基于AFM、NSOM的细胞生物物理特性研究与膜分子探测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米生物技术是纳米技术与生命科学的交叉,是在纳米尺度上形成的有关生命科学的纳米新技术和新方法,在分子、亚细胞和细胞水平上研究生物分子和细胞的行为和相互作用机制具有独特的优势。本论文基于AFM和NSOM,结合量子点标记及激光共聚焦等技术,以人外周血T淋巴细胞(包括特异性和非特异性)为研究对象,在纳米尺度研究了活化前后以及不同活化阶段T细胞生物物理特性的变化,即细胞形态结构、膜表面纳米结构、膜孔变化、膜表面摩擦力分布、膜表面粘附特性、抗原-抗体间特异性相互作用力、膜表面受体分子分布模式等。并以红细胞为模型初步探讨了AFM的应用价值与可行性。主要获得了以下具有创新性的结果:
     1)完成了静息和处于不同活化阶段T淋巴细胞的纳米结构的定性、定量分析。经PDB加ION刺激活化后,CD_3~+T细胞的直径、体积、膜表面纳米颗粒的平均高度均增大,但膜表面平均粗糙度无显著性差异:CD_4~+及CD_8~+T细胞的各项物理参数均增大:在纳米尺度,CD_4~+和CD_8~+T细胞膜表面的摩擦力分布不均匀,揭示了膜表面化学成分及物理特性的非均质性;
     2)发现活化前后及不同活化阶段,T细胞表面力学特性发生显著变化。在气相中测量发现,静息CD_3~+T的表面粘附力为1025±799.84 pN,随着活化时间的延长,细胞膜表面粘附力变小,其中刺激24小时的膜表面粘附力最小,为243.93±167.51 pN;对CD_4~+T细胞而言,活化24小时的膜表面粘附力最大(827.6±271.8 pN),约为静息组及活化48和72小时组膜表面粘附力的一倍;同样,活化后CD_8~+T细胞表面的粘附力(300~800 pN)大于静息组细胞表面的粘附力(100~700 pN),均符合正态分布。但在液相中的测量发现,裸探针与CD_4~+及CD_8~+T细胞(包括静息及活化)膜表面无明显的非特异性粘附力及非线性作用力。
     3)液相中对活化前后CD_4~+T细胞原位测量发现,CD_4抗原-抗体间作用力(200-1200pN)大于和CD_(69)抗原-抗体间作用力(30-210 pN);对CD_8~+T细胞的测量显示,CD_8抗原-抗体间的作用力(918±430.6 pN)稍小于CD_(69)抗原-抗体分子的特异性作用力(1097.8±675.2 pN)。特异性作用的力曲线均表现出明显的非线性作用力特性;
     4)三维重构图、二维灰阶模式图以及激光共聚焦荧光成像均表明,CD_4分子及活化标志分子CD_(69)在CD_4~+T细胞膜表面呈不均匀分布,主要以纳米簇或微结构域的形式存在。NSOM荧光图(实验最高分辨率为92 nm)同样显示CD_4和CD_(69)分子在膜表面呈不均匀状态,超过75%的CD_4分子在细胞膜上呈聚集状态,聚集成微/纳结构域,形成脂筏或微功能结构域,而荧光团的面积、直径及荧光强度的计算和统计也符合这一结果;对CD_8~+T细胞而言,膜表面受体分子分布模式的三维重构及灰阶模式图显示CD_8分子和CD_(69)分子在膜表面亦呈不均匀分布,聚集成微/纳结构域;
     5)初步探讨了AFM力谱应用于医学、法医学检验的价值与可行性。以红细胞为模型,测量了在室温、室外环境及低温等三个条件下,玻璃和云母基底上细胞形态学及膜表面粘附力随时间变化的关系。在室温条件下,云母基底上红细胞体积的减小幅度较玻璃基底上细胞明显;在室外条件下,玻璃基底上红细胞体积先增大,再减小,而云母基底上细胞体积则先增大,再显著减小,而后出现平台。对于粘附力而言,在室温和室外条件下,两种基底上红细胞的粘附力均先增大再减小,但是曲线最高点出现的时间点不同。在低温条件即4℃下,细胞体积随时间延长而急剧减小,在第5天时,细胞完全塌陷;细胞表面粘附力也随时间的延长而减小。
     综上所述,本文利用纳米生物技术第一次在纳米尺度对T细胞活化前后生物物理特性的变化进行了较为深入详细的研究分析,获得了大量有价值的实验数据与信息,为进一步研究T细胞介导的免疫反应与识别提供了新的研究视角和思路。对红细胞在不同条件下随时间变化相关性的探讨揭示了AFM应用于医学或法医学检验甚至临床疾病诊断的价值与潜力。由于以AFM和NSOM为代表的扫描探针显微术具有纳米结构和纳米力学特性的可获得性,因此它们在纳米生物学领域的研究中将扮演不可或缺的角色。而纳米生物技术作为纳米科技研究的前沿交叉领域,必将引起人们的更大重视和关注,因此纳米生物技术领域是一个大有可为的领域,将为解决生命科学中的一些重大问题做出更积极的贡献。
Nanobiotechnology,as the cross-discipline of nanotechnology and life science,is a novel technology and approach in nanoscale life science study;it can provide many insightful views into biophysical behaviors of biomolecules and cells including the intramolecular force, intermolecular interaction,and molecule-molecule and cell-cell interaction mechanism.In this work,atomic force microscopy(AFM),near-field scanning optical microscopy,laser scanning confocal microscopy and quantum dot labeling were used to investigate the biophysical properties(the parameters including morphology,membrane nanostructures,membrane pore, friction distribution,adhesion properties,specific interaction of antigen-antibody,distribution mode of membrane receptors and so on) of T lymphocytes stimulated by phorbol dibutyrate (PDB) plus ionomycin(ION) at nanoscale.In addition,the biophysical variation of erythrocytes with the time lapse was analyzed utilizing AFM.According to the experiments,we obtained many insightful results shown as the followings:
     1) The nanostructures of resting and activated T lymphocytes were firstly evaluated.The results indicate that cell diameter,cell volume and the mean height of membrane surface particles of CD3+ T cells increased due to PDB plus ION stimulation;as a contrast,all biophysical parameters of CD4+ and CD8+ T cells increased after stimulation.The lateral force measurements indicate the heterogeneous distribution of friction on CD4+ and CD8~+ T cell membrane,revealing the chemical and biophysical heterogeneity;
     2) Nano-mechanical properties of resting T cells evidently differ from activated T cells.The results obtained in air indicate that the surface adhesion force of resting CD3~+ T cells is 1025±799.84 pN,which decreased with the lapse of activation time,and that measured at 24 hours stimulation time appears to be the lowest(243.93±167.51 pN);whereas,the adhesion force of CD4~+ T cells measured at 24 hours stimulation time is the largest(827.6±271.8 pN) among three experimental groups,24,48 and 72 hours group,and force curves of CD4~+ T cells show unobvious snap-in force;as for CD8~+ T cells,the adhesion force of activated cell distributes between 300 pN and 800 pN,which is also larger than that of resting cells,100~700 pN.When the measurements were conducted in liquid,the force curves indicate that adhesion force and nonlinear interaction between bare tip and CD4~+,CD8~+ T cells are not obvious.
     3) As for specific interaction of antigen-antibody of CD4+ T cells measured in situ,the results exhibit that the specific interaction force of CD4 antigen-antibody is 200-1200 pN,which is larger than that of CD69 antigen-antibody(30-210 pN);as for CD8~+ T cells,however,the specific interaction force of CD8 antigen-antibody is 918±430.6 pN,which is slightly smaller than that of CD69 antigen-antibody(1097.8±675.2 pN);moreover,the specific force curves reveal the evident nonlinear interaction between tip and cell membrane;
     4) Investigation of distribution mode of membrane receptors.3-D reconstruction map, grayscale map and imaging results of laser scanning confocal microscopy altogether demonstrate that both CD4 receptors and activation marker CD69 receptors non-uniformly distribute on CD4~ T cell membrane,concentrating into nano-clusters and/or micro-domains.Furthermore, near-field fluorescent images,whose highest resolution is 92 nm(FWHM),also reveal the inhomogeneous distribution of CD4 and CD69 receptors on cell membrane;the statistics further indicates that more than 75%CD4 molecules on cell membrane concentrates into nano-/microstructural domains,which is supported by the analysis of area,diameter and fluorescent intensity of near-field fluorophores.As for CD8~+ T cells,the 3-D reconstruction map and grayscale map, which imply the distribution mode/pattern of membrane receptors,also illustrate that CD8 and CD69 receptors inhomogeneously distributing on cell membrane and forming nano-/microstructural domains:
     5) Atomic force microscopy(AFM) is a rapidly developing tool recently introduced into the evaluation of the age of bloodstains,potentially providing useful information for forensic investigation.Here,the time-dependent,morphological changes of red blood cells(RBC) under three conditions(including controlled,room-temperature condition,uncontrolled, outdoor-environmental condition,and controlled,low-temperature condition) were observed by AFM,as well as the cellular viscoelasticity via force-vs-distance curve measurements.With time lapse,the changes in cell volume and adhesive force of RBC under the controlled room-temperature condition were similar to those under the uncontrolled outdoor-environmental condition.Under the controlled low-temperature condition,however,the changes in cell volume occurred mainly due to the collapse of RBCs,and the curves of adhesive force showed the dramatic alternations in viscoelasticity of RBC.
     In the present work,the variations of biophysical properties of Tlymphocytes in the context of activation in vitro were evaluated at nanoscale for the first time,and the obtained experimental data and information offer us new insightful views for further understanding/elucidating immune response/recognition correlated biophysical behaviors of specific/non-specific T cells.On the other hand,the AFM detections on the time-,environment(temperature/humidity)- dependent changes in morphology and surface viscoelasticity of RBC imply a potential application of AFM in medicine/forensic medicine exmination.AFM and NSOM,as two important members of scanning probe microscopy family,play crucial roles in nano-biology study due to their acquiring capabilities of nanostructures and nano-mechanical properties.As the frontier field of nanotechnology study,nanobiotechnology has aroused scientist's extensive concerns and will provide invaluable implications and insights into biophysical behaviors/processes of biomolecules and cells at nanoscale.
引文
1.蔡继业,曾洁铭,王煜,曾耀英:扫描探针显微术的应用.暨南大学学报(自然科学版)2001;22:91-95.
    2.蔡继业,曾洁铭,王煜,曾耀英:近场光学和单分子操纵.暨南大学学报(自然科学版) 2001;22:64-69.
    3.陈勇,蔡继业,王小燕:原子力显微技术在生命科学中的应用概况.现代科学仪器2003.
    4.陈勇,蔡继业,吴扬哲:原子力显微技术在细胞生物学中的应用.细胞生物学杂志2004.
    5.邓穗平,蔡继业:磷脂自组装膜的原子力显微镜研究进展.生物医学工程学杂志2008.
    6.何晓青:体外诱导小鼠胚胎干细胞定向分化及AFM的可视化研究.暨南大学硕士学位论文2004.
    7.胡怡:一种多功能复合生物高分子膜材的制备与表征.暨南大学硕士学位论文2007.
    8.李国有:基于原子力显微术的多糖分子聚集行为、单分子形貌的可视化和多糖/量子点多层膜的制备.暨南大学硕士学位论文2006.
    9.李国有,陈勇,王云起,廖问陶,蔡继业:原子力显微镜在多糖分子结构研究中的应用.现代仪器2006.
    10.刘美莉:AFM可视化技术在干细胞研究中的应用.暨南大学硕士学位论文2005.
    11.马豫峰:壳聚糖/蛋白质/小牛胸腺DNA混合体系的生物相容性研究.暨南大学硕士学位论文2005.
    12.乔艳芳,蔡继业:近场光学显微镜及其在生物膜方面的应用.现代仪器2006.
    13.王彬:壳聚糖吸附金属离子(Cu2+)/DNA的AFM研究.暨南大学硕士学位论文2004.
    14.王小燕:干细胞和胶原蛋白结构性质的AFM研究.暨南大学硕士学位论文2003.
    15.王云起:基于原子力显微术的抗菌肽杀菌机理和细胞表面受体识别的研究.暨南大学博士学位论文2006.
    16.王云起,廖问陶,蔡继业:原子力显微镜在Dna和蛋白质相互作用方面的研究进展.生物医学工程学杂志2007.
    17.吴峰,蔡继业:利用原子力显微镜识别成像.生物技术通讯2006.
    18.吴扬哲:溴化乙啶生物毒性的纳米表征及间质干细胞骨架的研究.暨南大学硕士学位论文2005.
    19.夏科:壳聚糖/硫酸软骨素自组装膜体系的AFM研究.暨南大学硕士学位论文2003.
    20.曾谷城:基于原子力显微术的生物分子免疫识别.暨南大学硕士学位论文2005.
    21.曾洁铭,曾耀英,蔡继业,肇静娴:原子力显微镜在生命科学中的应用.中国病理生理杂志2001.
    22.赵涛:胶原蛋白自组装行为以及细胞形态的AFM研究.暨南大学硕士学位论文2002.
    23.郑洁,欧仕益,蔡继业,汪晨熙:原子力显微镜在食品科学中的应用.食品研究与开发2005.
    24.郑伟民,蔡继业:原子力显微镜在Dna领域中研究应用.现代仪器2006.
    25.周世海:原子力显微镜对海藻酸钠自组装膜体系及相关性质研究.暨南大学硕士学位论文2004.
    26.崔海精:基于原子力显微术的细胞凋亡和LB膜制备.暨南大学硕士学位论文2005.
    27.Parot P,Dufrene YF,Hinterdorfer P,Le Grimellec C,Navajas D,Pellequer JL,Scheuring S:Past,present and future of atomic force microscopy in life sciences and medicine.J Mol Recognit 2007;20:418-431.
    28.吴扬哲,蔡继业:纤维粘连蛋白的AFM分析.四川大学学报(自然科学版)2007.
    29.Horber JK,Miles MJ:Scanning probe evolution in biology.Science 2003;302:1002 - 1005.
    30.Scheuring S,Seguin J,Marco S,Levy D,Robert B,Rigaud JL:Nanodissection and high-resolution imaging of the Rhodopseudomonas viridis photosynthetic core complex in native membranes by AFM.Atomic force microscopy.Proc Natl Acad Sci U S A 2003;100:1690-1693.
    31.Chen Y,Cai J,Xu Q,Chen ZW:Atomic force bio-analytics of polymerization and aggregation of phycoerythrin-conjugated immunoglobulin G molecules.Mol Immunol 2004;41:1247-1252.
    32.陈勇:NSOM和AFM应用于细胞生物学的初步研究.中国科学院研究生院博士学位论文2003.
    33.Berdyyeva T,Woodworth CD,Sokolov Ⅰ:Visualization of cytoskeletal elements by the atomic force microscope.Ultramicroscopy 2005;102:189-198.
    34.Melling M,Hochmeister S,Blumer R,Schilcher K,Mostler S,Behnam M,Wilde J,Karimian-Teherani D:Atomic force microscopy imaging of the human trigeminal ganglion.Neuroimage 2001;14:1348-1352.
    35.Melling M,Karimian-Teherani D,Behnam M,Mostler S:Morphological study of the healthy human oculomotor nerve by atomic force microscopy.Neuroimage 2003;20:795-801.
    36.Chen Y,Cai J,Zhao T,Wang C,Dong S,Luo S,Chen ZW:Atomic force microscopy imaging and 3-D reconstructions of serial thin sections of a single cell and its interior structures.Ultramicroscopy 2005;103:173-182.
    37.Cross SE,Jin YS,Rao J,Gimzewski JK:Nanomechanical analysis of cells from cancer patients.Nature Nanotechnology 2007;2:780-783.
    38.Lam WA,Rosenbluth MJ,Fletcher DA:Chemotherapy exposure increases leukemia cell stiffness.Blood 2007;109:3505-3508.
    39.Rico F,Roca-Cusachs P,Sunyer R,Farre R,Navajas D:Cell dynamic adhesion and elastic properties probed with cylindrical atomic force microscopy cantilever tips.Journal of Molecular Recognition 2007;20:459-466.
    40.Trache A,Trzeciakowski J,Gant A,Cote G,Sun Z,Wilson E,Meininger GA:Influence of cell stiffness on adhesion force between alpha 5 beta 1 integrin and fibronectin in intact cells using atomic force microscopy.Biophysical Journal 2004;86:477a-477a.
    41.Muller DJ,Janovjak H,Lehto T,Kuerschner L,Anderson K:Observing structure,function and assembly of single proteins by AFM.Prog Biophys Mol Biol 2002;79:1-43.
    42.Butt HJ,Cappella B,Kappl M:Force measurements with the atomic force microscope:Technique,interpretation and applications.Surface Science Reports 2005;59:1-152.
    43.钟丽云:扫描近场光学显微成像系统用于生物分子识别的初探.暨南大学博士后工作出站报告2006.
    44.蔡继业,吴扬哲,陈勇,汪晨熙:用近场光学研究细胞的超微结构及单分子探测.中国病理生理杂志2006.
    45.吴扬哲,蔡继业,陈勇,汪晨熙:近场光学显微术在生物大分子探测与功能研究中的应用.生理科学进展2005.
    46.徐彦芳,吴扬哲,蔡继业:扫描近场光学显微镜在生物学领域的应用.激光与光电子学进展2006.
    47.Betzig E,Chichester RJ:Single Molecules Observed by Near-Field Scanning Optical Microscopy.Science 1993;262:1422-1425.
    48.Seibel EJ,Pollack GH:Imaging 'intact' myofibrils with a near-field scanning optical microscope.J Microsc 1997;186:221-231.
    49.Garcia-Parajo MF,Segers-Nolten GM,Veerman JA,Greve J,van Hulst NF:Real-time light-driven dynamics of the fluorescence emission in single green fluorescent protein molecules.Proc Natl Acad Sci U S A 2000;97:7237-7242.
    50.Philipona C,Chevolot Y,Leonard D,Mathieu HJ,Sigrist H,Marquis-Weible F:A scanning near-field optical microscope approach to biomolecule patterning.Bioconjug Chem 2001;12:332-336.
    51.Kim J,Muramatsu H,Lee H,Kawai T:Near-field optical imaging of abasic sites on a single DNA molecule.FEBS Lett 2003;555:611-615.
    52.Gao H,Oberringer M,Englisch A,Hanselmann RG,Hartmann U:The scanning near-field optical microscope as a tool for proteomics.Ultramicroscopy 2001;86:145-150.
    53.Kim JM,Ohtani T,Sugiyama S,Hirose T,Muramatsu H:Simultaneous topographic and fluorescence imaging of single DNA molecules for DNA analysis with a scanning near-field optical/atomic force microscope.Anal Chem 2001;73:5984-5991.
    54.Hollars CW,Dunn RC:Probing single molecule orientations in model lipid membranes with near-field scanning optical microscopy.Journal of Chemical Physics 2000;112:7822-7830.
    55.Burgos P,Lu Z,Ianoul A,Hnatovsky C,Viriot ML,Johnston LJ,Taylor RS:Near-field scanning optical microscopy probes:a comparison of pulled and double-etched bent NSOM probes for fluorescence imaging of biological samples.Journal of Microscopy-Oxford 2003;211:37-47.
    56.Tokumasu F,Hwang J,Dvorak JA:Heterogeneous molecular distribution in supported multicomponent lipid bilayers.Langmuir 2004;20:614-618.
    57.Cadby A,Dean R,Fox AM,Jones RAL,Lidzey DG:Mapping the fluorescence decay lifetime of a conjugated polymer in a phase-separated blend using a scanning near-field optical microscope.Nano Letters 2005;5:2232-2237.
    58.Weston KD,Buratto SK:A reflection near-field scanning optical microscope technique for subwavelength resolution imaging of thin organic films.Journal of Physical Chemistry B 1997;101:5684-5691.
    59.Kramer A,Wintergalen A,Sieber M,Galla HJ,Amrein M,Guckenberger R:Distribution of the surfactant-associated protein C within a lung surfactant model film investigated by near-field optical microscopy.Biophys J 2000;78:458-465.
    60.Miura A,Yanagawa Y,Tamai N:Mesoscopic structures and dynamics of merocyanine J-aggregate studied by time-resolved fluorescence SNOM.J Microsc 2001;202:425-432.
    61.Hoppener C,Molenda D,Fuchs H,Naber A:Scanning near-field optical microscopy of a cell membrane in liquid.Journal of Microscopy-Oxford 2003;210:288-293.
    62.Baylis RM,Doak SH,Parry JM,Dunstan PR:Chromosome morphology after long-term storage investigated by scanning near-field optical microscopy.Journal of Microscopy-Oxford 2006;221:177-182.
    63.Ohtani T,Shichiri M,Fukushi D,Sugiyama S,Yoshino T,Kobori T,Hagiwara S,Ushiki T:Imaging of chromosomes at nano-meter scale resolution using scanning near-field optical/atomic force microscopy.Archives of Histology and Cytology 2002;65:425-434.
    64.Hausmann M,Liebe B,Perner B,Jerratsch M,Greulich KO,Scherthan H:Imaging of human meiotic chromosomes by scanning near-field optical microscopy (SNOM).Micron 2003;34:441-447.
    65.Yoshino T,Sugiyama S,Hagiwara S,Fukushi D,Shichiri M,Nakao H,Kim JM,Hirose T,Muramatsu H,Ohtani T:Nano-scale imaging of chromosomes and DNA by scanning near-field optical/atomic force microscopy.Ultramicroscopy 2003;97:81-87.
    66.Kimura E,Hitomi J,Ushiki T:Scanning near field optical/atomic force microscopy of bromodeoxyuridine-incorporated human chromosomes.Arch Histol Cytol 2002;65:435-444.
    67.Fukushi D,Shichiri M,Sugiyama S,Yoshino T,Hagiwara S,Ohtani T:Scanning near-field optical/atomic force microscopy detection of fluorescence in situ hybridization signals beyond the optical limit.Experimental Cell Research 2003;289:237-244.
    68.Iwabuchi S,Muramatsu H,Chiba N,Kinjo Y,Murakami Y,Sakaguchi T,Yokoyama K,Tamiya E:Simultaneous detection of near-field topographic and fluorescence images of human chromosomes via scanning near-field optical/atomic-force microscopy (SNOAM).Nucleic Acids Research 1997;25:1662-1663.
    69.Korchev YE,Raval M,Lab MJ,Gorelik J,Edwards CRW,Rayment T,Klenerman D:Hybrid scanning ion conductance and scanning near-field optical microscopy for the study of living cells.Biophysical Journal 2000;78:2675-2679.
    70.Qiao WH,Shang GY,Lei FH,Trussardi-Regnier A,Angiboust JF,Millot JM,Manfait M:Imaging of P-glycoprotein of H69/VP small-cell lung cancer lines by scanning near-field optical microscopy and confocal laser micro spectrofluorometer.Ultramicroscopy 2005;105:330-335.
    71.Stephens DJ,Allan VJ:Light microscopy techniques for live cell imaging.Science 2003;300:82-86.
    72.Krogmeier JR,Clancy CMR,Pawlak A,Rozanowska M,Sarna T,Simon JD,Dunn RC:Mapping the distribution of emissive molecules in human ocular lipofuscin granules with near-field scanning optical microscopy.Journal of Microscopy-Oxford 2001;202:386-390.
    73.Piga R,Micheletto R,Kawakami Y:Nano-probing of the membrane dynamics of rat pheoehromocytoma by near-field optics.Biophysical Chemistry 2005;117:141-146.
    74.Lei FH,Shang GY,Troyon M,Spajer M,Morjani H,Angiboust JF,Manfait M:Nanospectrofluorometry inside single living cell by scanning near-field optical microscopy.Applied Physics Letters 2001;79:2489-2491.
    75.Sommer AP,Franke RP:Near-field optical analysis of living cells in vitro.Journal of Proteome Research 2002;1:111-114.
    76.Rothery AM,Gorelik J,Bruckbauer A,Yu W,Korchev YE,Klenerman D:A novel light source for SICM-SNOM of living cells.Journal of Microscopy-Oxford 2003;209:94-101.
    77.Xie AF,Duan SJ,Zhang ZB,Chen YX,Xue LH,Yang GZ:S-nitrosoglutathione-induced mouse thymocyte apoptosis studied by fluorescence near-field scanning optical microscopy.Immunology Letters 2003;85:225-229.
    78.de Lange F,Cambi A,Huijbens R,de Bakker B,Rensen W,Garcia-Parajo M,van Hulst N,Figdor CG:Cell biology beyond the diffraction limit:near-field scanning optical microscopy.J Cell Sci 2001;114:4153-4160.
    79.Gunning AP,Bongaerts RJM,Kirby AR,Hinton JCD,Morris VJ:Comparative imaging of a bacterial surface-located GFP fusion protein by epifluorescence and scanning near-field optical microscopy.Journal of Microscopy-Oxford 2005;218:46-51.
    80.Tamiya E,Iwabuchi S,Nagatani N,Murakami Y,Sakaguchi T,Yokoyama K,Chiba N,Muramatsu H:Simultaneous topographic and fluorescence imagings of recombinant bacterial cells containing a green fluorescent protein gene detected by a scanning near field optical/atomic force microscope.Analytical Chemistry 1997;69:3697-3701.
    81.Kirsch AK,Subramaniam V,Jenei A,Jovin TM:Fluorescence resonance energy transfer detected by scanning near-field optical microscopy.J Microsc 1999;194:448-454.
    82.Sekatskii SK:Fluorescence resonance energy transfer scanning near-field optical microscopy.Philos Transact A Math Phys Eng Sci 2004;362:901-919.
    83.Richards D:Near-field microscopy:throwing light on the nanoworld.Philos Transact A Math Phys Eng Sci 2003;361:2843-2857.
    84.Shubeita GT,Sekatskii SK,Dietler G,Potapova I,Mews A,Basche T:Scanning near-field optical microscopy using semiconductor nanocrystals as a local fluorescence and fluorescence resonance energy transfer source.J Microsc 2003;210:274-278.
    85.Vickery SA,Dunn RC:Scanning near-field fluorescence resonance energy transfer microscopy.Biophys J 1999;76:1812-1818.
    86.Garcia-Parajo MF,Veerman JA,Segers-Nolten GMJ,de Grooth BG,Greve J,van Hulst NF:Visualising individual green fluorescent proteins with a near field optical microscope.Cytometry 1999;36:239-246.
    87.Moers MHP,Kalle WHJ,Ruiter AGT,Wiegant JCAG,Raap AK,Greve J,DeGrooth BG, VanHulst NF:Fluorescence in situ hybridization on human metaphase chromosomes detected by near-field scanning optical microscopy.Journal of Microscopy-Oxford 1996;182:40-45.
    88.Enderle T,Ha T,Chemla DS,Weiss S:Near-field fluorescence microscopy of cells.Ultramicroscopy 1998;71:303-309.
    89.Hwang J,Gheber LA,Margolis L,Edidin M:Domains in cell plasma membranes investigated by near-field scanning optical microscopy.Biophysical Journal 1998;74:2184-2190.
    90.Enderle T,Ha T,Ogletree DF,Chemla DS,Magowan C,Weiss S:Membrane specific mapping and colocalization of malarial and host skeletal proteins in the Plasmodium falciparum infected erythrocyte by dual-color near-field scanning optical microscopy.Proceedings of the National Academy of Sciences of the United States of America 1997;94:520-525.
    91.Nagy P,Jenei A,Kirsch AK,Szollosi J,Damjanovich S,Jovin TM:Activation-dependent clustering of the erbB2 receptor tyrosine kinase detected by scanning near-field optical microscopy.Journal of Cell Science 1999;112:1733-1741.
    92.Zhong LY,Liao WT,Wang XP,Cai JY:Detection the specific marker of CD3 molecules of human peripheral blood T lymphocytes using SNOM and quantum dots.Colloids and Surfaces a-Physicochemical and Engineering Aspects 2008;313:642-646.
    93.Chen Y,Shao L,Ali Z,Cai J,Chen ZW:NSOM/QD-based nanoscale immunofluorescence imaging of antigen-specific T-cell receptor responses during an in vivo clonal V{gamma}2V{delta}2 T-cell expansion.Blood 2008;111:4220-4232.
    94.Ha T,Enderle T,Ogletree DF,Chemla DS,Selvin PR,Weiss S:Probing the interaction between two single molecules:Fluorescence resonance energy transfer between a single donor and a single acceptor.Proceedings of the National Academy of Sciences of the United States of America 1996;93:6264-6268.
    95.Vickery SA,Dunn RC:Combining AFM and FRET for high resolution fluorescence microscopy.Journal of Microscopy-Oxford 2001;202:408-412.
    96.Chan WCW,Nie SM:Quantum dot bioconjugates for ultrasensitive nonisotopic detection.Science 1998;281:2016-2018.
    97.胡怡,蔡继业:量子点荧光探针在生物成像中的应用进展.生理科学进展2007:38:280-282.
    98.Jaiswal JK,Simon SM:Potentials and pitfalls of fluorescent quantum dots for biological imaging.Trends Cell Biol 2004;14:497-504.
    99.Michalet X,Pinaud FF,Bentolila LA,Tsay JM,Doose S,Li JJ,Sundaresan G,Wu AM,Gambhir SS,Weiss S:Quantum dots for live cells,in vivo imaging,and diagnostics.Science 2005;307:538-544.
    100.Qu LH,Peng XG:Control of photoluminescence properties of CdSe nanocrystals in growth.Journal of the American Chemical Society 2002;124:2049-2055.
    101.Chan WCW,Maxwell DJ,Gao XH,Bailey RE,Han MY,Nie SM:Luminescent quantum dots for multiplexed biological detection and imaging.Current Opinion in Biotechnology 2002;13:40-46.
    102.Gao XH,Nie SM:Quantum dot-encoded mesoporous beads with high brightness and uniformity:Rapid readout using flow cytometry.Analytical Chemistry 2004;76:2406-2410.
    103.Willard DM,Carillo LL,Jung J,Van Orden A:CdSe-ZnS quantum dots as resonance energy transfer donors in a model protein-protein binding assay.Nano Letters 2001;1:469-474.
    104.Jaiswal JK,Mattoussi H,Mauro YM,Simon SM:Long-term multiple color imaging of live cells using quantum dot bioconjugates.Nature Biotechnology 2003;21:47-51.
    105.Dubertret B,Skourides P,Norris DJ,Noireaux V,Brivanlou AH,Libchaber A:In vivo imaging of quantum dots encapsulated in phospholipid micelles.Science 2002;298:1759-1762.
    106.Ballou B,Lagerholm BC,Ernst LA,Bruchez MP,Waggoner AS:Noninvasive imaging of quantum dots in mice.Bioconjugate Chemistry 2004;15:79-86.
    107.Larson DR,Zipfel WR,Williams RM,Clark SW,Bruchez MP,Wise FW,Webb WW:Water-soluble quantum dots for multiphoton fluorescence imaging in vivo.Science 2003;300:1434-1436.
    108.Kim S,Lira YT,Soltesz EG,De Grand AM,Lee J,Nakayama A,Parker JA,Mihaljevic T,Laurence RG,Dor DM,Cohn LH,Bawendi MG,Frangioni JV:Near-infrared fluorescent type Ⅱ quantum dots for sentinel lymph node mapping.Nature Biotechnology 2004;22:93-97.
    109.Lidke DS,Nagy P,Heintzmann R,Arndt-Jovin DJ,Post JN,Grecco HE,Jares-Erijman EA,Jovin TM:Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction.Nature Biotechnology 2004;22:198-203.
    110.Gao XH,Yang LL,Petros JA,Marshal FF,Simons JW,Nie SM:In vivo molecular and cellular imaging with quantum dots.Current Opinion in Biotechnology 2005;16:63-72.
    111.Jain RK:Delivery of molecular medicine to solid tumors:lessons from in vivo imaging of gene expression and function.Journal of Controlled Release 2001;74:7-25.
    112.Hahn MA,Tabb JS,Krauss TD:Detection of single bacterial pathogens with semiconductor quantum dots.Analytical Chemistry 2005;77:4861-4869.
    113.Derfus AM,Chan WCW,Bhatia SN:Probing the cytotoxicity of semiconductor quantum dots.Nano Letters 2004;4:11-18.
    114.Samia ACS,Chen XB,Burda C:Semiconductor quantum dots for photodynamic therapy.Journal of the American Chemical Society 2003;125:15736-15737.
    115.Lewis A,Taha H,Strinkovski A,Manevitch A,Khatchatouriants A,Dekhter R,Ammann E:Near-field optics:from subwavelength illumination to nanometric shadowing.Nat Biotechnol 2003;21:1378-1386.
    116.Buechi M,Bachi T:Immunofluorescence and electron microscopy of the cytoplasmic surface of the human erythrocyte membrane and its interaction with Sendai virus.J Cell Biol 1979;83:338-347.
    117.Wojcikiewicz EP,Zhang X,Moy VT:Force and Compliance Measurements on Living Cells Using Atomic Force Microscopy(AFM).Biol Proced Online 2004;6:1-9.
    118.Zhang X,Wojcikiewicz E,Moy VT:Force spectroscopy of the leukocyte function-associated antigen-1/intercellular adhesion molecule-1 interaction.Biophys J 2002;83:2270-2279.
    119.Strasser S,Zink A,Kada G,Hinterdorfer P,Peschel O,Heckl WM,Nerlich AG,Thalhammer S:Age determination of blood spots in forensic medicine by force spectroscopy.Forensic Sci Int 2007;170:8-14.
    120.Waar K,van der Mei HC,Harmsen HJ,de Vries J,Atema-Smit J,Degener JE,Busscher HJ:Atomic force microscopy study on specificity and non-specificity of interaction forces between Enterococcus faecalis cells with and without aggregation substance.Microbiology 2005;151:2459-2464.
    121.Emerson RJt,Bergstrom TS,Liu Y,Soto ER,Brown CA,McGimpsey WG,Camesano TA:Microscale correlation between surface chemistry,texture,and the adhesive strength of Staphylococcus epidermidis.Langmuir 2006;22:11311-11321.
    122.Liu Y,Strauss J,Camesano TA:Adhesion forces between Staphylococcus epidermidis and surfaces bearing self-assembled monolayers in the presence of model proteins.Biomaterials 2008.
    123.Salerno MB,Li X,Logan BE:Adhesion characteristics of two Burkholderia cepacia strains examined using colloid probe microscopy and gradient force analysis.Colloids Surf B Biointerfaces 2007;59:46-51.
    124.Vadillo-Rodriguez V,Logan BE:Localized attraction correlates with bacterial adhesion to glass and metal oxide substrata.Environmental Science & Technology 2006;40:2983-2988.
    125.Abu-Lail NI,Camesano TA:Role of lipopolysaccharides in the adhesion,retention,and transport of Escherichia coli JM109.Environ Sci Technol 2003;37:2173-2183.
    126.Afrin R,Alam MT,Ikai A:Pretransition and progressive softening of bovine carbonic anhydrase Ⅱ as probed by single molecule atomic force microscopy.Protein Science 2005;14:1447-1457.
    127.Bremmell KE,Evans A,Prestidge CA:Deformation and nano-rheology of red blood cells:an AFM investigation.Colloids Surf B Biointerfaces 2006;50:43-48.
    128.Camesano TA,Logan BE:Probing bacterial electrosteric interactions using atomic force microscopy.Environmental Science & Technology 2000;34:3354-3362.
    129.Cappella B,Silbernagl D:Nanomechanical properties of mechanical double-layers:a novel semiempirical analysis.Langmuir 2007;23:10779-10787.
    130.Filip D,Uricanu VI,Duits MHG,van den Ende D,Mellema J,Agterof WGM,Mugele F:Microrheology of aggregated emulsion droplet networks,studied with AFM-CSLM.Langmuir 2006;22:560-574.
    131.Ikai A,Afrin R,Sekiguchi H,Okajima T,Alam MT,Nishida S:Nano-mechanical methods in biochemistry using atomic force microscopy.Curr Protein Pept Sci 2003;4:181-193.
    132.Meyer EE,Rosenberg KJ,Israelachvili J:Recent progress in understanding hydrophobic interactions.Proc Natl Acad Sci U S A 2006;103:15739-15746.
    133.Rabinovich Y,Esayanur M,Daosukho S,Byer K,El-Shall H,Khan S:Atomic force microscopy measurement of the elastic properties of the kidney epithelial cells.J Colloid Interface Sci 2005;285:125-135.
    134.Sokolov Ⅰ,Smith DS,Henderson GS,Gorby YA,Ferris FG:Cell surface electrochemical heterogeneity of the Fe(Ⅲ)-reducing bacteria Shewanella putrefaciens.Environmental Science & Technology 2001;35:341-347.
    135.Tomasetti E,Legras R,Nysten B:Quantitative approach towards the measurement of polypropylene/(ethylene-propylene) copolymer blends surface elastic properties by AFM.Nanotechnology 1998;9:305-315.
    136.Tsui OKC,Wang XP,Ho JYL,Ng TK,Xiao XD:Studying surface glass-to-rubber transition using atomic force microscopic adhesion measurements.Macromolecules 2000;33:4198-4204.
    137.Willemsen OH,Snel MME,Kuipers L,Figdor CG,Greve J,De Grooth BG:A physical approach to reduce nonspecific adhesion in molecular recognition atomic force microscopy.Biophysical Journal 1999;76:716-724.
    138.Abu-Lail NI,Camesano TA:Specific and nonspecific interaction forces between Escherichia coli and silicon nitride,determined by poisson statistical analysis.Langmuir 2006;22:7296-7301.
    139.Atabek A,Camesano TA:Atomic force microscopy study of the effect of lipopolysaccharides and extracellular polymers on adhesion of Pseudomonas aeruginosa.J Bacteriol 2007;189:8503-8509.
    140.Azeloglu EU,Bhattacharya J,Costa KD:Atomic force microscope elastography reveals phenotypic differences in alveolar cell stiffness.Journal of Applied Physiology 2008;105:652-661.
    141.Fang HH,Chan KY,Xu LC:Quantification of bacterial adhesion forces using atomic force microscopy(AFM).J Microbiol Methods 2000;40:89-97.
    142.Guhados G,Wan WK,Hutter JL:Measurement of the elastic modulus of single bacterial cellulose fibers using atomic force microscopy.Langmuir 2005;21:6642-6646.
    143.Hategan A,Law R.Kahn S,Discher DE:Adhesively-tensed cell membranes:lysis kinetics and atomic force microscopy probing.Biophys J 2003;85:2746-2759.
    144.Hsieh CH,Lin YH,Lin S,Tsai-Wu JJ,Wu CHH,Jiang CC:Surface ultrastructure and mechanical property of human chondrocyte revealed by atomic force microscopy.Osteoarthritis and Cartilage 2008;16:480-488.
    145.Leporatti S,Gerth A,Kohler G,Kohlstrunk B,Hauschildt S,Donath E:Elasticity and adhesion of resting and lipopolysaccharide-stimulated macrophages.FEBS Lett 2006;580:450-454.
    146.Mendez-Vilas A,Gallardo-Moreno AM,Gonzalez-Martin ML:Nano-mechanical exploration of the surface and sub-surface of hydrated cells of Staphylococcus epidermidis.Antonie Van Leeuwenhoek 2006;89:373-386.
    147.Thio BJ,Meredith JC:Quantification of E.coli adhesion to polyamides and polystyrene with atomic force microscopy.Colloids Surf B Biointerfaces 2008;65:308-312.
    148.Touhami A,Hoffmann B,Vasella A,Denis FA,Dufi'ene YF:Aggregation of yeast cells:direct measurement of discrete lectin-carbohydrate interactions.Microbiology 2003;149:2873-2878.
    149.Touhami A,Jericho MH,Boyd JM,Beveridge TJ:Nanoscale characterization and determination of adhesion forces of Pseudomonas aeruginosa pili by using atomic force microscopy.J Bacteriol 2006;188:370-377.
    150.Vileno B,Lekka M,Sienkiewicz A,Jeney S,Stoessel G,Lekki J,Forro L,Stachura Z:Stiffness alterations of single cells induced by UV in the presence of nanoTi02.Environ Sci Technol 2007;41:5149-5153.
    151.Wagh AA,Roan E,Chapman KE,Desai LP,Rendon DA,Eckstein EC,Waters CM:Localized elasticity measured in epithelial cells migrating at a wound edge using atomic force microscopy.Am J Physiol Lung Cell Mol Physiol 2008;295:L54-60.
    152.Gunning AP,Chambers S,Pin C,Man AL,Morris VJ,Nicoletti C:Mapping specific adhesive interactions on living human intestinal epithelial cells with atomic force microscopy.FASEB J 2008;22:2331-2339.
    153.Burks GA,Velegol SB,Paramonova E,Lindenmuth BE,Feick JD,Logan BE:Macroscopic and nanoscale measurements of the adhesion of bacteria with varying outer layer surface composition.Langmuir 2003;19:2366-2371.
    154.Vadillo-Rodriguez V,Busscher HJ,Norde W,De Vries J,Dijkstra RJ,Stokroos I,Van Der Mei HC:Comparison of atomic force microscopy interaction forces between bacteria and silicon nitride substrata for three commonly used immobilization methods.Appl Environ Microbiol 2004;70:5441-5446.
    155.Li X,Logan BE:Analysis of bacterial adhesion using a gradient force analysis method and colloid probe atomic force microscopy.Langmuir 2004;20:8817-8822.
    156.Wu Y,Cai J,Cheng L,Xu Y,lin Z,Wang C,Chen Y:Atomic force microscope tracking obervation of Chinese hamster ovary cell mitosis.Micron 2006;37:139-145.
    157.Starodubtseva M,Kuznetsova T,Chizhik S,Yegorenkov N:Atomic force microscopy observation of peroxynitrite-induced erythrocyte cytoskeletion reorganization.Micron 2007;38:782-786.
    158.Velegol SB,Logan BE:Contributions of bacterial surface polymers,electrostatics,and cell elasticity to the shape of AFM force curves.Langmuir 2002;18:5256-5262.
    159.Varma R,Campi G,Yokosuka T,Saito T,Dustin ML:T cell receptor-proximal signals are sustained in peripheral microclusters and terminated in the central supramolecular activation cluster.Immunity 2006;25:117-127.
    160.Yokosuka T,Sakata-Sogawa K,Kobayashi W,Hiroshima M,Hashimoto-Tane A,Tokunaga M,Dustin ML,Saito T:Newly generated T cell receptor microclusters initiate and sustain T cell activation by recruitment of Zap70 and SLP-76.Nat Immunol 2005;6:1253-1262.
    161.da Silva LP:Atomic force microscopy and proteins.Protein Pept Lett 2002;9:117-126.
    162.Gergely C,Senger B,Voegel JC,Horber JK,Schaaf P,Hemmerle J:Semi-automatized processing of AFM force-spectroscopy data.Ultramicroscopy 2001;87:67-78.
    163.Heinz WF,Hoh JH:Spatially resolved force spectroscopy of biological surfaces using the atomic force microscope.Trends Biotechnol 1999;17:143-150.
    164.Janshoff A,Neitzert M,Oberdorfer Y,Fuchs H:Force Spectroscopy of Molecular Systems-Single Molecule Spectroscopy of Polymers and Biomolecules.Angew Chem Int Ed Engl 2000;39:3212-3237.
    165.Kirkham J,Andreev I,Robinson C,Brookes SJ,Shore RC,Smith DA:Evidence for direct amelogenin-target cell interactions using dynamic force spectroscopy.Eur J Oral Sci 2006;114 Suppl 1:219-224;discussion 254-216,381-212.
    166.Lee S,Mandic J,Van Vliet KJ:Chemomechanical mapping of ligand-receptor binding kinetics on cells.Proc Natl Acad Sci U S A 2007;104:9609-9614.
    167.Moore NW,Kuhl TL:The role of flexible tethers in multiple ligand-receptor bond formation between curved surfaces.Biophys J 2006;91:1675-1687.
    168.Odorico M,Teulon JM,Berthoumieu O,Chen SW,Parot P,Pellequer JL:An integrated methodology for data processing in dynamic force spectroscopy of ligand-receptor binding.Ultramicroscopy 2007;107:887-894.
    169.Raible M,Evstigneev M,Reimann P,Bartels FW,Ros R:Theoretical analysis of dynamic force spectroscopy experiments on ligand-receptor complexes.J Biotechnol 2004;112:13-23.
    170.Thormann E,Simonsen AC,Nielsen LK,Mouritsen OG:Ligand-receptor interactions and membrane structure investigated by AFM and time-resolved fluorescence microscopy.J Mol Recognit 2007;20:554-560.
    171.Yu J,Wang Q,Shi X,Ma X,Yang H,Chen YG,Fang X:Single-molecule force spectroscopy study of interaction between transforming growth factor betal and its receptor in living cells.J Phys Chem B 2007;111:13619-13625.
    172.Novotny L,Stranick SJ:Near-field optical microscopy and spectroscopy with pointed probes.Annu Rev Phys Chem 2006;57:303-331.
    173.Rasmussen A,Deckert V:New dimension in nano-imaging:breaking through the diffraction limit with scanning near-field optical microscopy.Anal Bioanal Chem 2005;381:165-172.
    174.Voura EB,Jaiswal JK,Mattoussi H,Simon SM:Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy.Nat Med 2004;10:993-998.
    175.Ianoul A,Street M,Grant D,Pezacki J,Taylor RS,Johnston LJ:Near-field scanning fluorescence microscopy study of ion channel clusters in cardiac myocyte membranes.Biophysical Journal 2004;87:3525-3535.
    176.Lee HY,Park JW,Jung HS,Kim JM,Kawai T:Electrochemical assay of nonlabeled DNA chip and SNOM imaging by using streptavidin-biotin interaction.Journal of Nanoscience and Nanotechnology 2004;4:882-885.
    177.刘美莉,陈勇,蔡继业,吴扬哲:利用AFM和SNOM对淋巴细胞膜表面超微结构及其光学性质的初步研究.分子科学学报2005:21:25-30.
    178.Popik W,Alce TM,Au WC:Human immunodeficiency virus type 1 uses lipid raft-colocalized CD4 and chemokine receptors for productive entry into CD4(+) T cells.Journal of Virology 2002;76:4709-4722.
    179.Singer Ⅱ,Scott S,Kawka DW,Chin J,Daugherty BL,DeMartino JA,DiSalvo J,Gould SL,Lineberger JE,Malkowitz L,Miller MD,Mitnaul L,Siciliano SJ,Staruch MJ,Williams HR,Zweerink HJ,Springer MS:CCR5,CXCR4,and CD4 are clustered and closely apposed on microvilli of human macrophages and T cells.Journal of Virology 2001;75:3779-3790.
    180.Gladnikoff M,Rousso I:Directly monitoring individual retrovirus budding events using atomic force microscopy.Biophys J 2008;94:320-326.
    181.Jiang Y,Zhu C,Ling L,Wan L,Fang X,Bai C:Specific aptamer-protein interaction studied by atomic force microscopy.Anal Chem 2003;75:2112-2116.
    182.Wong J,Chilkoti A,Moy VT:Direct force measurements of the streptavidin-biotin interaction.BiomolEng 1999;16:45-55.
    183.Yuan C,Chen A,Kolb P,Moy VT:Energy landscape of streptavidin-biotin complexes measured by atomic force microscopy.Biochemistry 2000;39:10219-10223.
    184.Yingge Z,Chunli B,Chen W,Delu Z:Force spectroscopy between acetylcholine and single acetylcholinesterase molecules and the effects of inhibitors and reactivators studied by atomic force microscopy.J Pharmacol Exp Ther 2001;297:798-803.
    185.Jin Y,Wang K,Tan W,Wu P,Wang Q,Huang H,Huang S,Tang Z,Guo Q:Monitoring molecular beacon/DNA interactions using atomic force microscopy.Anal Chem 2004;76:5721-5725.
    186.Dufrene YF:Atomic force microscopy,a powerful tool in microbiology.J Bacteriol 2002;184:5205-5213.
    187.Girasole M,Cricenti A,Generosi R,Longo G,Pompeo G,Cotesta S,Congiu-Castellano A:Different membrane modifications revealed by atomic force/lateral force microscopy after doping of human pancreatic cells with Cd,Zn,or Pb.Microsc Res Tech 2007;70:912-917.
    188.Zhang X,Liu X,Sun J,He S,Lee I,Pak HK:Real-time observations of mechanical stimulus-induced enhancements of mechanical properties in osteoblast cells.Ultramicroscopy 2008;108:1338-1341.
    189.Ikai A,Afrin R:Toward mechanical manipulations of cell membranes and membrane proteins using an atomic force microscope:an invited review.Cell Biochem Biophys 2003;39:257-277.
    190.Li QS,Lee GY,Ong CN,Lim CT:AFM indentation study of breast cancer cells.Biochem Biophys Res Commun 2008;374:609-613.
    191.Zhang CY,Zhang YW:Computational analysis of adhesion force in the indentation of cells using atomic force microscopy.Phys Rev E Stat Nonlin Soft Matter Phys 2008;77:021912.
    192.Barsegov V,Thirumalai D:Dynamics of unbinding of cell adhesion molecules:transition from catch to slip bonds.Proc Natl Acad Sci U S A 2005;102:1835-1839.
    193.Shen Y,Sun JL,Zhang A,Hu J,Xu LX:A new image correction method for live cell atomic force microscopy.Phys Med Biol 2007;52:2185-2196.
    194.Yamane Y,Shiga H,Haga H,Kawabata K,Abe K,Ito E:Quantitative analyses of topography and elasticity of living and fixed astrocytes.J Electron Microsc (Tokyo)2000;49:463-471.
    195.Abu-Lail NI,Camesano TA:Role of ionic strength on the relationship of biopolymer conformation,DLVO contributions,and steric interactions to bioadhesion of Pseudomonas putida KT2442.Biomacromolecules 2003;4:1000-1012.
    196.Hirano Y,Takahashi H,Kumeta M,Hizume K,Hirai Y,Otsuka S,Yoshimura SH,Takeyasu K:Nuclear architecture and chromatin dynamics revealed by atomic force microscopy in combination with biochemistry and cell biology.Pflugers Archiv-European Journal of Physiology 2008;456:139-153.
    197.Chen Y,Cai J,Zhao J:Diseased red blood cells studied by atomic force microscopy.International Journal of Nanoscience 2002;1:683-688.
    198.Girasole M,Cricenti A,Generosi R,Congiu-Castellano A,Boumis G.,Amiconi G:Artificially induced unusual shape of erythrocytes:an atomic force microscopy study.J Microsc 2001;204:46-52.
    199.Liu F,Mizukami H,Samaik S,Ostafin A:Calcium-dependent human erythrocyte cytoskeleton stability analysis through atomic force microscopy.Journal of Structural Biology 2005;150:200-210.
    200.Nagao E,Nishijima H,Akita S,Nakayama Y,Dvorak JA:The cell biological application of carbon nanotube probes for atomic force microscopy:comparative studies of malaria-infected erythrocytes.Journal of Electron Microscopy 2000;49:453-458.
    201.Nowakowski R,Luckham P,Winlove P:Imaging erythrocytes under physiological conditions by atomic force microscopy.Biochimica Et Biophysica Acta-Biomembranes 2001;1514:170-176.
    202.Ohta Y,Okamoto H,Kanno T,Okuda T:Atomic force microscopic observation of mechanically traumatized erythrocytes.Artificial Organs 2002;26:10-17.
    203.O'Reilly M,McDonnell L,O'Mullane J:Quantification of red blood cells using atomic force microscopy.Ultramicroscopy 2001;86:107-112.
    204.Swihart AH,Mikrut JM,Ketterson JB,MacDonald RC:Atomic force microscopy of the erythrocyte membrane skeleton.Journal of Microscopy-Oxford 2001;204:212-225.
    205.郝禄贵,邓世雄,赵新才:DNA含量变化与死亡时间推断的研究进展.法医学杂志2007;23:145-147.
    206.郑吉龙,张晓东,牛青山:小鼠心肌细胞核DNA变化与死亡时间的关系.法医学杂志 2006;22:173-176.
    207.陈禄仕:积温法则进行死亡时间推断.法医学杂志2006;22:438.
    208.兰玲梅,廖志钢,陈瑶清:我国法医昆虫学的研究进展.法医学杂志2006:22:448-450.
    209.Chen Y,Cai JY:Membrane deformation of unfixed erythrocytes in air with time lapse investigated by tapping mode atomic force microscopy.Micron 2006;37:339-346.
    210.Kasas S,Khanmy-Vital A,Dietler G:Examination of line crossings by atomic force microscopy.Forensic Science International 2001;119:290-298.
    211.Mendez-Vilas A,Bruque JM,Gonzalez-Martin ML:Sensitivity of surface roughness parameters to changes in the density of scanning points in multi-scale AFM studies.Application to a biomaterial surface.Ultramicroscopy 2007;107:617-625.
    212.Velegol SB,Pardi S,Li X,Velegol D,Logan BE:AFM imaging artifacts due to bacterial cell height and AFM tip geometry.Langmuir 2003;19:851-857.
    213.Chen Y,Cai JY,Liu ML,Zeng GC,Feng Q,Chen ZW:Research on double-probe, double-and triple-tip effects during atomic force microscopy scanning.Scanning 2004;26:155-161.
    214.Wu Y,Hu Y,Cai J,Ma S,Wang X,Chen Y:The analysis of morphological distortion during AFM study of cells.Scanning 2008;30:426-432.
    215.Xu S,Arnsdorf MF:Calibration of the scanning (atomic)force microscope with gold particles.J Microsc 1994;173:199-210.
    216.Xu S,Arnsdorf MF:Scanning (atomic)force microscopy imaging of earthworm haemoglobin calibrated with spherical colloidal gold particles.J Microsc 1997;187:43-53.
    217.Na S,Trache A,Trzeciakowski J,Sun Z,Meininger GA,Humphrey JD:Time-dependent changes in smooth muscle cell stiffness and focal adhesion area in response to cyclic equibiaxial stretch.Annals of Biomedical Engineering 2008;36:369-380.
    218.Takai E,Costa KD,Shaheen A,Hung CT,Guo XE:Osteoblast elastic modulus measured by atomic force microscopy is substrate dependent.Annals of Biomedical Engineering 2005;33:963-971.
    219.Lekka M,Laidler P,Ignacak J,Labedz M,Lekki J,Struszczyk H,Stachura Z,Hrynkiewicz AZ:The effect of chitosan on stiffness and glycolytic activity of human bladder cells.Biochimica Et Biophysica Acta-Molecular Cell Research 2001;1540:127-136.
    220.Feneberg W,Aepfelbacher M,Sackmann E:Microviscoelasticity of the apical cell surface of human umbilical vein endothelial cells (HUVEC)within confluent monolayers.Biophysical Journal 2004;87:1338-1350.
    221.Lekka M,Fornal M,Pyka-Fosciak G,Lebed K,Wizner B,Grodzicki T,Styczen J:Erythrocyte stiffness probed using atomic force microscope.Biorheology 2005;42:307-317.
    222.Qi J,Fox AM,Alexopoulos LG,Chi LQ,Bynum D,Guilak F,Banes AJ:IL-1 beta decreases the elastic modulus of human tenocytes.Journal of Applied Physiology 2006;101:189-195.
    223.Hillebrand U,Schillers H,Riethmuller C,Stock C,Wilhelmi M,Oberleithner H,Hausberg M:Dose-dependent endothelial cell growth and stiffening by aldosterone:endothelial protection by eplerenone.Journal of Hypertension 2007;25:639-647.
    224.Oberleithner H:Aldosterone makes human endothelium stiff and vulnerable.Kidney International 2005;67:1680-1682.
    225.Hillebrand U,Hausberg M,Lang D,Stock C,Riethmuller C,Callies C,Bussmaker E:How steroid hormones act on the endothelium-insights by atomic force microscopy.Pflugers Archiv-European Journal of Physiology 2008;456:51-60.
    226.Sun M,Northup N,Marga F,Huber T,Byfield FJ,Levitan I,Forgacs G:The effect of cellular cholesterol on membrane cytoskeleton adhesion.Journal of Cell Science 2007;120:2223-2231.