热休克蛋白90抑制剂17-AAG抗肾细胞癌作用的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分HIF-2α、Hsp90和VEGF在肾细胞癌中的表达及临床意义
     目的研究肾细胞癌中缺氧诱导因子2(HIF-2α)、热休克蛋白90(Hsp90)和血管内皮生长因子(VEGF)的表达及与临床病理特征之间的关系,并探讨三者之间及与肾细胞癌患者预后的关系。
     方法应用免疫组织化学(IHC)S-P法检测60例肾细胞癌及25例正常肾组织中HIF-2α、Hsp90和VEGF表达与分布,分析其间的相关性及与肿瘤临床病理特征之间的联系,根据随访资料探讨上述三者与肾细胞癌患者预后的关系。应用逆转录聚合酶链反应(RT-PCR)和免疫印迹(western blot)法检测HIF-2α及VEGF mRNA的表达。
     结果免疫组化S-P法检测中肾细胞癌标本HIF-2α、Hsp90和VEGF的表达明显高于正常肾组织,差别具有统计学意义。三个指标之间,两两呈显著正相关。HIF-2α、Hsp90和VEGF的表达与肾癌的分期、淋巴转移、肿瘤大小及局部侵润有关。上述三者与肾细胞癌患者生存期之间关系的分析提示HIF-2α阴性组肾细胞癌患者的生存率高于阳性组,差异有统计学意义,Hsp90阴性组生存率有高于阳性组的趋势,接近于统计学水平,VEGF阳性组病例的预后显著差于阴性组,有统计学意义。RT-PCR和western blot法检测中HIF-2α只在蛋白水平增高,VEGF在mRNA和蛋白水平均增高。
     结论在人肾细胞癌中HIF-2α、Hsp90和VEGF基因高表达,且HIF-2α、Hsp90和VEGF三者表达之间有显著正相关。HIF-2α和VEGF是影响肾细胞癌预后的独立因素。HIF-2α可能通过上调VEGF表达而在肾细胞癌的发生发展中起重要作用。Hsp90与HIF-2α密切相关,可能二者在肾细胞癌的发生发展中共同作用。
     第二部分Hsp90抑制剂17-AAG对人肾癌细胞生物学行为影响的体外研究
     目的观察Hsp90抑制剂17-AAG对体外培养的人肾癌细胞株Caki-1细胞的作用。
     方法将Hsp90抑制剂17-AAG加入人肾癌细胞株Caki-1中(实验组),分别在常氧和缺氧状态下进行培养。同时设立阴性对照组和空白对照组。MTT法检测三组细胞增殖能力。Hoechst 33342和PI双染法观察细胞凋亡,AnnexinV-FITC/PI双染法和DNA ladder检测细胞凋亡。western blot法检测HIF-2α和VEGF蛋白表达。
     结果对数生长周期的三组细胞在常氧状态下的增殖活性无明显区别。而实验组细胞在缺氧48小时后生长能力逐渐下降,细胞增殖明显滞后于前两组细胞,差异有统计学意义。缺氧状态下实验组的凋亡率明显增高,而阴性对照组和空白对照组细胞的凋亡率尽管也增多,但增高幅度较小,与实验组比较,差异有统计学意义。常氧状态下,实验组细胞HIF-2α和VEGF蛋白表达受到抑制,明显低于阴性对照组和空白对照组,差异有统计学意义。在模拟缺氧24小时后,阴性对照组和空白对照组的HIF-2α和VEGF蛋白表达明显增强,与常氧时比较差异有统计学意义。而实验组细胞HIF-2α和VEGF蛋白表达虽然有所增加,但幅度较小,与常氧时比较差异无统计学意义。
     结论在体外,Hsp90抑制剂17-AAG能抑制Caki-1细胞增殖,促进凋亡,并能抑制人肾癌细胞株Caki-1的HIF-2α和VEGF基因表达。
     第三部分Hsp90抑制剂17-AAG对人肾细胞癌抑制作用的体内研究
     目的在整体水平(裸鼠皮下移植瘤)研究Hsp90抑制剂17-AAG对人肾细胞癌生长的作用。
     方法建立人肾细胞癌裸鼠皮下移植瘤模型,在模型中按125mg/kg体重标准,在瘤体内分别注射17-AAG、DMSO和生理盐水,观察抑瘤效果,IHC S-P法检测HIF-2α和VEGF蛋白表达,TUNEL和透视电镜检测凋亡。
     结果实验组裸鼠皮下移植瘤的生长明显受到抑制。体积增长明显慢于空白对照组和阴性对照组,差别有统计学意义。同时重量明显轻于空白对照组和阴性对照组,差别有统计学意义。实验组裸鼠皮下移植瘤HIF-2α和VEGF蛋白表达弱于对照组,差别有统计学意义。实验组裸鼠皮下移植瘤凋亡指数(AI)明显小于对照组。
     结论在体内实验中,Hsp90抑制剂17-AAG能明显抑制人肾细胞癌的生长,促进凋亡,可能有下调HIF-2α和VEGF的表达的作用。
PartⅠThe clinicopathologic significance of HSP90,HIF-2α,and VEGF expression in renal cell carcinoma.
     Objective To investigate the expression of heat shock protein 90(Hsp90), hypoxia-inducible factor 2α(HIF-2α),and Vascular endothelial growth factor (VEGF).Analyze the relationship among these protein and the clinicopathologic features of human renal cell carcinoma.To explore whether Hsp90,HIF-2α,and VEGF play an important role in the outcome of renal cell carcinoma.
     Methods Measure the expressions of Hsp90,HIF-2α,and VEGF In 60 case of resected specimens of renal cell carcinoma and 25 case their corresponding nomal renal tissues by immunohistochemical S-P method.Analyze the significance of these protein with the clinicopathologic features and outcome in human renal cell carcinoma.RT-PCR and western blot were used to detect the expression levels of HIF-2αand VEGF mRNAs and proteins.
     Results Increased expressions of Hsp90,HIF-2α,and VEGF were detected in renal cell carcinoma,and significant correlations were observed among them.the expressions of HSP90、HIF-2α、and VEGF were closely related with the stage,LN metastasis and the size of tumor of renal cell carcinoma.The overall survival rate is higher in renal cell carcinoma,which have low expression of HIF-2αand VEGF.The survival rate is slightly higher in renal cell carcinoma,which have low expression of Hsp90.Higher expression of HIF-2αwas detected only at protein level,and for VEGF both at mRNA and protein level via RT-PCR and western blot.
     Conclusions The expressions of Hsp90,HIF-2α,and VEGF are overexpressed in renal cell carcinoma.It is likely that HIF-2αis involved in the angiogenesis of renal cell carcinoma via upregulation of VEGF expression.Furthermore,Hsp90 and HIF-2αlikely plays an important role in renal cell carcinoma together.
     PartⅡStudy of the impact of biological behaviors on human renal cell carcinoma cells by 17-AAG in vitro.
     Objective To explore the effects of 17-AAG on human renal cell carcinoma cells in vitro.
     Methods human renal cell carcinoma cell line Caki-1 cells were cultured with or without 17-AAG under normoxic and hypoxic conditions,respectively.MTT assay was used to determine the proliferation rate of Caki-1 cells.Apoptosis was detected by the means of Hoechst 33342/PI double staining、AnnexinV-FITC/PI double staining and DNA ladder.Western blot were used to detect the expression of HIF-2αand VEGF protein.
     Results In experimented group cells,ability of proliferation was inhibited in hypoxic state,meanwhile,apoptotic rate increased.Expressions of HIF-2αand VEGF protein were significantly inhibited in Caki-1 cells of experimental group,compared with in that of negative control group or blank control group.
     Conclusions 17-AAG can inhibit cell proliferation,and promote apoptosis in human renal cell carcinoma cell of Caki-1 in vitro,and likely due to the inhibition of HIF-2αand VEGF expression.
     PartⅢResearch for inhibition human renal cell carcinoma by 17-AAG in vivo
     Objective To research growth of human renal cell carcinoma by 17-AAG in vivo via transplanted subcutaneously in nude mouse.
     Methods human renal cell carcinoma transplanted subcutaneously in nude mouse. 17AAG,DMSO,and NS were intratumorally injected with 125mg/kg respectively in subcutaneous xenograft model,inhibitory effect of tumor growth was observed,HIF-2αand VEGF protein expressions were detected by immunohistochemical S-P method, TUNEL stain and transmission electron microscopy was used to determine apoptosis.
     Results Growth rate of subcutaneous xenograft significantly decreased experimental group,the tumors size and weight of experimental group were significantly lesser than those of negative control group and blank control group.For experimental group, expressions of HIF-2αand VEGF proteins were weaker than those of negative control group and blank control group.
     Conclusions 17-AAG can dramatically inhibit the growth of human renal cell carcinoma,likely due to upregulation the expression of HIF-2αand VEGF.
引文
1.Tian H,Mcknight SL,Russell DW.Endothelial PAS domain protein 1(EPAS 1),a transcription factor selectively expressed in endothelial cells,Genes Dev,1997,11(1):72-82.
    2.Giatromanolaki A,koukourakis MI,Sivridis E,et al.relation of hypoxia inducible factor 1α and 2α in operable non-small cell lung cancer to angiogenic /molecular profile of tumors and survival.Br J Cancer,2001,85(6):881-890
    3.Birner P,Schindle M,oler mair A,et al,Overexpression of hypoxia-inducible factor 1alpha is a marker for an unfavourable prognosis in early-stage invasive cervical cancer.Cancer Res,2000,60(17):4693-4696
    4.Hua zhong,Angelo M,peet DJ,et al.Regulation of geno expression by the hypoxia-inducible factor 1alpha in Common human Cancer and their metastasis.Cancer Res,1999;59(22):5830-5835
    5.Linehan WH,Walther MM,Zbar B.The genetic basis of Cancer of the kidney,J Urol.2003 Dec;170(6 p+1):2163-2172.
    6.Gatnra JR,T ory K,Weny Y.Mutations of the VHL tumor suppressor gene in renal carcinoma.Nat Genet 1994;7:85-90
    7.Herman JG,Latif F,weng Y,et al.Silencing of the VHL tumor-suppressor gene by DNA methylationin in renal carcinoma. Proc Natl Acad Sci USAA994 oct 11:9(21):9700-9704.
    8. Heinzer H, Huland H. Treatment of metastatic renal cell carcinoma .Value of immmunotherapy comprared with surgery of metastases . Urology A. 2000 Jul;39(4):356-361.
    9. Pugh CW , Raticliffe PJ, regulation of angiogenesis by hypoxia:role of the HIFsystem .Nat Med 2003 Jun; 9(6):677-684.
    10. Kaelin ,W.G. The von Hippel-Lindau gene, kindney and oxgen sellsing.J .AM Soc,Nephrol.2003,14: 2703-2711.
    11. Ohh M, Psrk cw,Ivan M,et al.Ubiquitination of hypoxia-Inducible factor repairs direct binding to the beta-domain of the von Hippel-Lindau protein.Nat Cell Biol 2000 Jul;2(7):421-427.
    12. Krek ,W ,VHL takes HIF' S breath way.Nat Cell Biol 2000 Jul ;2(7):E 121-123.
    13. Lǒ fstedt T ,Fred lund E, Holmquist-Mengelbiex L,et al.Hypoxia inducible factor-2 alpha in cancer cell cycle , 2007.6(8): 919 - 926.
    14. Monnoto RI, Regulation of the heat shock transcriphtional response : Cross talk between a family of heat shock factors , Molecular chaperones and negative regulators . Genes Dew . 1998 Eec 15;12(24):3788-3796.
    15. Jolly C, Morimoto RI Role of the heat shock response and molecular chaperones in oncogenesis and cell death . J Natl Cancer Inst.2000 oct 4;92(19):1564-1572.
    16. Pratt WB, Toft Do, Regulation of signaling proterin fuction and trafficking by the hsp90/hsp70-based chaperone machinery . Exp Bid Med.2003 Feb:228(2): 111-133.
    17. Isaacs Js,Xu W, Necker SL, heat shock protein 90 as a ,p;eci;ar target for cancer therapeutics. Cander Cell.2003 Mar;3(3):213-217.
    18. Linehan WM, Vassel;J ,Sriniva san R,et al. Genetic basis of cancer of the kidney: disease-spcific approaches to therapy , clin Cancer Res, 2004 sep 15: 10(18 pt 2):6282s-6289s.
    19.Raval RR,Lau kw,TARAN MG,et al.Contrasting properties of hypoxia-inducible factor 1(HIF-1) and HIF-2 in von Hippel-Lindau-associated renal cell carcinoma,Mol cell Biol,2005,25(13):5675-5686.
    20.Zimmer M,Doucette D,Siddigu:N,et al.inhibition of hypoxia-inducible factor is sufficient for growth suppression of VHL-1-TUMORS.Mol cancer Res,2004,2(2):89-95.
    21.Shinojima T,Oga M,Takayanagi A,et al,Renal cancer cells lacking hypoxia inducible factor(HIF)-1 alpha expression maintain vascular endothe growth factor expression through HIF-2 alpha,Carcinogenesis,2007,28(3):529-536.
    22.Ratcliffe PJ.HIF-1 α HIF-2 α:working alone or together in hypoxia.J clin Invest,2007117(4):862-865.
    23.Hopfl G,Ogunshola O and Gassmann M,HIFs and tumors-cavses and consequencces,Am J physiol Regul Integr Comp physiol,2004,286(4):R 608-623.
    24.Ikeda N,Adachi M,Taki T,et al.prognstic significance of angiogenesis in human pancreatic cancer,Br J Cancer,1999,79(9/10):1553-1563.
    25.Bache M,Reddemann R,Said HM.et al.Immunohistochemical detection of osteopontin in advanced head-and-neck cancer:prognostic roal and correlation with oxygen electrodemeasurements,hypoxia-inducible-factor-2alpha-related marks,and hemoglobin levels.Int J Radiat Oncol Biol Phys.2006;66(5);1481-1487
    26.Lando D,Peet DJ,Whelan Da,etal.Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch.Science,2002,295,(5556):858-861.
    1.Mclaughlin JK,Lipworth L.Epidemiologic aspects of renal cell cancer.semin oncol.2000 Apr:27(2):115-123.
    2.Godley P,Kim SW.Renal cell carcinoma.Curr opin oncol.2002 May:14(3)280-285.
    3.Motzer RT,Russo P.Systemic therapy for renal cell carcinoma.J Urol.2000 Feb:163(2)408-417.
    4.Koukourakis MI,Giatromanlaki A,Sivridis E,et al.Hypoxia-inducible factor(HIF 1α and HIF 2α),angiogenesis,and chemoradiotherapy out come of squam ous cell head-and-neck cancer.Int J Radiat Oncol Biol Phys,2002,13(5):1192-1202.
    5.Giatroranolaki A,Konkourakis MI,Sivridis E,et al.Relation of hypoxia inducible factor 1 alpha and 2 alpha in operable non-small cell lung cancer to angiogenic /molecular profile of tumours and survival.Br J Cancer,2001,85(6):881-890.
    6.Kato Y,Asano K,Mogi T,et al.Clinical significance of circulating vascular endothelial growth factor in clogs with mammary gland tumors.J Vet Med Sci,200769(1)77-80.
    7.Von Marschall Z,Gramer T,Hocker M,et al.Dual mechanism of vascular endothelial growth factor upregulation by hypoxia in human hepatocellular carcinoma. Gut, 2001, 48(1):87-96.
    8. Yuan Y, Hilliard G, Ferguson T,et al.Cobalt inhibits the interaction between hypoxia-inducible factor-alpha and Von Hippel-Lindau protein by direct binding to hypoxia-inducible factor-alpha.J Biol Chem,2003,278(18)15911-15916.
    9. Damert A, Machein M, Breier G, et al. Up-regulation of vascular endothelial growth factor expression in a rat glioma is conferred by two distinct hypoxiadriven mechanisms. Cancer Res, 1997,57(17):3860-3864.
    10. Hopfl G, Wenger Rh, Ziegler U, et al. Rescue of hypoxia-inducible factor-1α deficient tumor growth by wild-type cells is independent of vascular endothelial growth factor. Cancer Res,2002,62(10):2962-2970.
    11. Yu E Z,Li yy,Liu XH,et al.Antiapoptotic action of hypoxia-inducible factor-1 alpha in human endothelial cells.Lab Invest,2004,85(5):553-561.
    12. Akakura N,Kobayashi M,Horiuchi I,et al.Constitutive expression of hypoxia-inducible factor-1 alpha renders pancreatic cancer cells resistant to apoptosis induced by hypoxia and nutrient deprivation.Cancer Res,2001,61(17): 6548-6554.
    13. Semenza GL,.Targeting HIF-1 for Cancer therapy.Nat Rev Cancer,2003,3(10): 721-732.
    14. Helton R,Cui J,Scheel JR,et al.Brain-specific knock-out of hypoxia-inducible factor-1 alpha reduces rather than increases hypoxic-ischemic demage.J Neurosci, 2005,25(16):4090-4127.
    15. Guppy M.Brunner S, Buchanan M, et al.Metabolic depression: a response of cancer cells to hypoxia. Comp Biochem physiol B Biochem Mol Biol, 2005, 140(2):233-239.
    16. Wagner KF, Hellberg AK,Balenger S,et al.Hypoxia-induced mitogenic factor has antiapoptotic action and is upregulated in the developing lung:coexpression with hypoxia-inducible factor-2alpha.Am J Respir cell Mol Biol,2004,31(3):276-282.
    17. Castro-Rivera E,Ran S, Thorpe P,et al.Semaphorin 3B(SEMA 3B) induces apoptosis in lung and breast cancer,whereas VEGF 165 antagonizes this effect.proc Nat 1 Acad sci USA,2004,101(31):11432-11437.
    18. Yanagisawa M,Kurihara H,Kimura S,et al.Anovel petent vasoconstrictor peptide produced by vascular endothelial cells. Nature, 1988, 332(6163):411-415.
    19. Zaman K,Ryu H,Hall D,et al.Protection form oxidative stress-induced apoptosis in cortical neuronal cultures by iron chelators is associated with enhanced DNA binding of hypoxia-inducible factor-1 and ATF-1/CREB and increased expression of glycolytic enzymes,p 21(waf 1/cip 1) and erythropoietin. J Neurosci, 1999,19(22):9821-9830.
    1.Mclaughlin JK,Lipworth L.Epidemiologic aspects of renal cell cancer.Semin Oncol.2000,Apr;27(2):115-123.
    2.Pantuck A J,Zisman A,Bell degrun AS.The changing natural history of renal cell carcinoma.J urol.2001,Nov;166(5):1611-1623.
    3.Godley P,Kim SW.Renal cell carcinoma.Curr opin oncol.2002,May;14(3):280-285.
    4.Hoffman DM,Gitlitz BJ,Bell degrun A,et al.Adoptive cellular therapy.Semin Oncol.2000Apr;27(2):221-223.
    5.Han KR,Bleumer I,Pantuck AJ,et al.Validation of an integrated staging system toward improved prognostication of patients with localized renal cell carcinoma in an internation.J urol,2003:170Dec:2221-2224.
    6.Bergers G,Benjamin LE.Tumorigenesis and the angiogenic switch,Nat Rev Cancer,2003,3(6):401-410.
    7.Blagosklonny MV.Antiangiogenic therapy and tumor progression.Cancer Cell,2004,5(1):13-17.
    8. Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases.Nature, 2000,407(6801):249-257.
    9. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med, 1971,285(21): 1182-1186.
    10. Castro-Rivera E, Ran S, Thorpe P, et al. Semaphorin 3B induces apoptosis in lung and breast cancer, whereas VEGF 165 antagonizes this effect, proc Natl Acad Sci USA,2004,101(31):11432-11437.
    11. Minet E, Mottet D, Michel G, et al. Hypoxia induced activation of HIF-1:role of HIF-α-Hsp90 interaction. FEBS Lett. 1999 oct 29:460(2:)251-256.
    12. Katschinski Dm, Le L, Schindler SG, et al. Interaction of the PASB domain with Hsp90 accelerates hypoxia-inducible factor-1 alpha stabilization. Cellphysiol Biochem.2004; 14(4-6): 351-360.
    13. Isaacs JS, Jung YJ, Minnaugh EG, et al.Hsp90 regulates a von Hippel hindau-independent hypoxia-inducible factor-1 alpha-degradative pathway.J Biolchem. 2002 Aug 16; 277(33):29936-29944.
    14. Mcclellan AJ, Scott MD, Frydman J.Folding and quality control of thf UVHLtumor suppressor proceed through distinet chaperone pathways. Cell. 2005 JUN 3;521(5):739-748.
    15. Kamal A, Thao L, Sensintaffar J, et al. A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibious.Nature. 2003 Sep 25;425(6956) 407-410.
    16. Neckers L.Hsp90 inhibitous as novel cancer chemotherapeutic agens.Trends Med.2002;8(4 suppl):s55-61.
    1. Gleadle JM, Ratcliffe PJ. Hypoxia and the regulation of gene expression. Mol Med Today,1998,4(3):122-129.
    2. Tian H, Mcknight SL, Russell DW. Endothelial PAS domain protein 1 (EPAS l),a transcription factor selectively expressed in endothelial cells,Genes Dev,1997,11(1):72-82.
    3. Gassmann M ,Chilor D ,Wenger RH. Regulation of the hypoxia-inducible factor-1 alpha.ARNT is not necessary for hypoxic induction of HIF-1 alpha in the nucless[J].Adv Exp Med Biol ,2000,475:87-99.
    4. Jiang BH,Zhen JZ,Leung SW,et al.Transactivation and inhibitory domains of hypoxia-inducible factor 1 alpha.Modulation of transcriptional activity by oxygen tension [J].J Biol chem,1997 272(31):19253-19260.
    5. Ema M, Tayas,Yokotani N,et al.A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor-1α regulates the VEGF expression and is potentially involved in lung and vascular development. proc Natl Acad Sci USA, 1997,94(9):4273-4278.
    6. Hosford GE and Olson DM. Effects of hyperoxia on VEGF, its receptors, and HIF-2 alpha in the newborn rat lung. Am J physiol Lung cell Mol physiol, 2003,285(1):L161-L168.
    7. Heidbreder M ,Fr ō hlich F,J ō hren O, et al. Hypoxia rapidly activatesHIF-3 alphamRNAexpression.FASEB J,2003,17(11): 1541-1543.
    8. Roux JC, Brismar H, Aperia A, et al. Developmental changes in HIF transcription factor in carotid body : relevances for ossensing by chemoreceptors. Pediatr Res, 2005,58(1):53-57.
    9. Li QF , Dai AG. Differental expression of three hypoxia-inducible factor-alpha subunits in pulmonary arteries of rat with hypoxia-induced hypertension. Acta Biochim Biophys Sin(shang hai).2005,37(10):665-672.
    10. Sivridis E, Giatromanolaki A, Gatter KC, et al. Association of hypoxia inducible factors 1 alpha and 2 alpha with activated angiogenic pathways and prognosis in patients with endometrial carcinoma.Cancer, 2002, 95(5): 1055-1063.
    11. Hopfl G, Ogunshola O and Gassmann M .HIFS and tumors-causes and Consequences. Am J Physiol Regul Integr Comp physiol, 2004, 286(4): R608-623.
    12. Sato M, Tanaka T, Maeno T, et al. Inducible expression of endothelial PAS domain protein-1 by hypoxia in human lung adenocarcinoma A549 cells. Role of src family kinases-dependent pathway. AM J Respir cell Mol Biol , 2002,26(1):127-134.
    13. Favier J, Kempf H, Corvol P, et al. Coexpression of endothelial PAS protein 1 with essential angiogenic factors suggests its involvememt in human vascular devepment. Dev Dyn, 2001, 222(3):377-388.
    14. Yuan Y, Hilliard G, Ferguson T,et al. Cobalt inhibits the interaction between hypoxia-inducible factor-alpha and von Hippel- Lindau protein by direct binding to hypoxia-inducible factor-alpha. J Biol Chem, 2003, 278(18):15911-15916.
    15. Zimmer M, Doucette D, Sddiguli N, et al. Inhibition of hypoxia inducible factor is sufficient for growth suppression of VHL-/- tumors. Mol Cancer Res.2004, 2(2):89-95.
    16. Raval RR, Lau KW, Tran MG, et al. Contrasting properties of hypoxia-inducible factor 1(HIF-1) and HIF-2 in von Hippel -Lindau associated renal cell carcinoma. Mol cell Biol, 2005, 25(13):5675-5686.
    17. Tanaka T, Akiyama RL, kanai H ,et al. Endothelial PAS domain protein 1 (EPAS 1) induces adrenomedullin gene expression in cardiac myocyles : role of EPAS1 in an inflammatory response in cardiac myocytes. J Mol cell Cardiol, 2002, 34(7):739-748.
    18. Giatromanolaki A ,Koukourakis MI ,Sivridis E ,et al. Relation of hypoxia inducible factor 1 alpha and 2 alpha in operable non-small cell lung cancer to augiogenic /molecular profile of tumours and survival.Br J Cancer, 2001, 85(b):881-890.
    19. Brown JM. Exploiting the hypoxic cancer cell: Mechanisms and therapeutic Strategies [J].Mol Med Today, 2000,(6): 157-162
    20. Ratcliffe P J, pugh cw, Maxwell PH. Targeting tumors through the HIF system [J], Nat Med, 2000, 6(12):1315-1316
    21. Kung AL, Wang S, Klco JM, et al. Suppression of tumor growth through disruption of hypoxia-inducible transcription [J]. Nat Med, 2000, 6(12) 1335-1340