.
    [110] 晏砺堂、邱士均.盘-环齿轮振动和其特殊的调频法.中国航空科技文献,1991,HJB910996.
    [111] 晏砺堂、邱士均.齿轮的摇形节径振动及其减振法.航空动力学报,1992,7(4):329~334
    [112] 唐增宝、钟毅芳编著.齿轮传动的振动分析与动态优化设计.武汉:华中理工大学出版社,1992.
    [113] 陈良玉、蔡春源、鄂中凯.螺旋锥齿轮振动的力学模型.东北工学院学报,1993,14(2):146~148.
    [114] 唐增宝、钟毅芳、周建荣.齿直圆柱齿轮传动系统的振动分析.机械工程学报,1992,28(4):86~93.
    
    
    [115] 方宗德、高平.直齿锥齿轮的振动分析.机械工程学报,1994,30(3):325~330.
    [116] 徐凌志、赵明、任平珍、柴卫东.具有弧齿锥齿轮啮合的转子振动特性分析方法.机械科学与技术,1997,16(4):668~673.
    [117] 王三民、袁茹、陈作模.弧齿锥齿轮计及误差的轮齿接触分析.西北工业大学学报,1994,12(2):164~168.
    [118] 王三民、李继庆、陈作模.弹性支承条件下中央弧齿锥齿轮传动的接触稳定性研究.机械科学与技术,1996,15(1):1~6.
    [119] 张英利.柔性支撑下弧齿锥齿轮的接触可靠性分析.西北工业大学硕士论文,1997.
    [120] 张英利、任平珍、王三民、赵明、徐凌志.支承刚度对弧齿锥齿轮传动系统的振动特性影响分析.机械科学与技术,1997,16(6):1034~1037.
    [121] 任平珍、杨海燕.具有SFD及锥齿轮啮合的多转子系统稳态不平衡响应研究.航空动力学报,1997,12(1):43~45.
    [122] 吴大任.微分几何讲义.北京:人民教育出版社,1982.
    [123] 北京齿轮厂编.螺旋锥齿轮.北京:科学出版杜,1974.
    [124] 航空制造工程手册总编委会主编.航空制造工程手册齿轮工艺.北京:航空工业出版社,1995.
    [125] 齿轮手册编委会主编.齿轮手册.北京:机械工业出版社;1990.
    [126] (苏)耿坎、雷约夫等著,杜国治、谭国宏、左仲进合译.提高重载齿轮传动的可靠性.北京:机械工业出版社,1986.
    [127] 吴序堂.齿轮啮合原理.北京:机械工业出版杜,1982.
    [128] 王勖成、邵敏编著.有限单元法基本原理和数值方法.北京:清华大学出版社,1997.
    [129] 钟一鄂、何衍宗、王正、李方泽.转子动力学.北京:清华大学出版社,1987.
    [130] K. J.巴特、E. L.威尔逊著.林公豫、罗恩译,罗崧发、傅子智校.有限元分析中的数值方法.北京:科学出版社,1985.