冠心病不稳定性心绞痛血瘀证的microRNA生物标志物研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冠心病已成为危害人类健康的严重公共卫生问题和社会问题。中医药在改善冠心病患者症状和提高冠心病患者生活质量中发挥着重要的作用,其起效的核心在于辨证论治。其实质是对冠心病的患者进行分层,确定不同的亚型,再进行个体化的治疗,以达到最大限度的发挥药物的治疗作用和减少药物的不良反应。辨证论治的优势在于根据宏观的症状群,即可确定个体化的治疗方案;而其不足之处在于缺乏客观定量的生物学指标。在中医理论的指导下,流行病学显示血瘀证是冠心病的主要证候,寻找冠心病血瘀证相关的生物标志物,有助于对冠心病患者进行进一步分层,以指导临床治疗。
     microRNA (miRNA)是一类非编码小RNA分子,可以导致其靶基因的降解或阻碍其靶基因的翻译。miRNA的表达异常引起相应生物网络的紊乱是疾病发生的重要原因之一。新近研究显示miRNA的表达模式在诸多的心血管疾病中发生了变化,如动脉粥样硬化、高血压、心律失常、心肌梗死、心肌肥厚及心力衰竭。miRNA在冠心病中作为生物标志物和治疗靶点已经开展了广泛的研究。miRNA与冠心病密切相关,但目前仍未有探索miRNA作为冠心病血瘀证生物标志物的研究。将miRNA引入冠心病血瘀证生物标志物的研究,为寻找冠心病血瘀证生物标志物提供了新的思路。本课题采用系统生物学的方法寻找不稳定性心绞痛血瘀证的生物标志物,探索其发生机制,期望能为不稳定性心绞痛血瘀证的诊断提供新的生物标志物,同时为其治疗提供新的靶点。
     1目的
     检测不稳定性心绞痛血瘀证患者,不稳定性心绞痛痰浊证患者,急性缺血性中风血瘀证患者和健康对照者的microRNA表达谱和基因表达谱,寻找起关键调控作用的差异表达的miRNA和基因,确定各组能够作为生物标志物的rniRNA及其靶基因,对各组的生物标志物的表达模式进行验证。探索miRNA及其靶基因作为不稳定性心绞痛血瘀证的生物标志物的可行性,为不稳定性心绞痛患者的临床分层提供依据。
     2研究方法
     2.1外周血单核细胞(PBMC)的分离和总RNA的提取
     选取符合西医疾病诊断标准和中医证侯诊断标准的患者,分为4组,包括不稳定性心绞痛血瘀证患者、不稳定性心绞痛痰浊证患者、急性缺血性中风血瘀证患者和健康对照者。每组纳入20例,抽取外周血,分离PBMC,提取总RNA。采用紫外吸收法检测总RNA的纯度和浓度,变性琼脂糖凝胶电泳检测总RNA的完整性。
     2.2外周血单核细胞的microRNA和基因的表达谱检测
     每组取5例病例的PBMC的总RNA用于microRNA芯片和基因芯片检测。采用Phalanx公司生产的Human miRNA OneArray? v4芯片和Human Whole Genome OneArray? v5芯片进行检测。
     2.3microRNA和基因的表达谱的生物信息学整合分析
     根据各组与正常组的比值的对数值和P值进行差异表达的microRNA和基因的筛选。运用聚类软件Cluster3.0进行average-linkage层次聚类运算。根据聚类结果,运用Java TreeView-1.1.6r2绘制热图。采用在线分析软件DAVID6.7进行差异基因富集的KEGG通路分析。基于microRNA对靶基因的负向性调控,根据不同组中的差异表达的]microRNA的情况,采取不同的整合通路和网络分析方法。运用miRTrail构建microRNA和靶基因相互作用网络。运用网络分析和可视化软件BiNA生成nicroRNA和靶基因相互作用网络图。
     2.4qRT-PCR验证
     根据各组差异表达的microRNA和基因的通路和网络分析结果,确定各组中起关键调控作用的microRNA及其靶基因。每组中除用于microRNA芯片和基因芯片检测的5例标本外,剩余的15例标本用于qRT-PCR验证各组中起关键调控作用的microRNA及其靶基因的表达模式。
     2.5统计学方法
     计量资料用均数±标准差表示。样本量小于50采Shapiro-Wilk检验判断是否符合正态分布,样本量大于50采用Kolmogorov-Smirnov检验判断是否符合正态分布。两组间计量资料比较时,不符合正态分布的组采用Mann-Whitney秩和检验;符合正态分布的,采用Levene's检验判断方差是否具有齐性,方差齐的组采用独立样本的t检验(unpaired Student's t test);方差不齐的组采用近似t检验(approximate Student's t test)。多组间计量资料比较时,不符合正态分布的组采用Kruskal-Wallis秩和检验;符合正态分布的,采用Levene's检验判断方差足否具有齐性,方差齐的组采用单因素方差分析(one-way ANOVA);方差不齐的组采用Kruskal-Wallis秩和检验。计数资料进行卡方检验,但足若行×列表格中有1/5以上的格子理论频数<5,或有一个格子理论频数<1则采用似然比卡方的结果。采用SPSS16.0统计软件分析数据,P<0.05为差异有统计学意义。采用GraphPad Prism5软件根据统计结果绘制柱状图和盒状图。
     3结果
     3.1一般临床资料
     对不稳定性心绞痛血瘀证组、不稳定性心绞痛痰浊证组、急性缺血性中风血瘀证组和健康对照组的一般临床资料进行了统计分析,发现4组用于nicroRNA芯片和基因芯片检测的年龄、性别、BMI、吸烟史、2型糖尿病、CHO、LDL、 HDL、TG和CRP方面比较均无显著性差异(P>0.05)。4组用于qRT-PCR验证的年龄、性别、BMI、吸烟史、2型糖尿病、CHO、LDL、HDL和CRP比较均无显著性差异(P>0.05)。
     3.2外周血单核细胞的microRNA和基因的表达谱检测
     在microRNA表达谱中,不稳定性心绞痛血瘀证组和健康对照组相比,25个microRNA的表达存在差异,其中23个microRNA上调,2个microRNA下调;不稳定性心绞痛痰浊证组和健康对照组相比,11个microRNA的表达存在差异,其中2个microRNA上调,9个microRNA下调;急性缺血性中风血瘀证组和健康对照组相比,20个microRNA的表达上调,无microRNA下调。各组差异表达的microRNA见表7。在基因表达谱中,不稳定性心绞痛血瘀证组和健康对照组相比,1081个基因的表达存在差异,其中673个基因上调,408个基因下调;不稳定性心绞痛痰浊证组和健康对照组相比,697个基因的表达存在差异,其中451个基因上调,246个基因下调;急性缺血性中风血瘀证组和健康对照组相比,546个基因的表达存在差异,其中383个基因上调,163个基因下调。
     3.3microRNA和基因表达谱的生物信息学分析
     各组差异表达的基因的聚类分析产生的热图结果显示,每组的5个样本聚为一类,显示各组组内的样本一致性较好。各组与健康对照组相比,1nicroRNA和基因的表达差异显著,可以通过microRNA和基因的表达差异将各组与健康对照组区分开。DAVID软件分析各组差异表达的基因富集的KEGG通路的结果如下:在不稳定性心绞痛血瘀证组上调的基因富集的7条通路中,NOD样受体信号通路、凋亡通路和细胞因子和受体相互作用通路与不稳定性心绞痛密切相关。不稳定性心绞痛血瘀证组下调的基因富集的6条通路中,抗原呈递和处理通路和p53信号通路与不稳定性心绞痛密切相关。不稳定性心绞痛痰浊证组下调的基因富集的7条通路中,抗原呈递和处理通路和NK细胞介导的细胞毒性作用通路与不稳定性心绞痛密切相关。不稳定性心绞痛痰浊证组上调的基因富集的6条通路中,MAPK信号通路、NOD样受体信号通路和趋化因子信号通路与不稳定性心绞痛密切相关。急性缺血性中风血瘀证组上调的基因富集的3条通路中,NOD样受体信号通路和MAPK信号通路与急性缺血性中风密切相关。急性缺血性中风血瘀证组下调的基因富集的3条通路中,NK细胞介导的细胞毒性作用通路和细胞因子和受体相互作用通路与急性缺血性中风密切相关。
     在miRTrail构建的microRNA和靶基因相互作用网络中,6个上调的microRNA和115个下调的靶基因构成了不稳定性心绞痛血瘀证的网络,1个下调的microRNA和10个上调的靶基因构成了不稳定性心绞痛痰浊证的网络,5个上调的microRNA和24个实际下调的靶基因构成了急性缺血性中风血瘀证的网络。
     3.4qRT-PCR验证
     和健康对照组相比,miR-146b-5p、miR-199a-3p和miR-199a-5p在不稳定性心绞痛血瘀证组和急性缺血性中风血瘀证组中表达上调,差异有统计学意义(P<0.05),在不稳定性心绞痛痰浊证组中无明显变化;miR-146b-5p、miR-199a-3p和miR-199a-5p在不稳定性心绞痛血瘀证组和急性缺血性中风血瘀证组之间相比,表达无差异;miR-363a-5p和miR-668在不稳定性心绞痛痰浊证组中表达下调,差异有统计学意义(P<0.05),在不稳定性心绞痛血瘀证组和急性缺血性中风血瘀证组中无明显变化。
     和健康对照组相比,CALR在不稳定性心绞痛血瘀证组中表达下调,差异有统计学意义(P<0.05),在不稳定性心绞痛痰浊证组和急性缺血性中风血瘀证组中无明显变化;TP53在不稳定性心绞痛血瘀证组和急性缺血性中风血瘀证组中表达下调,差异有统计学意义(P<0.05),在不稳定性心绞痛痰浊证组中无明显变化;RIPK2在三组之中表达都升高,差异有统计学意义(P<0.05);RIPK2在三组之间相比,表达无差异;STK4在不稳定性心绞痛血瘀证组和不稳定性心绞痛痰浊证组中表达升高,差异有统计学意义(P<0.05),在急性缺血性中风血瘀证组中无明显变化;STK4在不稳定性心绞痛血瘀证组和不稳定性心绞痛痰浊证组之间相比,表达无差异;IL2RB在不稳定性心绞痛血瘀证组和急性缺血性中风血瘀证组中表达下调,差异有统计学意义(P<0.05),在不稳定性心绞痛痰浊证组中无明显变化;IL2RB在不稳定性心绞痛血瘀证组和急性缺血.性中风血瘀证组之间相比,表达无差异;FASLG在急性缺血性中风血瘀证和不稳定性心绞痛痰浊证组中表达下调,差异有统计学意义(P<0.05),在不稳定性心绞痛血瘀证组中无明显变化;FASLG在急性缺血性中风血瘀证和不稳定性心绞痛痰浊证组之间相比,表达无差异。
     4结论
     4.1microRNA芯片检测发现,与健康对照者相比,不稳定性心绞痛血瘀证、不稳定性心绞痛痰浊证和急性缺血性中风血瘀证的microRNA表达谱存在差异。
     4.2基于通路和网络相结合的生物信息学分析发现各组中具有关键调控作用的microRNA和靶基因如下:在不稳定性心绞痛血瘀证中,上调的miR-146b-5p和miR-199a-5p可能通过下调CALR和TP53以减轻炎症和凋亡;在不稳定性心绞痛痰浊证中,下调的miR-363-5p和miR-668可能通过上调RIPK2和STK4以促进炎症和凋亡;在急性缺血性中风血瘀证中,上调的miR-146b-5p和miR-199a-3p可能通过下调IL2RB和FASLG以减轻炎症和凋亡。
     4.3qRT-PCR验证证实了各种证候中具有关键调控作用的microRNA和靶基因的表达模式,其结果提示:miR-146b-5p、miR-199a-5p、CALR和TP53可以作为不稳定性心绞痛血瘀证患者的生物标志物,miR-363-5p、miR-668、RIPK2和STK4可以作为不稳定性心绞痛痰浊证患者的生物标志物,miR-146b-5p、miR-199a-3p、 IL2RB和FASLG可以作为急性缺血性中风血瘀证患者的生物标志物。
     4.4在不稳定性心绞痛中,血瘀证患者的1niR-146b-5p和miR-199a-5p表达上调,而CALR和TP53表达下调;痰浊证患者的miR-363-5p和miR-668表达上调,而RIPK2和STK4表达下调。这表明“同病异证”在microRNA及其靶基因表达层面具有其生物学基础。
     4.5在不稳定性心绞痛血瘀证和急性缺血性中风血瘀证中,miR-146b-5p、 miR-199a-3p和miR-199a-5p都表达上调,而TP53和IL2RB都表达下调。这表明“异病同证”在microRNA及其靶基因表达层面具有其生物学基础。
     4.6不稳定性心绞痛血瘀证和急性缺血性中风血瘀证在差异表达的rnicroRNA和靶基因方面具有相似性,不同之处在于调控的关键靶基因仍有差异。从microRNA及其靶基因表达层面分析“异病同证”由于其病变部位的不同,仍然存在差异性。
Coronary artery disease (CAD) has become a serious public health and social issue which jeopardizes human health. Increasing clinical evidence has demonstrated the use of Traditional Chinese medicine (TCM) in CAD patients could improve patients'symptoms and quality of life. The key effective mechanism of TCM is that all diagnoses and treatments in CM are based on differentiation of the syndrome. The essence of syndrome differentiation is to stratify patients for identifying subtypes of the same disease, so personalized treatment can be given and thus optimize drug therapy can be achieved with maximum efficacy and minimal adverse effects. The advantage of syndrome differentiation is that personalized treatment can be identified by analysis of profiles of symptoms, while its disadvantage is that it is lack of objective and quantitative biomedical indicators. Guided by the theory of TCM, the epidemiological investigation has demonstrated that blood stasis syndrome (BSS) is the major type of syndrome in CAD patients. Looking for the related biomarkers of BSS of CAD patients will be helpful for the stratification of CAD patients.
     MicroRNAs (miRNAs) are non-protein-coding small RNAs by targeting mRNAs for cleavage or translational repression. It is one of the key mechanisms of diseases that the disorder of the relevant biological networks caused by the deregulation of miRNAs.Recent studies have demonstrated that miRNAs expression patterns change in various cardiovascular diseases, such as atherosclerosis, hypertension, arrhythmia, myocardial infarction, cardiac hypertrophy and heart failure. There have been lots of studies about miRNAs as biomarkers and therapeutic targets of CAD. Although miRNAs are closely related with CAD, there is still lack of study that explores miRNAs as biomarkers of BSS of CAD. If miRNAs are introduced into the studies of biomarkers of BSS of CAD, it will provide new thinking. The purpose of this study was to investigate biomarkers of BSS of UA patients and their relative biomedical mechanisms by a systems biology approach. The study may provide new biomarkers and therapeutic targets for BSS of UA patients.
     1Objective
     The purpose of this study was to test expression profiles of miRNAs and genes in BSS of UA patients, phlegm syndrome (PS) of UA patients, BSS of acute ischemic stroke (AIS) patients and healthy controls, look for key regulating miRNAs and genes which were differentially expressed, identify miRNAs and their target genes as biomarkers, and validate the expression pattern of biomarkers in each group. The feasibility of using miRNAs and their target genes as biomarkers was explored, and this could be helpful for the clinical stratification of UA patients.
     2Method
     2.1Plasma collection and RNA isolation
     Patients who were fit for diagnostic standard of disease and syndrome were included in the study. The study populations were divided into4groups, including BSS of UA patients, PS of UA patients, BSS of AIS patients and healthy controls.20subjects were included in each group. Whole blood samples were drawn from each participant and total RNA was isolated. RNA quantity and purity was assessed using ultraviolet ray absorption method, and RNA Integrity Number (RIN) values are ascertained using agarose gel electrophoresis.
     2.2The test of expression profiles of miRNAs and genes of PBMCs
     In each group, total RNAs of PBMCs (peripheral blood mononuclear cells) of5participants were used for the test of expression profiles of miRNAs and genes. miRNA expression profile was test by using the Human miRNA OneArray? v4and gene expression profile was test by the Human Whole Genome OneArray? v5.
     2.3Integrated bioinformatics analysis of the genes and microRNAs expression profiles
     Identification of differentially expressed genes and miRNAs was based on log2ratios and P value. An average linkage hierarchical clustering was performed with clustering software Cluster3.0and Java Tree View-1.1.6r2was applied to generate the heatmap. We used DAVID Bioinformatics Resources6.7to identify enriched KEGG pathways. According to differentially expressed miRNAs in each group and the negative regulation of miRNAs on target genes, different integrative pathway and network analysis was made. The interactive networks between miRNAs and their target genes were built by the miRTrail. The interactive network of selected miRNAs and actually deregulated target genes was visualized by the network analyzers and viewers BiNA.
     2.4qRT-PCR validation
     According to the results of pathway analysis and network analysis, the key regulating miRNAs and genes were identified. In each group, except5participants who were used for miRNA and gene expression profile analysis, total RNAs of PBMCs of the rest15participants were used for qRT-PCR validation of expression patterns of the key regulating miRNAs and genes in each group.
     2.5Statistics
     All results for quantitative data were expressed as means±SEM. If the sample size was less than50, Shapiro-Wilk test would be used to evaluate whether they followed the normal distribution. If the sample size was more than50, Kolmogorov-Smirnov test would be used to evaluate whether they followed the normal distribution. In2group comparisons of quantitative data, for the data that did not fit the normal distribution, Mann-Whitney test was performed, while for the data of normal distribution. Levene's test of homogeneity of variance was further performed. When the data fitted the homogeneity of variance, unpaired Student's t test was applied, and for the data that did not fit the homogeneity of variance, the approximate t test was performed. In3group comparisons of quantitative data, for the data that did not fit the normal distribution, Kruskal-Wallis test was performed, while for the data of normal distribution, Levene's test of homogeneity of variance was further performed. When the data fitted the homogeneity of variance, one-way ANOVA was applied, and for the data that did not fit the homogeneity of variance, Kruskal-Wallis test was performed. For categorical variables, Chi-square test, Chi-square test with continuity correction or Fischer's exact test was used. All tests were performed2-sided and a significance level of P<0.05was considered to indicate statistical significance. For all statistical analyses, the statistical software SPSS16.0(Statistical Package for the Social Sciences, Chicago, IL, USA) for Windows was used. GraphPad Prism5(GraphPad software, San Diego, CA, USA) was used to draw bar and box chars.
     3Results
     3.1Basic clinical characteristics of subjects
     The clinical characteristics of the4group were analyzed. There were no significant differences in age, percentage of males, BMI (body mass index), percentage of active smoker, history of type2diabetes mellitus, total cholesterol, LDL cholesterol, HDL cholesterol, tiglycerides and CRP (P>0.05) among4groups for miRNA and gene expression profile test. There were no significant differences in age, percentage of males, BMI (body mass index), percentage of active smoker, history of type2diabetes mellitus, total cholesterol, LDL cholesterol, HDL cholesterol and CRP (P>0.05) among4groups for qRT-PCR validation.
     3.2The test of expression profiles of miRNAs and genes of PBMCs
     A list of25miRNAs was identified as differentially expressed between UA patients with BSS and the healthy control:23overexpressed and2underexpressed.A list of11miRNAs was identified as differentially expressed between UA patients with PS and the healthy control:2overexpressed and9underexpressed. A list of20miRNAs was identified as all overexpressed between AIS patients with BSS and the healthy control. A list of1081mRNAs was identified as differentially expressed between UA patients with BSS and the healthy control:673overexpressed and408underexpressed.A list of697mRNAs was identified as differentially expressed between UA patients with PS and the healthy control:451overexpressed and246underexpressed. A list of546mRNAs was identified as differentially expressed between AIS patients with BSS and the healthy control:383overexpressed and163underexpressed.
     3.3Integrated bioinformatics analysis of the genes and microRNAs expression profiles
     According to the results of heatmaps generated by hierarchical clustering analysis,5samples within each group were grouped into1cluster and this indicated that the overall reproducibility was good in each group. Compared with healthy controls group, there were significantly different expressions of miRNAs and genes in BSS of UA patients, PS of UA patients and BSS of AIS patients. Based on different expressions of miRNAs and genes, other groups could be distinguished from healthy controls group. The results of analyzing KEGG pathways enriched by deregulated genes using DAVID were as follows. In UA patients with BSS group, among7pathways enriched of upregulated genes, NOD-like receptor signaling pathway, apoptosis pathway and cytokine-cytokine receptor interaction pathway were closely related with UA, while among6pathways enriched of downregulated genes, the antigen processing and presentation pathway and p53signaling pathway were closely related with UA. In UA patients with PS group, among6pathways enriched of upregulated genes, MAPK signaling pathway, NOD-like receptor signaling pathway and chemokine signaling pathway were closely related with UA, while among7pathways enriched of downregulated genes, the antigen processing and presentation pathway and natural killer cell mediated cytotoxicity pathway were closely related with UA. In BSS of AIS patients, among3pathways enriched of upregulated genes, NOD-like receptor signaling pathway and MAPK signaling pathway were closely related with AIS, while among3pathways enriched of downregulated genes, the natural killer cell mediated cytotoxicity pathway and cytokine-cytokine receptor interaction pathway were closely related with AIS.
     In the interactive networks between miRNAs and their target genes built by the miRTrail,6upregulated miRNAs and115downregulated target genes composed the network of BSS of UA patients,1downregulated miRNAs and10upregulated genes composed the network of PS of UA patients, and5upregulated miRNAs and24downregulated genes composed the network of BSS of AIS patients.
     3.4qRT-PCR validation
     Compared with healthy controls group, miR-146b-5p, miR-199a-3p and miR-199a-5p were significantly upregulated in BSS of UA group and BSS of AIS group (P<0.05). while miR-146b-5p, miR-199a-3p and miR-199a-5p were no significant difference in PS of UA group. There was no significant difference in the expression of miR-146b-5p,miR-199a-3p and miR-199a-5p between BSS of UA group and BSS of AIS group. Compared with healthy controls group, miR-363a-5p and miR-668were significantly downregulated in PS of UA group (P<0.05). while miR-363a-5p and miR-668were no significant difference in BSS of UA group and BSS of AIS group.
     Compared with healthy controls group, CALR was significantly downregulated in BSS of UA group (P<0.05), while CALR was no significant difference in PS of UA group and BSS of AIS group. Compared with healthy controls group. TP53was significantly downregulated in BSS of UA group and BSS of AIS group (P<0.05), while TP53was no significant difference in PS of UA group. Compared with healthy controls group, RIPK2was significantly upregulated in BSS of UA group, PS of UA group and BSS of AIS group (P<0.05). There was no significant difference in the expression of RIPK2among BSS of UA group, PS of UA group and BSS of AIS group. Compared with healthy controls group, STK4was significantly upregulated in BSS of UA group and PS of UA group (P<0.05), while STK4was no significant difference in BSS of AIS group. There was no significant difference in the expression of STK4between BSS of UA group and PS of UA group. Compared with healthy controls group, IL2RB was significantly downregulated in BSS of UA group and BSS of AIS group (P<0.05), while IL2RB was no significant difference in PS of UA group. There was no significant difference in the expression of IL2RB between BSS of UA group and BSS of AIS group. Compared with healthy controls group, FASLG was significantly downregulated in PS of UA group and BSS of AIS group (P<0.05), while FASLG was no significant difference in BSS of UA group. There was no significant difference in the expression of FASLG between PS of UA group and BSS of AIS group.
     4Conclusions
     4.1Compared with healthy controls group, there were significant differences in miRNA expression among BSS of UA group, PS of UA group and BSS of AIS group.
     4.2Bioinformatics analysis which combined pathway and network analysis identified key regulating miRNAs and target genes in each group. In BSS of UA group, upregulated miR-146b-5p and miR-199a-5p may downregulate CALR and TP53to attenuate apoptosis and inflammation. In PS of UA group, downregulated miR-363-5p and miR-668may upregulate RIPK2and STK4to promote apoptosis and inflammation. In BSS of AIS group, upregulated miR-146b-5p and miR-199a-3p may downregulate IL2RB and FASLG to attenuate apoptosis and inflammation.
     4.3The qRT-PCR validation confirmed the expression patterns of the key regulating miRNAs and genes in each group. It indicated that miR-146b-5p, miR-199a-5p, CALR and TP53could be significant biomarkers of BSS of UA patients, miR-363-5p, miR-668, STK4and RIPK2could be significant biomarkers of PS of UA patients, and miR-146b-5p, miR-199a-3p, IL2RB and FASLG could be significant biomarkers of BSS of AIS patients.
     4.4In UA patients, miR-146b-5p and miR-199a-5p were upregulated and CALR and TP53were downregulated in BSS patients, while miR-363-5p and miR-668were downregulated and STK4and RIPK2were upregulated in PS patients. It indicated that the biological mechanisms of different syndromes in the same disease may be related with the deregulation of miRNAs and target genes.
     4.5In BSS of UA patients and BSS of AIS patients, miR-146b-5p, miR-199a-3p and miR-199a-5p were all upregulated, while TP53and IL2RB were all downregulated. It indicated that the biological mechanisms of the same syndrome in different diseases may be related with the deregulation of miRNAs and target genes.
     4.6Although BSS of UA patients and BSS of AIS patients had some similarities in the deregulation of miRNAs and target genes, there were still some differences in their key regulating target genes. It indicated that the same syndrome in different diseases may have some differences in miRNAs and target genes due to the differences of location of diseases.
引文
1. Lozano R, Naghavi M, Foreman K, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010:a systematic analysis for the Global Burden of Disease Study 2010. Lancet,2012,380 (9859):2095-2128.
    2. Wang J, He QY, Zhang YL. Effect of shenshao tablet on the quality of life for coronary heart disease patients with stable angina pectoris. Chin J Integr Med,2009, 15(5):328-332.
    3. Chu FY, Wang J, Yao KW, et al. Effect of Xuefu Zhuyu Capsule on the symptoms and signs and health-related quality of life in the unstable angina patients with blood-stasis syndrome after percutaneous coronary intervention:A Randomized controlled trial. Chin J Integr Med,2010,16(5):399-405.
    4. Gao ZY.Xu H, Shi DZ, et al. Analysis on outcome of 5284 patients with coronary artery disease:The role of integrative medicine. J Ethnopharmacol,2012,141(2): 578-583.
    5. Baker M. In biomarkers we trust? Nat Biotechnol,2005,23(3):297-304.
    6. Ben-Hamo R, Efroni S. Biomarker robustness reveals the PDGF network as driving disease outcome in ovarian cancer patients in multiple studies. BMC Syst Biol,2012, 6:3.
    7. Li W, Sasso EH, Emerling D, et al. Impact of a multi-biomarker disease activity test on rheumatoid arthritis treatment decisions and therapy use. Curr Med Res Opin,2013, 29(1):85-92.
    8. Lin S, Kim J, Lee MJ, et al. Prospective transcriptomic pathway analysis of human lymphatic vascular insufficiency:identification and validation of a circulating biomarker panel. PLoS One,2012,7(12):e52021.
    9. Mitra AP, Hansel DE, Cote RJ. Prognostic value of cell-cycle regulation biomarkers in bladder cancer. Semin Oncol,2012,39(5):524-533.
    10. Fuksa L, Micuda S, Grim J, et al. Predictive biomarkers in breast cancer:their value in neoadjuvant chemotherapy. Cancer Invest,2012,30(9):663-678.
    11. Gosho M, Nagashima K, Sato Y. Study designs and statistical analyses for biomarker research. Sensors,2012,12(7):8966-8986.
    12.王阶,姚魁武.血瘀证证候实质研究进展与思考.中国医药学报,2003,18(8):490-493.
    13.蒋跃绒,殷惠军,刘颖,等.血瘀证基础研究的若干思考.中国中医基础医学杂志,2005,11(8):561-563.
    14.熊绍权,林丽珠,龙奇达.中医药系统生物学研究现状评析.中医杂志, 2010,51(5):392-394.
    15.马晓娟,殷惠军,陈可冀.血瘀证患者差异基因表达谱研究.中西医结合学报,2008,6(4):355-360.
    16.李雪峰,蒋跃绒,高铸烨,等.冠心病血瘀证血小板差异功能蛋白筛选、鉴定及功能分析.中国中西医结合杂志,2010,30(5):467-473.
    17.王勇,李春,郭淑贞,等.扩散编辑实验分析慢性心肌缺血血瘀证模型血清脂类代谢变化.中华中医药杂志,2011,26(5):919-922.
    18. Ideker T, Galitski T, Hood L. A new approach to decoding life:systems biology. Annu Rev Genomics Hum Genet,2001,2:343-372.
    19.郭蕾,王永炎,张志斌.证候概念的诠释.北京中医药大学学报,2003,22(2):5-7.
    20. Barabasi AL, Oltvai ZN. Network biology:understanding the cell's functional organization. Nat Rev Genet,2004,5(2):101-113.
    1. Fabian MR, Sonenberg N, Filipowicz W. Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem,2010,79:351-379.
    2.刘咏梅,虞桂,王阶.microRNA与心血管疾病.中国分子心脏病学杂志,2011,11(6):380-384.
    3. Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet,2010,11(9):597-610.
    4. Kim SW, Li Z, Moore PS, et al. A sensitive non-radioactive northern blot method to detect small RNAs. Nucleic Acids Res,2010,38(7):e98.
    5. Kroh EM, Parkin RK, Mitchell PS, et al. Analysis of circulating microRNA biomarkers in plasma and serum using quantitative reverse transcription-PCR (qRT-PCR). Methods,2010,50(4):298-301.
    6. W Li, B Zhao, Y Jin, et al. Development of a low-cost detection method for miRNA microarray. Acta Biochim Biophys Sin (Shanghai),2010,42(4):296-301.
    7. SM Smith, DW Murray. An Overview of MicroRNA Methods:Expression Profiling and Target Identification. Methods in molecular biology,2012,823:119-38.
    8. Vickers KC, Remaley AT. MicroRNAs in Atherosclerosis and Lipoprotein Metabolism. Curr Opin Endocrinol Diabetes Obes,2010,17(2):150-155.
    9. Y Ye, JR Perez-Polo, J Qian,et al. The role of microRNA in modulating myocardial ischemia-reperfusion injury. Physiol Genomics,2011,43(10):534-542.
    10. B Shi, Y Guo, J Wang, et al. Altered expression of microRNAs in the myocardium of rats with acute myocardial infarction. BMC Cardiovasc Disord.2010,10:11.
    11. C Jentzsch,S Leierseder,X Loyer,et al.A phenotypic screen to identify hypertrophy-modulating microRNAs in primary cardiomyocytes. J Mol Cell Cardiol,2012,52(1):13-20.
    12. Topkara VK, Mann DL. Role of microRNAs in cardiac remodeling and heart failure. Cardiovasc Drugs Ther,2011,25(2):171-182.
    13. Farraj AK, Hazari MS, Haykal-Coates N, et al. ST depression, arrhythmia, vagal dominance, and reduced cardiac micro-RNA in particulate-exposed rats. Am J Respir Cell Mol Biol,2011,44(2):185-196.
    14. Fichtlscherer S, De Rosa S, Fox H, et al. Circulating microRNAs in patients with coronary artery disease. Circ Res,2010,107(5):677-684.
    15. Hoekstra M, van der Lans CA, Halvorsen B, et al. The peripheral blood mononuclear cell microRNA signature of coronary artery disease. Biochem Biophys Res Commun,2010,394(3):792-797.
    16. Y Lu, J Xiao, H Lin, et al. A single anti-microRNA antisense oligodeoxyribonucleotide (AMO) targeting multiple microRNAs offers an improved approach for microRNA interference. Nucleic Acids Res,2009,37(3):e24.
    17. Ebert MS, Sharp PA. MicroRNA sponges:Progress and possibilities. RNA, 2010,16(11):2043-2050.
    18. Younger ST, Corey DR. Transcriptional gene silencing in mammalian cells by miRNA mimics that target gene promoters. Nucleic Acids Res,2011,39(13): 5682-5691.
    19. Esau C, Davis S, Murray SF, et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab,2006,3(2):87-98.
    20. Roy S, Khanna S, Hussain SRA, et al. MicroRNA expression in response to murine myocardial infarction:miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue. Cardiovasc Res,2009,82(1):21-29.
    21. Kozomara A, Griffiths-Jones S. miRBase:integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res,2011,39 (Database issue):D152-D157.
    22. Bartel DP. MicroRNAs:genomics, biogenesis, mechanism, and function. Cell, 2004,116(2):281-297.
    23.王阶,张兰凤,王永炎.病证结合理论源流及临床应用.湖北中医学院学报,2003,5(4):40-42.
    1. Wright RS, Anderson JL, Adams CD,et al.2011 ACCF/AHA Focused Update of the Guidelines for the Management of Patients With Unstable Angina/ Non-ST-Elevation Myocardial Infarction (Updating the 2007 Guideline):a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines.Circulation,2011,123(18):2022-2060.
    2. Furie KL, Kasner SE, Adams RJ, et al. Guidelines for the prevention of stroke in patients with stroke or transient ischemic attack:a guideline for healthcare professionals from the american heart association/american stroke association. Stroke, 2011,42(1):227-276.
    3.王阶,陈可冀,翁维良,等.血瘀证诊断标准的研究.中西医结合杂志,1988,8(10):585-587,589.
    4.中国中西医结合学会心血管学会.冠心病中医辩证标准.中西医结合杂志,1991.11(5):257.
    5. http://www.onearray.com.cn/products/HOA.php
    6. http://www.onearray.com.cn/products/HmiOA_Probe.php
    7. de Hoon MJ, Imoto S, Nolan J, et al. Open source clustering software. Bioinformatics, 2004,20(9):1453-1454.
    8.Saldanha AJ. Java Treeview--extensible visualization of microarray data. Bioinformatics,2004,20(17):3246-3248.
    9. Huang da W, Sherman BT, Lempicki RA.Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols,2009,4(1): 44-57.
    10. Kanehisa M, Goto S, Sato Y, et al. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Research,2012,40(D1):D109-D114.
    11. Maragkakis M, Reczko M, Simossis VA, et al. DIANA-microT web server: elucidating microRNA functions through target prediction. Nucleic Acids Research, 2009,37(Web Server issue):W273-W276.
    12. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 2005,120(1):15-20.
    13. Laczny C, Leidinger P, Haas J, et al. miRTrail-a comprehensive webserver for analyzing gene and miRNA patterns to enhance the understanding of regulatory mechanisms in diseases. BMC Bioinformatics,2012,12(1):36.
    14. Kuentzer J, Blum T, Gerasch A, et al. BN++ -A Biological Information System. Journal of Integrative Bioinformatics,2006,3(2):34.
    15. De Las Rivas J, Fontanillo C. Protein-protein interaction networks:unraveling the wiring of molecular machines within the cell. Briefings in Functional Genomics,2012, 11(6):489-496.
    16. Barabasi AL, Oltvai ZN. Network biology:understanding the cell's functional organization. Nature Reviews Genetics,2004,5(2):101-113.
    17. Wu G, Feng X, Stein L, et al. A human functional protein interaction network and its application to cancer data analysis. Genome Biology,2010,11(5):R53.
    18. Smoot ME, Ono K, Ruscheinski J, et al. Cytoscape 2.8:new features for data integration and network visualization. Bioinformatics,2011,27(3):431-432.
    19. Lin CY, Chin CH, Wu HH, et al. Hubba:hub objects analyzer--a framework of interactome hubs identification for network biology. Nucleic Acids Research,2008, 36(Web Server issue):W438-W443.
    20. Nolan T, Hands RE, Bustin SA. Quantification of mRNA using real-time RT-PCR. Nature Protocols,2006,1(3):1559-1582.
    21. Fritz JH, Ferrero RL, Philpott DJ. Nod-like proteins in immunity, inflammation and disease. Nature Immunology,2006,7(12):1250-1257.
    22. Inohara N, del Peso L, Koseki T, et al. RICK, a novel protein kinase containing a caspase recruitment domain, interacts with CLARP and regulates CD95-mediated apoptosis. The Journal of Biological Chemistry,1998,273(20):12296-122300.
    23. Fan TJ, Han LH, Cong RS, et al. Caspase family proteases and apoptosis. Acta biochimica et biophysica Sinica,2005,37(11):719-727.
    24. Geng YJ, Libby P. Evidence for apoptosis in advanced human atheroma. Colocalization with interleukin-1 beta-converting enzyme. The American Journal of Pathology,1995,147(2):251-266.
    25. Chen F, Eriksson P, Kimura T, et al. Apoptosis and angiogenesis are induced in the unstable coronary atherosclerotic plaque. Coronary Artery Disease,2005,16(3): 191-197.
    26. Clarke MC, Figg N, Maguire JJ, et al. Apoptosis of vascular smooth muscle cells induces features of plaque vulnerability in atherosclerosis. Nature Medicine,2006, 12(9):1075-1080.
    27. Tabas I. Macrophage death and defective inflammation resolution in atherosclerosis. Nature Reviews Immunology,2010,10(1):36-46.
    28. Hansson GK, Libby P, Schonbeck U, et al. Innate and adaptive immunity in the pathogenesis of atherosclerosis. Circulation research,2002,91(4):281-291.
    29. Huo Y, Weber C, Forlow SB, et al. The chemokine KC, but not monocyte chemoattractant protein-1, triggers monocyte arrest on early atherosclerotic endothelium. Journal of Clinical Investigation,2001,108(9):1307-1314.
    30. Kirii H, Niwa T, Yamada Y, et al. Lack of interleukin-1β decreases the severity of atherosclerosis in ApoE-deficient mice. Arteriosclerosis, Thrombosis, and Vascular Biology,2003,23(4):656-660.
    31. Qamar A, Rader DJ. Effect of interleukin 1β inhibition in cardiovascular disease. Current Opinion in Lipidology,2012,23(6):548-553.
    32. Ozeren A, Aydin M, Tokac M, et al. Levels of serum IL-lbeta, IL-2, IL-8 and tumor necrosis factor-alpha in patients with unstable angina pectoris. Mediators of Inflammation,2003,12(6):361-365.
    33. Simon AD, Yazdani S,Wang W, et al. Circulating levels of IL-lbeta, a prothrombotic cytokine, are elevated in unstable angina versus stable angina. Journal of Thrombosis and Thrombolysis,2000,9(3):217-222.
    34. Libby P. Inflammation in atherosclerosis. Arterioscler Thromb Vasc Biol,2012, 32(9):2045-2051.
    35. Alexander MR, Moehle CW, Johnson JL, et al.Genetic inactivation of IL-1 signaling enhances atherosclerotic plaque instability and reduces outward vessel remodeling in advanced atherosclerosis in mice. The Journal of Clinical Investigation, 2012,122(1):70-79.
    36. Janssens S, Beyaert R. Functional diversity and regulation of different interleukin-1 receptor-associated kinase (IRAK) family members. Molecular Cell, 2003,11(2):293-302.
    37. Kobayashi K, Hernandez LD, Galan JE, et al. IRAK-M Is a Negative Regulator of Toll-like Receptor Signaling. Cell,2002,110(2):191-202.
    38. Hulsmans M, Geeraert B, De Keyzer D, et al. Interleukin-1 Receptor-Associated Kinase-3 Is a Key Inhibitor of Inflammation in Obesity and Metabolic Syndrome. PLoS One,2012,7(l):e30414.
    39. Skalhegg BS, Tasken K. Specificity in the cAMP/PKA signaling pathway. Differential expression, regulation, and subcellular localization of subunits of PKA. Frontiers in Bioscience,2000,5:D678-693.
    40. Deveraux QL, Reed JC. IAP family proteins-suppressors of apoptosis. Genes & Development,1999,13(3):239-252.
    41. Kutuk O, Basaga H. Bcl-2 protein family:implications in vascular apoptosis and atherosclerosis. Apoptosis,2006, 11(10):1661-1675.
    42. Oppenheim JJ. Cytokines:past, present, and future. International Journal of Hematology,2001,74(1):3-8.
    43. Korn T, Bettelli E, Gao W, et al. IL-21 initiates an alternative pathway to induce proinflammatory TH17 cells. Nature,2007,448(7152):484-487.
    44. Zlotnik A, Yoshie O. Chemokines:a new classification system and their role in immunity. Immunity,2000,12(2):121-127.
    45. Hesselgesser J, Ng HP, Liang M, et al. Identification and characterization of small molecule functional antagonists of the CCR1 chemokine receptor. The Journal of Biological Chemistry,1998,273(25):15687-15692.
    46. Valenzuela-Fernandez A, Planchenault T, Baleux F, et al. Leukocyte elastase negatively regulates Stromal cell-derived factor-1 (SDF-1)/CXCR4 binding and functions by amino-terminal processing of SDF-1 and CXCR4. The Journal of Biological Chemistry,2002,277(18):15677-15689.
    47. Damas JK, Waehre T, Yndestad A, et al. Stromal cell-derived factor-lalpha in unstable angina:potential antiinflammatory and matrix-stabilizing effects. Circulation, 2002,106(1):36-42.
    48. Smith DF, Galkina E, Ley K, et al. GRO family chemokines are specialized for monocyte arrest from flow.The American Journal of Physiology-Heart and Circulatory Physiology,2005,289(5):H1976-H1984.
    49. Power CA, Furness RB, Brawand C, et al. Cloning of a full-length cDNA encoding the neutrophil-activating peptide ENA-78 from human platelets. Gene,1994, 151(1-2):333-334.
    50. Yilmaz A, Lipfert B, Cicha I, et al. Accumulation of immune cells and high expression of chemokines/chemokine receptors in the upstream shoulder of atherosclerotic carotid plaques. Experimental and Molecular Pathology,2007,82(3): 245-255.
    51. Eid RE, Rao DA, Zhou J, et al. Interleukin-17 and Interferon-y are produced concomitantly by human coronary artery-infiltrating T cells and act synergistically on vascular smooth muscle cells. Circulation,2009,119(10):1424-1432.
    52. Liuzzo G, Vallejo AN, Kopecky SL, et al. Molecular fingerprint of interferon-γ signaling in unstable angina. Circulation,2001,103(11):1509-1514.
    53. Nagata T, Kai H, Shibata R, et al. Oncostatin M, an interleukin-6 family cytokine, upregulates matrix metalloproteinase-9 through the mitogen-activated protein kinase kinase-extracellular signal-regulated kinase pathway in cultured smooth muscle cells. Arteriosclerosis, Thrombosis, and Vascular Biology,2003,23(4):588-593.
    54. Michalak M, Corbett EF, Mesaeli N, et al. Calreticulin:one protein, one gene, many functions. Biochemical Journal,1999,344(Pt 2):281-292.
    55. Lim S, Chang W, Lee BK, et al. Enhanced calreticulin expression promotes calcium-dependent apoptosis in postnatal cardiomyocytes. Molecules and Cells,2008, 25(3):390-396.
    56. Liu X, Wu X, Cai L, et al. Calreticulin downregulation is associated with FGF-2-induced angiogenesis through calcineurin pathway in ischemic myocardium. Shock,2008,29(1):140-148.
    57. Gardai SJ, Xiao YQ, Dickinson M, et al. By binding SIRPa or calreticulin/CD91, lung collectins act as dual function surveillance molecules to suppress or enhance inflammation. Cell,2003,115(1):13-23.
    58. Nepom GT, Erlich H. MHC class-Ⅱ molecules and autoimmunity. Annual Review of Immunology,1991,9:493-525.
    59. De Palma R, Del Galdo F. Abbate G, et al. Patients with acute coronary syndrome show oligoclonal T-cell recruitment within unstable plaque:evidence for a local, intracoronary immunologic mechanism. Circulation,2006,113(5):640-646.
    60. Boyton RJ, Altmann DM. Natural killer cells, killer immunoglobulin-like receptors and human leucocyte antigen class I in disease. Clinical & Experimental Immunology,2007,149(1):1-8.
    61. SC Whitman, Rateri DL, Szilvassy SJ, et al. Depletion of natural killer cell function decreases atherosclerosis in low-density lipoprotein receptor null mice. Arteriosclerosis, Thrombosis, and Vascular Biology,2004,24(6):1049-1054.
    62. Vaseva AV, Moll UM. The mitochondrial p53 pathway. Biochimica et Biophysica Acta,2009,1787(5):414.
    63. Martinet W, Knaapen MW, De Meyer GR, et al. Elevated levels of oxidative DNA damage and DNA repair enzymes in human atherosclerotic plaques. Circulation,2002, 106(8):927-932.
    64. Ihling C, Haendeler J, Menzel G, et al. Co-expression of p53 and MDM2 in human atherosclerosis:implications for the regulation of cellularity of atherosclerotic lesions. The Journal of Pathology,1998,185(3):303-312.
    65. Bennett MR, Macdonald K, Chan SW, et al. Cooperative interactions between RB and p53 regulate cell proliferation, cell senescence, and apoptosis in human vascular smooth muscle cells from atherosclerotic plaques. Circulation Research,1998, 82(6):704-712.
    66. Yuan XM, E Osman, S Miah, et al. p53 expression in human carotid atheroma is significantly related to plaque instability and clinical manifestations. Atherosclerosis, 2010,210(2):392-399.
    67. Connell-Crowley L, Harper JW, Goodrich DW. Cyclin Dl/Cdk4 regulates retinoblastoma protein-mediated cell cycle arrest by site-specific phosphorylation. Molecular Biology of the Cell,1997,8(2):287-301.
    68. Gordon D, Reidy MA, Benditt EP, et al. Cell proliferation in human coronary arteries. Proceedings of the National Academy of Sciences of the United States of America,1990,87(12):4600-4604.
    69. Zettler ME, Prociuk MA, Austria JA, et al. OxLDL stimulates cell proliferation through a general induction of cell cycle proteins. American Journal of Physiology-Heart and Circulatory Physiology,2003,284(2):H644-H653.
    70. Passer BJ, Nancy-Portebois V, Amzallag N, et al. The p53-Inducible TSAP6 Gene Product Regulates Apoptosis and the Cell Cycle and Interacts with Nix and the Mytl Kinase. Proceedings of the National Academy of Sciences of the United States of America,2003,100(5):2284-2289.
    71. Gupta RK, Tripathi R, Naidu BJN, et al. Cell cycle regulation by the pro-apoptotic gene scotin. Cell Cycle,2008,7(15):2401-2408.
    72. Maiuri MC, Malik SA, Morselli E, et al. Stimulation of autophagy by the p53 target gene Sestrin2. Cell Cycle,2009,8(10):1571-1576.
    73. Ma XJ, Yin HJ, Chen KJ. Differential gene expression profiles in coronary heart disease patients of blood stasis syndrome in traditional Chinese medicine and clinical role of target gene. Chinese Journal of Integrative Medicine,2009,15(2):101-106.
    74. Fichtlscherer S, De Rosa S, Fox H, et al. Circulating microRNAs in patients with coronary artery disease. Circulation Research,2010,107(5):677-684.
    75. Taurino C, Miller WH, McBride MW, et al. Gene expression profiling in whole blood of patients with coronary artery disease. Clinical Science,2010,119(Pt 8):335-343.
    76. Hoekstra M, van der Lans CA, Halvorsen B, et al. The peripheral blood mononuclear cell microRNA signature of coronary artery disease. Biochemical and Biophysical Research Communications,2010,394(3):792-797.
    77. Wang S, Aurora AB, Johnson BA, et al. An Endothelial-specific microRNA Governs Vascular Integrity and Angiogenesis. Developmental Cell,2008,15(2): 261-271.
    78. Chen Y, Gorski DH. Regulation of angiogenesis through a microRNA (miR-130a) that down-regulates antiangiogenic homeobox genes GAX and HOXA5. Blood.2008. 111(3):1217-1226.
    79. Zhang Y, Liu D, Chen X. et al. Secreted monocytic miR-150 enhances targeted endothelial cell migration. Molecular Cell,2010,39(1):133-144.
    80. Liu X, Cheng Y, Zhang S, et al. A necessary role of miR-221 and miR-222 in vascular smooth muscle cell proliferation and neointimal hyperplasia. Circulation Research,2009,104(4):476-487.
    81. Bonauer A, Carmona G, Iwasaki M, et al. MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science,2009,324(5935): 1710-1713.
    82. Snowden AW, Anderson LA, Webster GA, et al. A novel transcriptional repression domain mediates p21WAF1/CIP1 induction of p300 transactivation. Molecular and Cellular Biology,2000,20(8):2676-2686.
    83. Zhang HS, Gavin M, Dahiya A, et al. Exit from G1 and S phase of the cell cycle is regulated by repressor complexes containing HDAC-Rb-hSWI/SNF and Rb-hSWI/SNF. Cell,2000,101 (1):79-89.
    84. Ren B, Cam H, Takahashi Y, et al. E2F integrates cell cycle progression with DNA repair, replication, and G2/M checkpoints. Genes & Development,2002,16(2): 245-256.
    85. Li L, Iwamoto Y, Berezovskaya A, et al. A pathway regulated by cell cycle inhibitor p27Kipl and checkpoint inhibitor Smad3 is involved in the induction of T cell tolerance. Nature Immunology,2006,7(11):1157-1165.
    86. Amati B, Littlewood TD, Evan GI, et al. The c-Myc protein induces cell cycle progression and apoptosis through dimerization with Max. The EMBO Journal,1993, 12(13):5083-5087.
    87. Kim AH, Khursigara G, Sun X, et al. Akt phosphorylates and negatively regulates apoptosis signal-regulating kinase 1. Molecular and Cellular Biology,2001,21(3): 893-901.
    88. Issbrucker K, Marti HH, Hippenstiel S, et al. p38 MAP kinase--a molecular switch between VEGF-induced angiogenesis and vascular hyperpermeability. The FASEB Journal,2003,17(2):262-264.
    89. Ackah E, Yu J, Zoellner S, et al. Aktl/protein kinase Balpha is critical for ischemic and VEGF-mediated angiogenesis. The Journal of Clinical Investigation, 2005,115(8):2119-2127.
    90. Eliceiri BP, Paul R, Schwartzberg PL, et al. Selective requirement for Src kinases during VEGF-induced angiogenesis and vascular permeability. Molecular Cell,1999, 4(6):915-924.
    91. Taganov KD, Boldin MP, Chang KJ, et al. NF-KB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proceedings of the National Academy of Sciences of the United States of America,2006,103(33):12481-12486.
    92. O'Neill LA, Sheedy FJ, McCoy CE. MicroRNAs:the fine-tuners of Toll-like receptor signaling. Nature Reviews Immunology,2011,11(3):163-175.
    93. Bhaumik D, Scott GK, Schokrpur S, et al. MicroRNAs miR-146a/b negatively modulate the senescence-associated inflammatory mediators IL-6 and IL-8. Aging, 2009,1(4):402-411.
    94. Recchiuti A, Krishnamoorthy S, Fredman G, et al. MicroRNAs in resolution of acute inflammation:identification of novel resolvin D1-miRNA circuits. The FASEB Journal,2011,25(2):544-560.
    95. Hulsmans M, Van Dooren E, Mathieu C, et al. Decrease of miR-146b-5p in monocytes during obesity is associated with loss of the anti-inflammatory but not insulin signaling action of adiponectin. PloS One,2012,7(2):e32794.
    96. Rane S, He M, Sayed D, et al. Downregulation of MiR-199a Derepresses Hypoxia-Inducible Factor-la and Sirtuin 1 and Recapitulates Hypoxia Preconditioning in Cardiac Myocytes. Circulation Research,2009,104(7):879-886.
    97. Johnson GL, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science,2002,298(5600):1911-1912,.
    98. Izumi T, Y Kihara, N Sarai, et al. Reinduction of T-type calcium channels by endothelin-1 in failing hearts in vivo and in adult rat ventricular myocytes in vitro. Circulation,2003,108(20):2530-2535.
    99. Lam D, Dickens D, Reid EB, et al. MAP4K3 modulates cell death via the post-transcriptional regulation of BH3-only proteins. Proceedings of the National Academy of Sciences of the United States of America,2009,106(29):11978-11983.
    100. Klumpp S, Thissen MC, Krieglstein J. Protein phosphatases types 2Calpha and 2Cbeta in apoptosis. Biochemical Society Transactions,2006,34(Pt6):1370-1375.
    101. Rossi ML, Marziliano N, Merlini PA. et al. Different quantitative apoptotic traits in coronary atherosclerotic plaques from patients with stable angina pectoris and acute coronary syndromes. Circulation,2004,110(13):1767-1773.
    102. Thorp E, Li G. Seimon TA, et al. Reduced Apoptosis and Plaque Necrosis in Advanced Atherosclerotic Lesions of Apoe-/- and Ldlr-/- Mice Lacking CHOP. Cell Metabolism,2009.9(5):474-481.
    103. Ono H, Ichiki T, Ohtsubo H, et al. Critical role of Mstl in vascular remodeling after injury. Arteriosclerosis, Thrombosis,and Vascular Biology.2005.25(9): 1871-1876.
    104. Yang D, Xie P, Guo S, et al. Induction of MAPK phosphatase-1 by hypothermia inhibits TNF-a-induced endothelial barrier dysfunction and apoptosis.Cardiovascular Research,2010,85(3):520-529.
    105. Bonni A, Brunet A, West AE, et al. Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and-independent mechanisms. Science, 1999,286(5443):1358-1362.
    106. Goncalves I, Edsfeldt A, Ko NY, et al. Evidence supporting a key role of Lp-PLA2-generated lysophosphatidylcholine in human atherosclerotic plaque inflammation. Arteriosclerosis, Thrombosis, and Vascular Biology,2012,32(6): 1505-1512.
    107. Satyanarayana A, Gudmundsson KO, Chen X, et al. RapGEF2 is essential for embryonic hematopoiesis but dispensable for adult hematopoiesis. Blood,2010, 116(16):2921-2931.
    108. Lapinski PE, Kwon S, Lubeck BA, et al. RASA1 maintains the lymphatic vasculature in a quiescent functional state in mice. Journal of Clinical Investigation, 2012,122(2):733-747.
    109. Minamino T, Yoshida T, Tateno K, et al. Ras induces vascular smooth muscle cell senescence and inflammation in human atherosclerosis. Circulation,2003, 108(18):2264-2269.
    110. Cook DN, Pisetsky DS, Schwartz DA. Toll-like receptors in the pathogenesis of human disease. Nature Immunology,2004,5(10):975-979.
    111.Winsauer G, Resch U, Hofer-Warbinek R, et al. XIAP regulates bi-phasic NF-κB induction involving physical interaction and ubiquitination of MEKK2. Cellular signaling,2008,20(11):2107-2112.
    112. Valen G, Yan ZQ, Hansson GK. Nuclear factor kappa-B and the heart. Journal of the American College of Cardiology,2001,38(2):307-314.
    113. Chamberlain J, Francis S, Brookes Z, et al. Interleukin-1 Regulates Multiple Atherogenic Mechanisms in Response to Fat Feeding. Plos One,2008,4(4):e5073.
    114. Weber C, Schober A, Zernecke A. Chemokines:key regulators of mononuclear cell recruitment in atherosclerotic vascular disease. Arteriosclerosis, Thrombosis, and Vascular Biology,2004,24(11):1997-2008.
    115. McDonald C, Chen FF, Ollendorff V, et al. A role for Erbin in the regulation of Nod2-dependent NF-kappaB signaling. The Journal of Biological Chemistry,2005, 280(48):40301-40309.
    116. Longo CR, Arvelo MB, Patel VI, et al. A20 protects from CD40-CD40 ligand-mediated endothelial cell activation and apoptosis. Circulation,2003,108(9): 1113-1118.
    117. Hasegawa M, Fujimoto Y, Lucas PC, et al. A critical role of RICK/RIP2 polyubiquitination in Nod-induced NF-κB activation. The EMBO Journal,2008, 27(2):373-383.
    118. Jaron-Mendelson M, Yossef R, Appel MY, et al. Dimerization of NKp46 receptor is essential for NKp46-mediated lysis:characterization of the dimerization site by epitope mapping. Journal of Immunology,2012,188(12):6165-6174.
    119. Berglund LM, Kotova O, Osmark P, et al. NFAT regulates the expression of AIF-1 and IRT-1:yin and yang splice variants of neointima formation and atherosclerosis. Cardiovascular Research,2012,93(3):414-423.
    120. Griffith TS, Brunner T, Fletcher SM, et al. Fas ligand-induced apoptosis as a mechanism of immune privilege. Science,1995,270(5239):1189-1192.
    121. Hansson GK, Hermansson A. The immune system in atherosclerosis. Nature Immunology,2011,12(3):204-212.
    122. Pamukcu B, Lip GY, Shantsila E. The nuclear factor--kappa B pathway in atherosclerosis:a potential therapeutic target for atherothrombotic vascular disease. Thrombosis Research,2011,128(2):117-123.
    123. Ritchie ME. Nuclear factor-kappaB is selectively and markedly activated in humans with unstable angina pectoris. Circulation,1998,98(17):1707-1713.
    124. Wilson SH, Best PJ, Edwards WD, et al. Nuclear factor-kappaB immunoreactivity is present in human coronary plaque and enhanced in patients with unstable angina pectoris. Atherosclerosis,2002,160(1):147-153.
    125. Liuzzo G, Santamaria M, Biasucci LM, et al. Persistent activation of nuclear factor kappa-B signaling pathway in patients with unstable angina and elevated levels of C-reactive protein evidence for a direct proinflammatory effect of azide and lipopolysaccharide-free C-reactive protein on human monocytes via nuclear factor kappa-B activation. Journal of the American College of Cardiology,2007,49(2): 185-194.
    126. Tan JR, Tan KS, Koo YX, et al. Blood microRNAs in Low or No Risk Ischemic Stroke Patients. International Journal of Molecular Sciences,2013,14(1):2072-2084.
    127. Bidzhekov K, Gan L, Denecke B, et al. microRNA expression signatures and parallels between monocyte subsets and atherosclerotic plaque in humans. Thrombosis and Haemostasis,2012,107(4):619-625.
    128. Swirski FK, Libby P, Aikawa E, et al. Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata. Journal of Clinical Investigation,2007,117(1):195-205.
    129. Peschiaroli A, Skaar JR, Pagano M, et al. The ubiquitin-specific protease USP47 is a novel beta-TRCP interactor regulating cell survival. Oncogene,2010, 29(9):1384-1393.
    130. Miles MC, Janket ML, Wheeler ED, et al. Molecular and functional characterization of a novel splice variant of ANKHD1 that lacks the KH domain and its role in cell survival and apoptosis. The FEBS Journal,2005,272(16):4091-4102.
    131. Wu J, Zhou Z, Hu Y, et al. Butyrate-induced GPR41 activation inhibits histone acetylation and cell growth. Journal of Genetics and Genomics,2012,39(8):375-384.
    132. Yu J, Lei K, Zhou M, et al. KASH protein Syne-2/Nesprin-2 and SUN proteins SUN1/2 mediate nuclear migration during mammalian retinal development. Human Molecular Genetics,2011,20(6):1061-1073.
    133. LA Lee, E Lee, MA Anderson, et al. Drosophila genome-scale screen for PAN GU kinase substrates identifies Mat89Bb as a cell cycle regulator. Development Cell, 2005,8(3):435-442.
    134. Madar S, Brosh R, Buganim Y, et al. Modulated expression of WFDC1 during carcinogenesis and cellular senescence. Carcinogenesis,2009,30(1):20-27.
    135. Shan SW, Lee DY, Deng Z, et al. MicroRNA MiR-17 retards tissue growth and represses fibronectin expression.Nature Cell Biology,2009,11(8):1031-1038.
    136. Rios RM, Bornens M. The Golgi apparatus at the cell centre.Current Opinion in Cell Biology,2003,15(1):60-66.
    137. Li J, Wan Y, Guo Q, et al. Altered microRNA expression profile with miR-146a upregulation in CD4+ T cells from patients with rheumatoid arthritis. Arthritis Research & Therapy,2012,12(3):R81.
    138. Romero-Cordoba S, Rodriguez-Cuevas S, Rebollar-Vega R, et al. Identification and pathway analysis of microRNAs with no previous involvement in breast cancer. PLoS One,2012,7(3):e31904.
    139. Lakhan SE, Kirchgessner A, Hofer M. Inflammatory mechanisms in ischemic stroke:therapeutic approaches. Journal of Translational Medicine,2009,7:97.
    140. Ormstad H, Aass HC, Lund-S(?)rensen N, et al. Serum levels of cytokines and C-reactive protein in acute ischemic stroke patients, and their relationship to stroke lateralization, type, and infarct volume. Journal of Neurology,2011,258(4):677-685.
    141. Losy J, Zaremba J, Skrobanski P. CXCL1 (GRO-alpha) chemokine in acute ischaemic stroke patients. Folia Neuropathologica,2005,43(2):97-102.
    142. Kostulas N, Kivisakk P, Huang Y, et al. Ischemic stroke is associated with a systemic increase of blood mononuclear cells expressing interleukin-8 mRNA. Stroke. 1998.29(2):462-466.
    143. Li Y, Xu Z, Ford GD. et al. Neuroprotection by neuregulin-1 in a rat model of permanent focal cerebral ischemia. Brain Research.2007.1184:277-283.
    144. Lok J, Sardi SP, Guo S, et al. Neuregulin-1 signaling in brain endothelial cells. Journal of Cerebral Blood Flow & Metabolism,2009,29(1):39-43.
    145. Schneider A, Martin-Villalba A. Weih F, et al. NF-kappaB is activated and promotes cell death in focal cerebral ischemia. Nature Medicine,1999,5(5):554-559.
    146. Zhang W, Potrovita I, Tarabin V, et al. Neuronal activation of NF-kappaB contributes to cell death in cerebral ischemia. Journal of Cerebral Blood Flow & Metabolism,2005,25(1):30-40.
    147. Yu L, Miao H, Hou Y, et al. Neuroprotective effect of A20 on TNF-induced postischemic apoptosis. Neurochemical Research,2006,31(1):21-32.
    148. Ridder DA, Schwaninger M. TAK1 inhibition for treatment of cerebral ischemia. Experimental Neurology,2013,238:68-72.
    149. Hacker H, Karin M. Is NF-kappaB2/p100 a direct activator of programmed cell death? Cancer Cell,2002,2(6):431-433.
    150. Gharibani PM, Modi J, Pan C, et al. The mechanism of taurine protection against endoplasmic reticulum stress in an animal stroke model of cerebral artery occlusion and stroke-related conditions in primary neuronal cell culture. Advances in Experimental Medicine and Biology,2013,776:241-258.
    151. Nikonenko I, Bancila M, Bloc A, et al. Inhibition of T-type calcium channels protects neurons from delayed ischemia-induced damage. Molecular Pharmacology, 2005,68(1):84-89.
    152. Moran ST, Haider K, Ow Y, et al. Protein kinase C-associated kinase can activate NFkappaB in both a kinase-dependent and a kinase-independent manner. The Journal of Biological Chemistry,2003,28(24):21526-21533.
    153. Olsson S, Holmegaard L, Jood K, et al. Genetic variation within the interleukin-1 gene cluster and ischemic stroke. Stroke,2012,43(9):2278-2282.
    154. Jia J, Chen X, Zhu W, et al. CART protects brain from damage through ERK activation in ischemic stroke. Neuropeptides,2008,42(5-6):653-661.
    155. Shi GX, Andres DA, Cai W. Ras family small GTPase-mediated neuroprotective signaling in stroke. Central Nervous System Agents in Medicinal Chemistry,2011, 11(2):114-137.
    156. Yang XY, Guan M, Vigil D, et al. p120Ras-GAP binds the DLC1 Rho-GAP tumor suppressor protein and inhibits its RhoA GTPase and growth-suppressing activities. Oncogene,2009,28(11):1401-1409.
    157. Biassoni R, Cantoni C, Marras D, et al. Human natural killer cell receptors: insights into their molecular function and structure. Journal of Cellular and Molecular Medicine,2003,7(4):376-387.
    158. Yawata M, Yawata N, Abi-Rached L, et al. Variation Within the Human Killer Cell Immunoglobulin-Like Receptor (KIR) Gene Family. Critical Reviews in Immunology,2002,22(5-6):463-482.
    159. de Saint Basile G, Menasche G, Fischer A. Molecular mechanisms of biogenesis and exocytosis of cytotoxic granules. Nature Reviews Immunology,2010, 10(8):568-579.
    160. Peterfalvi A, Molnar T, Banati M, et al. Impaired function of innate T lymphocytes and NK cells in the acute phase of ischemic stroke. Cerebrovascular Disease,2009,28(5):490-498.
    161. Martin-Villalba A, Hahne M, Kleber S, et al. Therapeutic neutralization of CD95-ligand and TNF attenuates brain damage in stroke. Cell Death and Differentiation,2001,8(7):670-686.
    162. He JT, Mang J, Mei CL, et al. Neuroprotective effects of exogenous activin A on oxygen-glucose deprivation in PC12 cells. Molecules,2011,17(1):315-327.
    163. Salzer U, Jennings S, Grimbacher B. To switch or not to switch--the opposing roles of TACI in terminal B cell differentiation. European Journal of Immunology, 2007,37(1):17-20.
    164.Yilmaz G, Arumugam TV, Stokes KY, et al. Role of T lymphocytes and interferon-gamma in ischemic stroke. Circulation,2006,113(17):2105-2112.
    165. Brandt K, Singh PB, Bulfone-Paus S, et al. Interleukin-21:a new modulator of immunity, infection, and cancer. Cytokine & Growth Factor Reviews,2007,18(3-4): 223-232.
    166. Lin HW, Thompson JW. Morris KC. et al. Signal transducers and activators of transcription:STATs-mediated mitochondrial neuroprotection. Antioxidants & Redox Signaling,2011,14(10):1853-1861.
    167. Tan JR. Tan KS, Koo YX,et al. Blood microRNAs in Low or No Risk Ischemic Stroke Patients. International Journal of Molecular Sciences,2013.14(1):2072-2084.
    168. Tan KS, Armugam A, Sepramaniam S,et al. Expression profile of MicroRNAs in young stroke patients. PLoS One.2009,4(11):e7689.
    169. Jeyaseelan K, Lim KY, Armugam A. MicroRNA expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion. Stroke,2008,39(3):959-966.
    170. Dharap A, Vemuganti R. Ischemic pre-conditioning alters cerebral microRNAs that are upstream to neuroprotective signaling pathways. Journal of Neurochemistry, 2010,113(6):1685-1691.
    171. Lusardi TA, Farr CD, Faulkner CL, et al. Ischemic preconditioning regulates expression of microRNAs and a predicted target, MeCP2, in mouse cortex. Journal of Cerebral Blood Flow & Metabolism,2010,30(4):744-756.
    172. Saito K, Kondo E, Matsushita M. MicroRNA 130 family regulates the hypoxia response signal through the P-body protein DDX6. Nucleic Acids Research,2011, 39(14):6086-6099.
    173. Tobon KE, Chang D, Kuzhikandathil EV. MicroRNA 142-3p mediates post-transcriptional regulation of D1 dopamine receptor expression. PLoS One,2012, 7(11):e49288.
    174.Zhang Y, Deng P, Ruan Y, et al. Dopamine D1-like receptors depress excitatory synaptic transmissions in striatal neurons after transient forebrain ischemia. Stroke, 2008,39(8):2370-2376.
    175. Gazzar M El, Church A, Liu T, et al. MicroRNA-146a regulates both transcription silencing and translation disruption of TNF-a during TLR4-induced gene reprogramming. Journal of Leukocyte Biology,2011,90(3):509-519.
    176. Cui G, H Wang, Li R, et al. Polymorphism of tumor necrosis factor alpha (TNF-alpha) gene promoter, circulating TNF-alpha level, and cardiovascular risk factor for ischemic stroke. Journal of Neuroinflammation,2012,9:235.
    177. Tano N, Kim HW, Ashraf M. microRNA-150 regulates mobilization and migration of bone marrow-derived mononuclear cells by targeting Cxcr4. PLoS One, 2011,6(10):e23114.
    178. Chamorro-Jorganes A, Araldi E, Penalva LO, et al. MicroRNA-16 and microRNA-424 regulate cell-autonomous angiogenic functions in endothelial cells via targeting vascular endothelial growth factor receptor-2 and fibroblast growth factor receptor-1. Arteriosclerosis, Thrombosis, and Vascular Biology,2011,31(11): 2595-2606.
    179. Spinetti G, Fortunato O, Caporali A, et al. MicroRNA-15a and MicroRNA-16 Impair Human Circulating Proangiogenic Cell Functions and Are Increased in the Proangiogenic Cells and Serum of Patients With Critical Limb Ischemia. Circulation Research,2013,112(2):335-346.
    180. Zhou Q, Gallagher R, Ufret-Vincenty R, et al. Regulation of angiogenesis and choroidal neovascularization by members of microRNA-23-27-24 clusters. Proceedings of the National Academy of Sciences of the United States of America, 2011,108(20):8287-8292.
    181. Urbich C, Kaluza D, Fromel T, et al. MicroRNA-27a/b controls endothelial cell repulsion and angiogenesis by targeting semaphorin 6A. Blood,2012,119(6): 1607-1616.
    182. Smirnova L, Grafe A, Seiler A, et al. Regulation of miRNA expression during neural cell specification. European Journal of Neuroscience,2005,21(6):1469-1477.
    183.Park SY, Lee JH, Ha M, et al. miR-29 miRNAs activate p53 by targeting p85 alpha and CDC42. Nature Structural & Molecular Biology,2009,16(1):23-29.
    184. Li J, Donath S,Li Y, et al. miR-30 regulates mitochondrial fission through targeting p53 and the dynamin-related protein-1 pathway. PLoS Genetics,2010, 6(1):e1000795.
    185. Bridge G, Monteiro R, Henderson S, et al. The microRNA-30 family targets DLL4 to modulate endothelial cell behavior during angiogenesis. Blood,2012, 120(25):5063-5072.
    186. Fang L, Deng Z. Shatseva T. et al. MicroRNA miR-93 promotes tumor growth and angiogenesis by targeting integrin-β8. Oncogene,2011,30(7):806-821.
    187. Fuchs BC, Finger RE, Onan MC, et al. ASCT2 silencing regulates mammalian target-of-rapamycin growth and survival signaling in human hepatoma cells. American Journal of Physiology-Cell Physiology,2007,293(1):C55-C63.
    188. Crowder C. Dahle (?), Davis RE, et al. PML mediates IFN-alpha-induced apoptosis in myeloma by regulating TRAIL induction. Blood,2005,105(3): 1280-1287.
    189. Shimokawa T, Matsushima S, Tsunoda T, et al. Identification of TOMM34, which shows elevated expression in the majority of human colon cancers, as a novel drug target. International Journal of Oncology,2006,29(2):381-386.
    190. Li Z, Shao S, Xie S, et al. Silencing of CT120 by antisense oligonucleotides could inhibit the lung cancer cells growth. Irish Journal of Medical Science,2010, 179(2):217-223.
    191. Richmond AL, Kabi A, Homer CR, et al. The nucleotide synthesis enzyme CAD inhibits NOD2 antibacterial function in human intestinal epithelial cells. Gastroenterology,2012,142(7):1483-1492.
    192. Uhrigshardt H, Singh A, Kovtunovych G, et al. Characterization of the human HSC20, an unusual DnaJ type III protein, involved in iron-sulfur cluster biogenesis. Human Molecular Genetics,2010,19(19):3816-3834.
    193. Takagi Y, Setoyama D, Ito R, et al. Human MTH3 (NUDT18) protein hydrolyzes oxidized forms of guanosine and deoxyguanosine diphosphates:comparison with MTH1 and MTH2. The Journal of Biological Chemistry,2012,287(25):21541-21549.
    194. Foulds CE, Tsimelzon A, Long W, et al. Research resource:expression profiling reveals unexpected targets and functions of the human steroid receptor RNA activator (SRA) gene. Molecular Endocrinology,2010,24(5):1090-1105.
    195. Sutendra G, Bonnet S, Rochefort G, et al. Fatty acid oxidation and malonyl-CoA decarboxylase in the vascular remodeling of pulmonary hypertension.Science Translational Medicine,2010,2(44):44ra58.
    196. Li ZF, Wu XH, Engvall E. Identification and characterization of CPAMD8, a novel member of the complement 3/alpha2-macroglobulin family with a C-terminal Kazal domain. Genomics,2004,83(6):1083-1093.
    197. Xia W, Fu W, Cai L, et al. Identification and characterization of FHL3 as a novel angiogenin-binding partner. Gene,2012,504(2):233-237.
    198. Bodet L, Menoret E, Descamps G, et al. BH3-only protein Bik is involved in both apoptosis induction and sensitivity to oxidative stress in multiple myeloma. British Journal of Cancer,2010,103(12):1808-1814.
    199. Rane S, He M, Sayed D, et al. An antagonism between the AKT and beta-adrenergic signaling pathways mediated through their reciprocal effects on miR-199a-5p. Cellular Signalling,2010,22(7):1054-1062.