马铃薯体细胞杂种及其回交和自交后代遗传组分分析与青枯病抗性评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
体细胞杂交是转移野生种有益性状如抗病性等到栽培种中的重要方式。体细胞杂种由于可能带有一些野生种不利性状,在应用中往往需要不断自交或者通过与栽培种不断回交以消除遗传累赘。为了更深入地揭示马铃薯体细胞杂种的遗传特点以及更好地利用体细胞融合所创造的遗传资源,本研究以前期实验室获得的44个体细胞杂种和一个体细胞杂种的回交与自交后代为材料,系统分析了体细胞杂种及回交、自交后代的遗传组分,对主要目标性状青枯病抗性进行了评价,并对体细胞杂种的一些重要农艺性状和植物学性状进行了观察。主要研究结果如下:
     1.体细胞杂种的遗传组分分析与表型评价。研究以44个体细胞杂种(Solanum tuberosum cv.3#+S. chacoence acc. C9701)为材料,通过108对SSR引物对其遗传组分进行分析。结果显示,44个体细胞杂种总共扩增出12576个位点,每个杂种平均285.8个位点。双亲共有位点在杂种中的保留率较高,49个共有位点在杂种中几乎全部保留。栽培种融合亲本特异位点平均保留90.02%,野生种融合亲本特异位点平均保留83.59%。体细胞杂种间双亲遗传信息保留程度存在差异,最高的栽培种亲本和野生种亲本遗传信息保留率分别可达到98.11%和90.83%,最低只有84.91%和72.48%,表明即使是对称融合产生的体细胞杂种,其遗传信息仍然发生了部分丢失。本研究还证明,在44个体细胞杂种中,栽培种遗传组分比野生种遗传组分比例高,以分子标记位点保留率进行的统计分析显示,二者在后代中的保留率差异达到显著性水平(P=0.048)。
     44个体细胞杂种中37个系生长正常,7个系生长极其缓慢,长势极弱。在武汉气候环境下,29个体细胞杂种能够开花,占65.9%,其中2个系可以自交形成浆果。39个体细胞杂种能够形成块茎,占88.6%。大部分植物学性状变异幅度较大,部分性状出现超亲分离。基于形态学的聚类分析显示,61.4%的杂种后代趋于栽培种亲本。
     2.体细胞杂种3C28-1回交和自交后代的倍性与遗传组分分析。本研究对体细胞杂种3C28-1的自交和与栽培种鄂马铃薯1号(E1)的回交后代进行了相关遗传研究。采用染色体压片法对88个回交后代的染色体计数结果显示,染色体数为48左右且经卡方测验符合四倍体的系有14个(15.91%),染色体数为60的系1个,为典型的五倍体(1.14%)。其余73个系的染色体数在50-56之间,卡方测验既不符合四倍体也不符合五倍体,为非整倍体(82.95%)。
     从184对SSR引物中筛选出94对可在3C28-1和E1中扩增出清晰、且具有多态性的SSR引物用于回交后代遗传组分分析。结果显示,90个回交后代共扩增出16758个多态性位点,平均每个后代186.2个位点。进一步分析显示,多态性位点中12625为本研究所涉及的栽培种(体细胞融合亲本3#和回交亲本E1)和野生种(体细胞融合亲本C9701)的共有位点,其余4133个为特异位点。野生种特异位点为1343个,栽培种为2790个(包括3#特异位点1223个和E1特异位点1567个)。这些位点在群体中的比例分析显示,共有遗传信息在群体中占75.34%,野生种特异信息占8.01%,栽培种特异信息占16.65%。栽培种特异信息中,轮回亲本E1的信息占有比例为9.35%。以栽培种和野生种的特异位点数在总特异位点数作为各自遗传组分,比较分析回交群体与体细胞杂种的栽培种与野生种遗传组分的变化,结果表明,经过一次回交后,后代中栽培种遗传组分从体细胞杂种亲本3C28-1的36.2%上升至54.7%,而野生种组分从63.8%下降至45.3%。
     本研究通过同源四倍体测交的遗传分析模式计算标记的分离方式,进而推测体细胞杂种可能的遗传方式。83个3C28-1特异位点中,62个位点(74.7%)符合四倍体的二体遗传或四体遗传,其余21个位点不符合四倍体遗传可能的任何分离模式。在符合四倍体遗传模式的62个位点中,25个位点(30.1%)符合二体遗传或四体遗传方式,37个(44.6%)符合四体遗传方式。而符合四体遗传的位点中,16个位点表现出染色单体随机分离的方式。通过t测验发现,3C28-1中的3#和C9701特异位点遗传方式上并没有差异,说明3C28-1中3#和C9701的特异位点以相同的方式遗传给后代。
     3C28-1自交后代的遗传组分分析表明,自交群体中栽培种组分和野生种组分没有出现显著的分离现象。
     3.体细胞杂种及其回交和自交后代的青枯病抗性评价。本研究采用试管苗伤根接种方法进行青枯病鉴定评价。结果显示,15.9%的体细胞杂种后代具有青枯病抗性,但抗病水平均低于抗病野生种融合亲本C9701。15.5%的3C28-1的回交后代具有青枯病抗性,其中5个株系和C9701抗性水平一致,表现为高抗。46.4%的3C28-1的自交后代具有不同程度青枯病抗性,其中9个系和C9701处于同一抗性水平。这些结果表明,野生种S. chacoense的青枯病抗性已通过原生质体融合转移到栽培种马铃薯中,体细胞杂种的抗性能正常遗传。通过青枯病抗性、农艺性状、野生种的遗传组分等综合分析,共筛选到3个具有育种潜质的体细胞杂种,同时获得了3个具有利用价值的回交品系。
     4.分子标记与青枯病抗性相关分析。为了筛选与青枯病抗性相关的SSR标记,本研究利用109个体细胞融合抗性亲本C9701的特异SSR标记进行标记与体细胞杂种的青枯病抗性相关性分析。结果显示,本研究涉及的SSR标记中,共有3个SSR标记和体细胞杂种的青枯病抗性呈显著相关,它们是STI0002.108、 STI0056.173和STI0057.195。采用单标记检测分析法,将C9701的特异SSR标记与回交后代青枯病抗性进行了相关分析,结果表明,有2个SSR标记在回交群体中与青枯病抗性呈显著相关性,它们是STI0056.173和STI0046.190。 STI0056.173是在体细胞杂种和体细胞杂种的回交后代中均与青枯病抗性具有显著的相关性,表明STI0056.173可能与抗病基因具有较近的遗传距离,可作为青枯病抗性辅助选择标记。
Somatic hybridization is an important avenue for transferring the alien traits from wild species into cultivar, such as resistance against pathogens. However, undesirable traits may be co-introduced with the target traits to cause so called genetic drag, which needs inbreeding, or more often the backcrossing, to overcome. Forth-four somatic hybrids have been previously obtained from protoplast fusion between Solanum tuberosum cv.3#and S. chacoense acc. C9701, and the backcrossing and inbred progenies derived from one of the hybrids (3C28-1) have been obtained. For the purposes of better gain of the knowledge about potato somatic hybrids and efficient use of these uniquely created germplasms, in present research, their genetic components, inheritance mode were investigated by employing the SSR markers. Additionally, the morphology characteristics and the resistance to bacterial wilt of the somatic hybrids and the derived progenies were evaluated. The main results are as follow:
     1. Genetic components and morphological characters of the somatic hybrids. One hundred and eight SSR markers were used to clarity the genome components of the somatic hybrids. The results showed that totally12576SSR alleles were amplified in the44somatic hybrids with an average of285.8in each. Nearly all of the fourth-ninety common SSR alleles of cultivated parent3and the wild parent C9701were retained in the hybrids while90.02%unique alleles of cultivated parent3#and83.59%unique alleles of wild parent C9701were present in the hybrids. There were differences in number of the parent-specific alleles among the hybrids. The highest allele proportion of the cultivated fusion parent that were retained in the hybrids was98.11%and that of the wild fusion parent was90.83%, whereas the lowest were observed as84.91%and72.48%, respectively. The results suggested that there could be some loss of the parental genetic information even in the hybrids of symmetric fusion. The genomic dosage of3#and C9701in the hybrids was further analyzed after arcsine transformation of the percent of polymorphic alleles of each fusion parent appeared in the hybrids by paired samples t-test. The result showed that the hybrids retained a higher proportion of nuclear DNA dosage from cultivated parent than wild parent (p=0.048).
     The plant growth of37out of44somatic hybrids tested were normal while7of them were poor. Twenty-nine hybrids (65.9%) could flower under Wuhan geographic conditions and two of them could produce inbred berries, suggesting most of the hybrids could be further improved when it is necessary for a breeding program. There were88.6%of the hybrids produced tubers although they exhibited remarkable variation in botanic traits, by which61.4%of the hybrids could be clustered into one clade.
     2. Genetic components of the backcrossing and inbred progenies. The ploidy level of88backcrossing progenies were analyzed by root tip chromosome counting. The results demonstrated that the chromosome number of14clones was48(tetraploid) and1was60(pentaploid). The rest73clones had chromosome number between50-56, which could not be statistically confirmed tetraploid or pentaploid, were assigned aneuploids.
     Ninety-four SSRs yielded clear and repeatable polymorphic bands between3C28-1and E1were selected to clarify the nuclear genome components of the backcrossing progenies. The results showed that16758SSR bands were amplified in90backcrossing clones with an average of186.2in each. Of the polymorphic alleles,12625were common in both cultivate and wild species, accounting for75.34%. Of the rest4133unique alleles,1343were wild species-specific (8.01%) and2790cultivate species-specific (16.65%). Further analysis indicated that the1223alleles were unique of3#(7.3%) and1567were unique of El (9.35%). The genome components of the backcrossing clones showed that the genome of cultivate species increased from36.2%(percentage the unique alleles of the cultivate fusion parent3#retained in somatic hybrid3C28-1) to54.7%(percentage of sum of unique alleles of 3#and the backcross parent E1in the backcrossing population), while that of the wild species decreased from63.8%to45.3%after one cycle of backcross.
     Inheritance pattern of the somatic hybrids was analyzed with the mode of the test-cross for tetraploid. The inheritance pattern was determined by following the segregation of83unique SSR alleles of3C28-1and testing all the possible segregation in the hybrids. The results demonstrated that62SSR alleles (74.7%) fit the expected segregation ratios of tetraploid, in which25cases (30.1%) displayed disomic or tetrasomic inheritance, while other37(44.6%) undoubtedly displayed tetrasomic inheritance. Of the tetrasomic-inherited SSR alleles,16displayed random chromatid inheritance and21did not fit any possible segregation. The percentage of3#and C9701specific SSR alleles fitting the segregation ratios in the hybrids was further analyzed after arcsine transformation by paired samples t-test. No significant difference (P=0.824) was detected between the segregation ratios of the unique alleles of3#and C9701, suggesting that there was no bias toward any genome components of the somatic hybrids which may have similar inheritance pattern.
     The results of genetic component analysis for the inbred progenies showed that there were no obvious changes in the proportion of genome components retained from the cultivar and wild fusion parents.
     3. Evaluation of bacterial wilt resistance. The results demonstrated that15.9%of the somatic hybrids were resistant to bacterial wilt though their resistance levels were lower than the wild parent C9701;15.5%of the backcrossing progenies were resistant and5of them exhibited same resistance level as C9701;46.4%of the inbred progenies were resistant and9of them had same resistance level as C9701. These results suggest that the bacterial wilt resistance of S. chacoense has been transferred to cultivated potatoes through protoplast fusion and the resistance of the somatic hybrids is inheritable. Three somatic hybrids and2backcrossing clones which have potentials for further use in potato breeding were selected based on their genome components, plant morphology and the disease resistance.
     4. Coefficient analysis of molecular makers and bacterial wilt resistance. To identify the SSR alleles associated with bacterial wilt resistance in potato, all of the108unique SSR alleles from C9701were analyzed in relation to the resistance of somatic hybrids tested. The results showed that3nuclear alleles (STI0002.108, STI0056.173and STI0057.195) were significantly related to bacterial wilt resistance. Furthermore, all the44unique SSR alleles of C9701identified in the backcrossing population were analyzed in relation to the resistance of the90backcrossing clones by single marker analysis. The results showed that2alleles (STI0046.190and STI0056.173) had significant effects on the resistance. Noticeably, STI0056.173was identified with significant correlation to the resistance in both somatic hybrids and the backcrossing population derived from one resistant somatic hybrids, implying that STT0056.173might be closer to the resistance locus than other SSR alleles and could be used for marker-assist selection of potato bacterial wilt resistance introgressed from C9701.
引文
1.蔡兴奎.原生质体融合创造抗青枯病的马铃薯新种质及其遗传分析.[博士学位论文].武汉:华中农业大学图书馆,2003
    2.崔海峰.小麦体细胞杂种中外源染色质的消减与渐渗研究.[博士学位论文].济南:山东大学图书馆,2003
    3.郜刚,屈冬玉,连勇,金黎平,冯兰香.马铃薯青枯病抗性的分子标记.园艺学报,2000,27:37-41
    4.郭鲜蒲.马铃薯体细胞杂种及其回交后代的遗传稳定性分析.[博士学位论文].武汉:华中农业大学图书馆,2011
    5.李宝健,曾庆平.植物生物技术.长沙:湖南科学出版社,1990,256-281
    6.李广存,金黎平,谢开云,屈冬玉.马铃薯青枯病研究进展.中国马铃薯,2004,18:350-354
    7.何礼.马铃薯荧光原位杂交技术优化及茄属基因组和种间体细胞杂种的染色体特征分析.[博士学位论文].武汉:华中农业大学图书馆,2013
    8.何礼远,康耀卫.植物青枯菌(Pseudomonas solanacearum)致病机理.自然科学进展,1995,5:7-15
    9.李林章.二倍体马铃薯青枯病抗性的分离及分子标记鉴定.[硕士学位论文].武汉:华中农业大学图书馆,2004
    10.梁远发,何礼远,冯兰香,唐益雄,屈贤铬,夏凤.马铃薯抗青枯病转基因植株抗性鉴定.中国马铃薯学术研讨会与第五届世界马铃薯大会论文集,2004
    11.赫沃斯托娃,亚申娜.马铃薯遗传学.(唐洪明,李克来译).北京:农业出版社,1981,102-106
    12.田伶俐.马铃薯体细胞杂种胞质遗传组成及其与青枯病抗性的关系.[硕士学位论文].武汉:华中农业大学图书馆,2010
    13.佟屏亚,赵国磐.马铃薯史略.北京:中国农业科技出版社,1991.88
    14.孙慧生.马铃薯遗传学.北京:中国农业出版社,2003.229
    15.吴兴泉.马铃薯病毒的检测与防治.郑州:郑州大学出版社,2009.8
    16.吴海乔.烟草青枯病抗性基因连锁分子标记的检测.[硕士学位论文].福州:福建农林大学图书馆,2010
    17.谢从华,柳俊.植物细胞工程.北京:高等教育出版社,2004.47
    18.杨友才,周清明,朱列书.烟草青枯病抗性基因的遗传分析及RAPD标记.中国烟草学报,2006,12:38-42
    19.伊华林,邓秀新.RAPD为基础的柑橘体细胞杂种有性后代遗传研究.中国科学(C辑:生命科学),2007,37:42-51
    20.杨业华.普通遗传学.第二版.北京:高等教育出版社,2006.196-197
    21. Acosta C, Jibert JC and Quinon. Heritability of bacterial wilt in tomato. Proc Am Soc Hort Sci,84:455-462
    22. Ali SNH, Ramanna M, Jacobsen E, Visser R. Establishment of a complete series of a monosomic tomato chromosome addition lines in the cultivated potato using RFLP and GISH analyses. Theor Appl Genet,2001,103:687-695
    23. Austin S, Baer MA and Helgeson JP. Transfer of resistance to potato leaf roll virus from Solanum brevidens into Solanum tuberosom by somatic fusion. Plant Sci,1985,39:75-81
    24. Austin S, Ehlenfeldt M, Baer M and Helgeson J. Somatic hybrids produced by protoplast fusion between S. tuberosum and S. brevidens:phenotypic variation under field conditions. Theor Appl Genet,1986,71:682-690
    25. Austin S, Lojkowska E, Ehlenfeldt K, Kelman A and Helgeson JP. Fertile interspecific somatic hybrids of Solanum:A novel source of resistance to Erwinia soft rot. Phytopathology,1988,78:1216-1220
    26. Austin S, Pohlman JD, Brown CR, Mojtahedi H, Santo GS, Douches DS and Helgeson JP. Interspecific somatic hybridization between Solanum tuberosum L. and S. bulbocastanum dun. as a means of transferring nematode resistance. Am J Potato Res,1993,70:485-495
    27. Barker H and Dale MFB. Resistance to viruses in potato. In:Loebenstein G and Carr JP eds. Natural Resistance Mechanisms of Plants to Viruses. Heidlberg: Springer,2006.341-366
    28. Barone A, Li J, Sebastiano A, Cardi T and Frusciante L. Evidence for tetrasomic inheritance in a tetraploid Solanum commersonii (+) S. tuberosum somatic hybrid through the use of molecular markers. Theor Appl Genet,2002,104:539-546
    29. Barone A, Sebastiano A, Carputo D, Della Rocca F and Frusciante L. Molecular marker-assisted introgression of the wild Solanum commersonii genome into the cultivated S. tuberosum gene pool. Theor Appl Genet,2001,102:900-907
    30. Bastia T, Carotenuto N, Basile B, Zoina A and Cardi T. Induction of novel organelle DNA variation and transfer of resistance to frost and Verticillium wilt in Solanum tuberosum through somatic hybridization with 1EBN S. commersonii. Euphytica,2000,116:1-10
    31. Bastia T, Scotti N, Cardi T. Organelle DNA analysis of Solanum and Brassica somatic hybrids by PCR with "universal primers". Theor Appl Genet,2001,102: 1265-1272.
    32. Begum F, Paul S, Bag N, Sikdar SR and Sen SK. Somatic hybrids between Brassica juncea (L). Czern. and Diplotaxis harra (Forsk.) Boiss and the generation of backcross progenies. Theor Appl Genet,1995,91:1167-1172
    33. Bidani A, Nouri-Ellouz O, Lakhoua L, Sihachakr D, Cheniclet C, Mahjoub A, Drira N and Gargouri BR. Interspecific potato somatic hybrids between Solanum berthaultii and Solanum tuberosum L. showed recombinant plastome and improved tolerance to salinity. Plant Cell Tiss Org,2007,91:179-189
    34. Boltowicz D, Szczerbakowa A and Wielgat B. RAPD analysis of the interspecific somatic hybrids:Solanum bulbocastanum (+) S. tuberosum. Cell Mol Biol Lett, 2005,10:151-162
    35. Bonnett HT and Glimelius K. Cybrids of Nicotiana tabacum and Petunia hybrida have an intergeneric mixture of chloroplasts from P. hybrida and mitochondria identical or similar to N. tabacum. Theor Appl Genet,1990,79:550-555
    36. Borgato L, Conicella C, Pisani F and Furini A. Production and characterization of arboreous and fertile Solanum melongena+Solanum marginatum somatic hybrid plants. Planta,2007,226:961-969
    37. Bradeen J, Naess S, Song J, Haberlach G, Wielgus S, Buell C, Jiang J and Helgeson J. Concomitant reiterative BAC walking and fine genetic mapping enable physical map development for the broad-spectrum late blight resistance region, RB. Mol Genet Genomics,2003,269:603-611
    38. Buddenhagen I, Sequeira L, Kelmen A. Designation of races in Pseudomonas solanacearum. Phytopathology,1962,52:726
    39. Butenko R, Kuchko A. Somatic hybridizations of S. tuberosom and S. chacoence by protoplast fusion. In:Ferenvzy L and Farkas GL eds., Advances in protoplast research. Budapest:Akademia Kiado Press.1980,293-300
    40. Carrasco A, Ruiz De Galarreta JI, Rico A and Ritter E. Transfer of PLRV resistance from Solanum verrucosum Schlechdt to potato (S. tuberosum L.) by protoplast electrofusion. Potato Res,2000,43:31-42
    41. Carputo D, Garreffa P, Mazzei M, Monti L, Cardi T. Fertility of somatic hybrids Solanum commersonii (2x,1EBN) (+) S. tuberosum haploid (2x,2EBN) in intra-and inter-EBN crosses. Genome,1998,41:776-781.
    42. Carputo D, Parisi M, Consiglio F, Iovene M, Caruso G, Monti L and Frusciante L. Aneuploid hybrids from 5x-4x crosses in potato:Chromosome number, fertility, morphology and yield. Am J Potato Res,2003,80:93-101
    43. Cheng Y, Guo W and Deng X. Molecular characterization of cytoplasmic and nuclear genomes in phenotypically abnormal Valencia orange (Citrus sinensis)+ Meiwa kumquat (Fortunella crassifolid) intergeneric somatic hybrids. Plant Cell Rep,2003,21:445-451
    44. Conicella C, Genualdo G, Lucia R, Ramulu K and Cardi T. Early tapetal degeneration and meiotic defects are involved in the male sterility of Solanum commersonii (+) S. tuberosum somatic hybrids. Theor Appl Genet,1997,95: 609-617
    45. Cook D, Barlow E, Sequeira L. Genetic diversity of Pseudomonas solanacearum: detection of restriction fragment polymorphisms with DNA probes that specify virulence and hypersensitive response. Mol Plant Microbe In,1989,2:113-121
    46. Cook D, Sequeira L. Strain differentiation of Pseudomonas solanacearum by molecular genetic method. In Hayward AC and Hartman GL eds., Bacterial wilt: the disease and its causative agent, Pseudomonas solacearum. London:CAB International,1994,77-93
    47. Cooper-Bland S, Maine M, Stewart H, Fleming M, Phillips M and Kumar A. Intraspecific somatic and sexual hybridisation between dihaploid lines of Solanum tuber osum L.:evaluation of morphological traits and resistance to late blight Phytophthora infestans (Mont.) de Bary in the foliage. Euphytica,1996,90: 209-216
    48. De Jong J, Wolters A, Kok J, Verhaar H and Van Eden J. Chromosome pairing and potential for intergeneric recombination in some hypotetraploid somatic hybrids of Lycopersicon esculentum (+) Solanum tuberosum. Genome,1993,36: 1032-1041
    49. Deslandes L, Pileur F, Liaubet L, Camut S, Can C, Williams K, Holub E, Beynon J, Arlat M and Marco Y. Genetic characterization of RRS1, a recessive locus in Arabidopsis thaliana that confers resistance to the bacterial soilborne pathogen Ralstonia solanacearum. Mol Plant Microbe In,1998,11:659-667
    50. Deslandes L, Olivier J, Peeters N, Feng DX, Khounlotham M, Boucher C, Somssich I, Genin S and Marco Y. Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus. Proc Natl Acade Sci,2003,100:8024-8029
    51. Deslandes L, Olivier J, Theulieres F, Hirsch J, Feng DX, Bittner-Eddy P, Beynon J and Marco Y. Resistance to Ralstonia solanacearum in Arabidopsis thaliana is conferred by the recessive RRS1-R gene, a member of a novel family of resistance genes. Proc Natl Acad Sci,2002,99:2404-2409
    52. Escalante A, Imanishi S, Hossain M, Ohmido N and Fukui K. RFLP analysis and genomic in situ hybridization (GISH) in somatic hybrids and their progeny between Lycopersicon esculentum and Solanum lycopersicoides. Theor Appl Genet,1998,96:719-726
    53. Feng J, Yuan F, Gao Y, Liang C, Xu J, Zhang C and He L. A novel antimicrobial protein isolated from potato (Solanum tuberosum) shares homology with an acid phosphatase. Biochem J,2003,376:481-487
    54. Feingold S, Lloyd J, Norero N, Bonierbale M, Lorenzen J. Mapping and characterization of new EST-derived microsatellites for potato (Solanum tuberosum L). Theor Appl Genet,2005,111:456-466
    55. Fish N, Steele S and Jones M. Field assessment of dihaploid Solatium tuberosum and S. brevidens somatic hybrids. Theore Appl Genet,1988,76:880-886
    56. Fock I, Collonnier C, Purwito A, Luisetti J, Souvannavong V, Vedel F, Servaes A, Ambroise A, Kodja H, Ducreux G and Sihachakr D. Resistance to bacterial wilt in somatic hybrids between Solanum tuberosum and Solanum phureja. Plant Sci, 2000,160:165-176
    57. Fock I, Collonnier C, Luisetti J, Purwito A, Souvannavong V, Vedel F, Servaes A, Ambroise A, Kodja H and Ducreux G. Use of Solanum stenotomum for introduction of resistance to bacterial wilt in somatic hybrids of potato. Plant Physiol Bioch,2001,39:899-908
    58. French E and Lindo DL. Resistance to Pseudomonas solanacearum in potato: Specificity and temperature sensitivity. Phytopathology,1982,72:1408-1412
    59. Gaikwad K, Kirti PB, Sharma A, Prakash S and Chopra VL. Cytogenetical and molecular investigations on somatic hybrids of Sinapis alba and Brassica juncea and their backcross progeny. Plant Breeding,1996,115:480-483
    60. Gavrilenko T, Thieme R and Tiemann H. Assessment of genetic and phenotypic variation among intraspecific somatic hybrids of potato, Solanum tuberosum L. Plant Breeding,1999,118:205-213
    61. Gavrilenko T, Thieme R, Heimbach U and Thieme T. Fertile somatic hybrids of Solanum etuberosum (+) dihaploid Solanum tuberosum and their backcrossing progenies:relationships of genome dosage with tuber development and resistance to potato virus Y. Euphytica,2003,131:323-332
    62. Ghislain M, Nunez J, Herrera MR, Pignataro J, Guzman F, Bonierbale M, Spooner DM. Robust and highly informative microsatellite-based genetic identity kit for potato. Mol Breeding,2009,23:377-388
    63. Granada G, Sequeira L. Survival of Pseudomonas solanacearum in soil, rhizosphere, and plant roots. Can J Microbiol,1983,29:433-440
    64. Grimault V, Prior P and Anais G. A monogenic dominant resistance of tomato to bacterial wilt in Hawaii 7996 is associated with plant colonization by Pseudomonas solanacearum. J Phytopathol,1995,143:349-352
    65. Grun P. The evolution of cultivated potatoes. Econ Bot,1990,44:39-55
    66. Hawkes JG. The potato, evolution, biodiversity and genetic resources. London: Belhaven Press,1990
    67. Hawkes JG. Origins of cultivated potatoes and species relationships. In: Bradshaw JE and Mackay GR eds., Potato genetics. Oxford:CAB International, 1994,3-42
    68. Hawkes JG, Francisco OJ. The early history of the potato in Europe. Euphytica, 1993,70:1-7
    69. Hayward AC. Characteristics of Pseudomonas solanacearum. J Appl Bacteriol. 1964,27:265-277
    70. Hayward AC. Systematics and phypogeny of Pseudomonas solanacearum and related bacteria. In:Hayward AC and Hartman GL eds., Bacterial wilt:the disease and its causative agent, Pseudomonas solanacearum. Oxford:CAB International,1994,123-135
    71. Hayward AC. Ralstonia solanacearum. In:Lederberg J ed., Encyclopedia of microbiology. San Diego:Academic Press,2000,32-42
    72. He LY, Sequeira L, Kelman A. Chracteristics of strains of Pseudomonas solancearum. Plant Dis.1983,67:1357-1361
    73. Helgeson J, Pohlman J, Austin S, Haberlach G, Wielgus S, Ronis D, Zambolim L, Tooley P, Mcgrath J and James R. Somatic hybrids between Solanum bulbocastanum and potato:a new source of resistance to late blight. Theor Appl Genet,1998,96:738-742
    74. Hermsen JGT. Introgression of genes from wild species, including molecular and cellular approaches. In:Bradshaw JE and Mackay GR eds., Potato Genetics. Oxford:CAB International,1994.515-538
    75. Hoffmann F and Adachi T. "Arabidobrassicd":Chromosomal recombination and morphogenesis in asymmetric intergeneric hybrid cells. Planta,1981,153: 586-593
    76. Hu Q, Andersen S, Dixelius C and Hansen L. Production of fertile intergeneric somatic hybrids between Brassica napus and Sinapis arvensis for the enrichment of the rapeseed gene pool. Plant Cell Rep,2002,21:147-152
    77. Iovene M, Aversano R, Savarese S, Caruso I, Di Matteo A, Cardi T, Frusciante L and Carputo D. Interspecific somatic hybrids between Solanum bulbocastanum and S. tuberosum and their haploidization for potato breeding. Biol Plantarum, 2012,56:1-8
    78. Iovene M, Barone A, Frusciante L, Monti L and Carputo D. Selection for aneuploid potato hybrids combining a low wild genome content and resistance traits from Solanum commersonii. Theor Appl Genet,2004,109:1139-1146
    79. Iovene M, Savarese S, Cardi T, Frusciante L, Scotti N, Simon PW and Carputo D. Nuclear and cytoplasmic genome composition of Solanum bulbocastanum (+) S. tuberosum somatic hybrids. Genome,2007,50:443-450
    80. Jelodar NB, Blackhall NW, Hartman TPV, Brar DS, Khush G, Davey MR, Cocking EC and Power JB. Intergeneric somatic hybrids of rice [Oryza sativa L. (+) Porteresia coarctata (Roxb.) Tateoka]. Theor Appl Genet,1999,99:570-577
    81. Johnston S, Nijs TPM, Peloquin S, Hanneman R. The significance of genie balance to endosperm development in interspecific crosses. Theor Appl Genet, 1980,57:5-9
    82. Kerlan C. Potato viruses. In:Mahy BWJ and van Regenmortel MHV eds, Desk encylopedia of plant and fungal virology. Amesterdam:Elsevier,2008,458-471
    83. Kim-Lee HY, Moon JS, Hong YJ, Kim MS and Cho HM. Bacterial wilt resistance in the progenies of the fusion hybrids between haploid of potato and Solanum commersonii. Am J Potato Res,2005,82:129-137
    84. Kisaka H, Kisaka M, Kanno A and Kameya T. Production and analysis of plants that are somatic hybrids of barley (Hordeum vulgare L.) and carrot (Daucus carota L.). Theor Appl Genet,1997,94:221-226
    85. Kisaka H, Kisaka M, Kanno A and Kameya T. Intergeneric somatic hybridization of rice(Oryza sativa L.) and barley (Hordeum vulgare L.) by protoplast fusion. Plant Cell Rep,1998,17:362-367
    86. Kostenyuk I, Lubaretz O, Borisyuk N, Voronin V, Stockigt J and Gleba Y. Isolation and characterization of intergeneric somatic hybrids in the Apocynaceae family. Theor Appl Genet,1991,82:713-716
    87. Kurosaki F, Tsurusawa Y, Nishi A. Breakdown of phosphatidylinositol during the elicitation of phytoalexin production in cultured carrot cells. Plant Physiol,1987, 85:601-604
    88. Lahaye T. The Arabidopsis RRS1-R disease resistance gene-uncovering the plant's nucleus as the new battlefield of plant defense? Trends Plant Sci,2002,7: 425-427
    89. Leino M, Teixeira R, Landgren M and Glimelius K. Brassica napus lines with rearranged Arabidopsis mitochondria display CMS and a range of developmental aberrations. Theor Appl Genet,2003,106:1156-1163
    90. Leon P, Arroyo A and Mackenzie S. Nuclear control of plastid and mitochondrial development in higher plants. Plant Mol Biol,1998,49:453-480
    91. Li L, Tacke E, Hofferbert HR, Lubeck J, Strahwald J, Draffehn AM, Walkemeier B, Gebhardt C. Validation of candidate gene markers for marker-assisted selection of potato cultivars with improved tuber quality. Theor Appl Genet,2013, 126:1039-1052
    92. Liu B, Liu ZL and Li XW. Production of a highly asymmetric somatic hybrid between rice and Zizania latifolia (Griseb):evidence for inter-genomic exchange. Theor Appl Genet,1999,98:1099-1103
    93. Liu J, Xu X and Deng X. Intergeneric somatic hybridization and its application to crop genetic improvement. Plant Cell Tiss Org,2005,82:19-44
    94. Lossl A, Adler N, Horn R, Frei U, Wenzel G (1999) Chondriome-type characterization of potato:α, β, γ,δ,ε and novel plastid-mitochondrial configurations in somatic hybrids. Theor Appl Genet,98:1-10
    95. Matsuda T, Ohashi Y. Fundamental studies on the breeding of bacterial wilt resistant varieties in tobacco. Bull Utsunomiya Tobacco Exp Stn,1977,15:1-95
    96. Melin PM, Pical C, Jegril B. Polyphosphoinositide phospholipase C in wheat root plasma membranes. Partial purification and characterization. Biochimica Biophysica Acta,1992,123:163-169
    97. Menke U, Schilde RL, Ruoss B, Zanke C, Hemleben V and Ninnemann H. Somatic hybrids between the cultivated potato Solanum tuberosum L. and the 1EBN wild species Solanum pinnatisectum Dun.:morphological and molecular characterization. Theor Appl Genet,1996,92:617-626
    98. Mew T and Ho W. Effect of soil temperature on resistance of tomato cultivars to bacterial wilt. Phytopathology,1977,67:909-911
    99. Miao LX, Shou SY, Cai JY, Jiang F, Zhu ZJ and Li HB. Identification of two AFLP markers linked to bacterial wilt resistance in tomato and conversion to SCAR markers. Mol Biol Rep,2009,36:479-486
    100. Murashige T, Skoog F. An revised medium for rapid growth and bio assays with tobacco tissue cultures. Plant Physiol,1962,15:473-497
    101. Nielsen L, Haynes F. Resistance in Solanum tuberosum to Pseudomonas solanacearum. Am J Pot Res,1960,37:260-7
    102. Novy R and Helgeson J. Resistance to potato virus Y in somatic hybrids between Solanum etuberosum and S. tuberosum × S berthaultii hybrid. Theor Appl Genet,1994,89:783-786
    103. Novy R, Nasruddin A, Ragsdale D and Radcliffe E. Genetic resistances to potato leafroll virus, potato virus Y, and green peach aphid in progeny of Solanum etuberosum. Am J Potato Res,2002,79:9-18
    104. Pijnacker L and Ferwerda M. Giemsa C-banding of potato chromosomes. Can J Genet Cytol,1984,26:415-419
    105. Pijnacker L, Ferwerda M, Puite K and Schaart J. Chromosome elimination and mutation in tetraploid somatic hybrids of Solanum tuberosum and Solanum phureja. Plant Cell Rep,1989,8:82-85
    106. Polzerov H, Patzak J, Greplov M. Early characterization of somatic hybrids from symmetric protoplast electrofusion of Solanum pinnatisectum Dun. and Solanum tuberosum L. Plant Cell Tiss Org,2010,104:163-170
    107. Poussier S, Vandewalle P and Luisetti J. Genetic diversity of African and worldwide strains of Ralstonia solanacearum as determined by PCR-restriction fragment length polymorphism analysis of the hrp gene region. Appl Environ Microb,1999,65:2184-2194
    108. Poussier S, Prior P, Luisetti J, Hayward C and Fegan M. Partial Sequencing of the hrpB and endoglucanase genes confirms and expands the known diversity within the Ralstonia solanacearum species complex. Syst Appl Microbiol,2000, 23:479-486
    109. Rodriguez F and Spooner DM. Nitrate Reductase phylogeny of potato(Solanum sect. Petota) genomes with emphasis on the origins of the polyploid species. Syst Bot,2009,34:207-219
    110. Rowe P. Inheritance of resistance to Pseudomonas solanacearum in Solanum phureja. Phytopathology,1970,60:1499-1501
    111. Sarkar D, Tiwari JK, Sharma S, Poonam, Sharma S, Gopal J, Singh BP, Luthra SK, Pandey SK and Pattanayak D. Production and characterization of somatic hybrids between Solanum tuberosum L. and S. pinnatisectum Dun. Plant Cell TissOrg,2011,107:427-440
    112. Scotti N, Marechal DL and Cardi T. The rpl5-rpsl4 mitochondrial region:a hot spot for DNA rearrangements in Solanum spp. somatic hybrids. Current Genet, 2004,45:378-382
    113. Sequeira L. Development of resistance to bacterial wilt derived from Solanum phureja. Abstract, developments in control of potato bacterial diseases.1979, Lima, Peru.
    114. Smith T and Clayton E. Inheritance of resistance to bacterial wilt in tobacco. J Agri Res,1948,76:27-32
    115. Szarka B, Gonter I, Molnar-Lang M, Morocz S and Dudits D. Mixing of maize and wheat genomic DNA by somatic hybridization in regenerated sterile maize plants. Theor Appl Genet,2002,105:1-7
    116. Szczerbakowa A, Maciejewska U, Zimnoch-Guzowska E and Wielgat B. Somatic hybrids Solanum nigrum (+) S. tuberosum:morphological assessment and verification of hybridity. Plant Cell Rep,2003,21:577-584
    117. Szczerbakowa A, Tarwacka J, Oskiera M, Jakuczun H and Wielgat B. Somatic hybridization between the diploids of SI michoacanum and S. tuberosum. Acta Physiologiae Plantarum,2010,32:867-873
    118. Taghavi M, Hayward C, Sly LI, Fegan M. Analysis of the phylogenetic relationships of strains of Burkholdria solanacearum, Pseudomonas syzygii, and the blood disease bacterium of banana based on 16S rRNA gene sequences. Int J Syst Bacteriol.1996,46:10-15
    119. Takami K, Matsumara A, Yahata M, Imayama T, Kunitake H and Komatsu H. Production of intergeneric somatic hybrids between round kumquat (Fortunella japonica Swingle) and 'Morita navel'orange (Citrus sinensis Osbeck). Plant Cell Rep,2004,23:39-45
    120. Tek AL, Stevenson WR, Helgeson JP and Jiang J. Transfer of tuber soft rot and early blight resistances from Solanum brevidens into cultivated potato. Theor Appl Genet,2004,109:249-254
    121. Thanh ND, Pay A, Smith MA, Medgyesy P and Marton L. Intertrubal chloroplast transfer by protoplast fusion between Nicotiana tabacum and Salpiglossissinuata. Mol Gener Genet,1988,213:186-190
    122. Tiwari JK, Poonam, Sarkar D, Pandey SK, Gopal J and Kumar SR. Molecular and morphological characterization of somatic hybrids between Solanum tuberosum L. and S etuberosum Lindl. Plant Cell Tiss Org,2010,103:175-187
    123. Thanh N and Medgyesy P. Limited chloroplast gene transfer via recombination overcomes plastomegenome incompatibility between Nicotiana tabacum and Solanum tuberosum. Plant Mol Biol,1989,12:87-93
    124. Thieme R, Rakosy TE, Nachtigall M, Schubert J, Hammann T, Antonova O, Gavrilenko T, Heimbach U and Thieme T. Characterization of the multiple resistance traits of somatic hybrids between Solanum cardiophyllum Lindl. and two commercial potato cultivars. Plant Cell Rep,2010,29:1187-1201
    125. Thoquet P, Olivier J, Sperisen C, Rogowsky P, Prior P, Anais G, Mangin B, Bazin B, Nazer R and Grimsley N. Polygenic resistance of tomato plants to bacterial wilt in the French West Indies. Mol Plant Microbe In,1996,9:837-84
    126. Tiwari JK, Poonam, Sarkar D, Pandey SK, Gopal J and Kumar SR. Molecular and morphological characterization of somatic hybrids between Solanum tuberosum L. and S. etuberosum Lindl. Plant Cell Tiss Org,2010,103:175-187
    127. Toppino L, Mennella G, Rizza F, Dalessandro A, Sihachakr D and Rotino GL. ISSR and isozyme characterization of androgenetic dihaploids reveals tetrasomic inheritance in tetraploid somatic hybrids between Solanum melongena and Solanum aethiopicum group Gilo. J Hered,2008,99:304-315
    128. Vleeshouwers VG, Raffaele S, Vossen JH, Champouret N, Oliva R, Segretin ME, Rietman H, Cano LM, Lokossou A and Kessel G. Understanding and exploiting late blight resistance in the age of effectors. Annu Rev Phytopathol, 2011,49:507-531
    129. Wang MQ, Zhao JS, Peng ZY, Guo W, Yun W, Wang L and Xia GM. Chromosomes are eliminated in the symmetric fusion between Arabidopsis thaliana L. and Bupleurum scorzonerifolium Willd. Plant Cell Tiss Org,2008, 92:121-130
    130. Waara S, Pijnacker L, Ferwerda M, Wallin A and Eriksson T. A cytogenetic and phenotypic characterization of somatic hybrid plants obtained after fusion of two different dihaploid clones of potato(Solanum tuberosum L.). Theor Appl Genet, 1992,85:470-479
    131. Winstead N, Kelman A. Inoculation techniques for evaluating resistance to Pseudomonas solanacearum. Phytopathology,1952,42:628-634
    132. Xing HQ, Xia GM, Chen HM. Preliminary study on hybrid chromosome composition and relationship in symmetric hybridization between Triticum aestivum and intergeneric grasses. Bull Bot Res,2001,21:74-78
    133. Xu C, Xia G, Zhi D, Xiang F and Chen H. Integration of maize nuclear and mitochondrial DNA into the wheat genome through somatic hybridization. Plant Sci,2003,165:1001-1008
    134. Yamada T, Hosaka K, Kaide N, Nakagawa K, Misoo S, Kamijima O. Characteriazation of somatic hybrids between tetraploid Solanum tuberosom L. and dihaploid S acaule. Breeding Sci,1997,47:229-236
    135. Zehr EI. Studies on the distribution and economic importance of Pseudomonas solanacearum E.F. Smith in certain crops in the Philippines. Philippine Agricul, 1969,53:218-223
    136. Zubko M, Zubko E and Gleba Y. Self-fertile cybrids Nicotiana tabacum +Hyoscyamus aureus with a nucleo-plastome incompatibility. Theor Appl Genet, 2002,105:822-828