甘蓝型油菜核不育系7365A恢复基因克隆和进化分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甘蓝型油菜细胞核雄性不育系7365A由于能够产生全不育群体,恢复源广,易获得强优势组合,在油菜杂种优势育种中被广泛利用。7365A的育性受两对基因(Bnms3和BnRF)互作控制。为揭示7365A的雄性不育机理,本研究通过图位克隆的方法分离了7365A的育性恢复基因BnaC9.Tic40(BnMS3),并对Tic40在芸薹科中进化模式进行详细分析。同时,利用细胞学和分子生物学方法,阐述了7365A的雄性不育机理及BnaC9.Tic40在油菜花药发育中的功能。主要研究结果如下:
     1.甘蓝型油菜7365A败育的细胞学观察
     透射电镜结果表明,7365A花药的绒毡层细胞在减数分裂时期异常膨大。在四分体阶段,7365A绒毡层细胞液泡化且细胞壁完整,质体、内质网、分泌小泡稀少。随着花药发育,7365A的绒毡层质体中没有脂质积累,且四分体周围的胼胝质壁也无法降解。最终,小孢子以四分体的形式被瓦解。脂染色和TUNEL实验表明,在整个花药发育期间7365A绒毡层质体中始终无法合成和积累脂质;绒毡层细胞PCD被延迟。以上研究表明,7365A花药的败育发生在减数分裂时期,由于绒毡层细胞无法向分泌型转移,导致其分泌功能缺失,从而导致不育。具体表现为绒毡层质体中脂类合成异常、胼胝质酶分泌缺失、PCD延迟等。
     2.恢复基因BnaC9.Tic40的克隆
     本研究结合芸薹科基因组信息,通过IP标记的开发以及两个BnMs3/Bnms3的近等基因系群体的筛选,将BnMs3定位在分子标记IP20和IP17之间。随后,利用甘蓝和甘蓝型油菜Tapidor的BAC文库构建了BnMs3定位区间的BAC重叠群,完成BnMs3物理图谱的构建。最近两个标记间的物理距离为49.279Kb。对这49.279Kb序列进行ORF分析,获得4个候选基因。这4个候选基因的遗传转化实验最终确定,与拟南芥Tic40(at5g16620)同源的基因BnaC9,Tic40即是7365A的恢复基因BnMs3。
     3.恢复基因BnaC9.Tic40的表达和功能研究
     RT-PCR结果表明BnaC9.Tic40在油菜幼苗、花药和授粉20天后的种子中表达较强。利用启动子分析和RNA原位杂交实验对BnaC9.Tic40在花药中的表达进行详细分析,结果表明:BnaC9.Tic40在花药发育第5期开始在绒毡层和花粉母细胞中表达;在四分体时期达到最强;随着小孢子发育和绒毡层降解,表达逐渐降低;直至花粉成熟,表达消失。亚细胞定位实验表明,BnaC9.Tic40定位在原生质体的叶绿体上。而其同源基因,AtTic40是叶绿体内膜上通道蛋白复合体的成员,参与叶绿体内膜上蛋白的转运。据此推测,BnaC9.Tic40主要参与绒毡层质体上蛋白的转运。
     4.芸薹属基本种中Tic40的复制和丢失
     由于芸薹族祖先种基因组的三倍化,Tic40基因组区域发生了3次重复。随后,在芸薹族祖先种染色体二倍化过程中,这3次重复的Tic40基因组区域中出现了频繁的基因片段化现象,导致甘蓝C3和白菜A3中对应的Tic40位点被丢失。最终,在芸薹属三个基本种中进化出两个Tic40位点。
     5.部分同源染色体(A10和C9)的重组导致BnaC9.Tic40(BnMs3)起源于BolC9.Tic40,而bnac9.tic40(Bnms3)起源于BraA10.Tic40
     Tic40的进化树和序列一致性分析表明恢复基因BnaC9.Tic40在进化上起源于BolC9.Tic40,而其等位基因bnac9.tic40则起源于BraA10.Tic40。23个BnaC9.Tic40和bnac9. tic40侧翼基因序列与甘蓝C9和白菜A10基因组中同源序列的核苷酸多态性分析则证明,在甘蓝型油菜7365B中N19上Tic40周围区域发生了部分同源染色体(A10和C9)的重组,导致7365A中N19连锁群上Tic40位点周围约2Mb的序列来源于白菜A10基因组,从而使bnac9.tic40起源于BraA10.Tic40。
     6.正向选择使芸薹属基本种中Tic40发生功能分歧,导致BolC9.Tic40发生功能获得型变异
     芸薹属三个基本种及拟南芥中Tic40拷贝的功能分析表明,相对于芸薹科祖先Tic40而言,甘蓝BolC9. Tic40发生了功能获得型变异。6个可能造成功能变异的氨基酸位点存在其功能结构域TPR和Hop上,导致BolC9.Tic40及BnaC9.Tic40可以恢复由于显性基因BnRf的效应引起的7365A的不育性,且Tic40的这一功能获得型变异仅存在于甘蓝及甘蓝的衍生种中。而对芸薹科中Tic40的选择压力分析表明,在芸薹属三个基本种分化前,芸薹科中Tic40的分子进化表现为较强的纯化选择。在三个基本种分化后,在甘蓝BolC9.Tic40这一进化分枝中表现出明显的正向选择。且6个可能造成功能分歧的氨基酸位点受到正向选择的概率均超过90%,其中3个位点正向选择概率大于99%。
The Brassica napus recessive genetic male sterility7365A was considered to be an efficient way in the heterosis utilization of rapeseed, because it can be generated a100%male sterile population by crossing with temporary maintain line and it has wide restores. The male sterility of7365A was controlled by two interacting genes (Bnms3and BnRf). In order to understand the sterile molecular mechanism of7365A, the restoring gene BnaC9. Tic40(BnMs3) was isolated by a map-based cloning approach. Then the evolution dynamics of Tic40in the Brassicaceae genomes was analyzed. Furthermore, the sterile molecular mechanism of7365A and the function of the restoring gene BnaC9.Tic40in anther development were studied by cytological and molecular biological methods. The results were described as follows:
     1. The phenotypic characterization of7365A by cytological analyses
     Results of transmission electron microscopy (TEM) suggested, at the meiosis stage, in the7365A mutant, the tapetal cells became abnormally enlarged. At the tetrad stage, the mutant tapetal cell walls were still intact and the tapetal cell seemed to be vacuolated. The organelles in the tapetum such as plastids, endoplasmic reticulum and vesicles were seldom. Subsequently, the tapetal cells in the7365A mutant did not synthesize and accumulate lipid compounds. The callose wall surrounding the tetrads was not dissolved. Finally, the microspores were degraded as tetrads. Lipid staining and TUNEL assay showed the tapetal cells in the7365A mutant could not synthesize and accumulate lipid compounds throughout anther development, and the retardation of tapetal PCD resulted in the failure of timely tapetal degradation in the7365A mutant. These results suggested the defects of the7365A mutant anther development were initiated at the meiosis stage. The transition of the tapetal cells to the secretory cells in7365A was defective, resulting in a loss of the secretory function of the tapetum, as suggested by abortive lipid accumulation, absent callose dissolution and retarded tapetal degradation.
     2. The cloning of the restoring gene BnaC9.Tic40
     The BnMs3gene was located between the molecar markers IP20and IP17by exploiting IP markers and scanning of two BnMs3/Bnms3near-isogenic line populations. Subsequently, the BAC overlapping clusters about the target region was constructed using the BAC libraries of B. oleracea and the B. napus cultivar Tapidor. Then the BnMs3gene was narrowed into a49.279kb region between T1and T4. By ORF finding, four candidate genes were identified in this region. Four resulting complementation constructs were introduced into the7365A line by Agrobacterium tumefaciens-mediated transformation. The genetic complementation suggested BnaC9.Tic40, the ortholog of atTic40, corresponds to the restoring gene BnMs3.
     3. The expression patterns and function study of BnaC9.Tic40
     RT-PCR analysis suggested that BnaC.Tic40was highly expressed in seedlings, anthers and20-dayold seeds. The expression of the fusion construct, Pro BnaC9.Tic40-GUS and RNA in situ hybridization of BnaC9. Tic40in Arabidopsis wild-type anthers, were used to determine precisely the spatial and temporal patterns of BnaC9. Tic40expression during anther development. At stage5, the BnaC.Tic40gene was first expressed in the tapetum and microspore mother cells. The expression level became higher at the tetrad stage, and was reduced in the tapetum and microspores along with microspore development and tapetal degradation. The expression was disappeared when pollen became mature. The subcelluar localization assay showed the BnaC.Tic40protein was localized in the chloroplast of the protoplast, which is consistent with its ortholog atTic40. Tic40is an inner membrane-anchored translocon in the chloroplast and functions during protein translocation across the inner membrane. It is proposed that BnaC.Tic40participates in protein translocation in the tapetal plastid.
     4. Duplication and deletion of Tic40in the diploid Brassica species
     The genomic regions around Tic40in the Brassicaceae species were conserved and displayed high microsynteny. The Tic40genomic regions were triplicate duo to the whole-genome triplication of the tribe Brassiceae ancestry. Subsequently, in the diploidization process of the tribe Brassiceae ancestry, frequent gene loss was present in the triplicate Tic40genomic regions, resulting in the deletion of Tic40locus in the B. oleracea C3and B. rapa A3syntenic regions. Currently, the diploid Brassica species B. oleracea, B. rapa and B. nigra have two Tic40loci, located on B. oleracea C2and C9, B. rapa A2and A10, respectively.
     5. Homeologous chromosomal rearrangement between A10and C9caused different origins of BnaC9.Tic40(BnMs3) and bnac9.tic40(Bnms3), originating from BolC9.Tic40and BraA10.Tic40, respectively
     Phylogenetic tree constructed and sequence identity analysis revealed that BnaC9.Tic40originated from BolC9.Tic40. However, its allele bnac9.tic40was derived from BraA10.Tic40. Partial sequences of twenty-three flanking genes ofBnaC9.Tic40and bnac9.tic40were used to compare with their homologs from B. oleracea C9, and B. rapa A10. Nucleotide diversity demonstrated that chromosomal rearrangement around the Tic40in B. napus N19linkage was caused by homeologous recombination between A10and C9. Finally, about2Mb fragments around Tic40in the N19linkage of7365A was derived from B. rapa A10homologs, resulting in the evolutionarily close between bnac9.tic40and BraA10. Tic40.
     6. Function divergence of Tic40in the diploid Brassica species resulted by positive selection, caused a gain-of-function variation of BolC9.Tic40
     Genetic complementation assay of Tic40genes from three diploid Brassica species and A. thaliana indicated that in comparison with the Brassicaceae ancestral Tic40, BolC9.Tic40had a gain-of-function variation. The six possible variation sites related to function differences exits in the TPR and Hop domains, resulting in BolC9. Tic40and its derivative BnaC9.Tic40gain a new function which can restore the fertility of7365A duo to present of the dominant gene BnRf. And only B. oleracea and its derivatives displayed the possible gain-of-function variation sites. Subsequently, selective pressure analysis explored strong purifying selection of Tic40in the Brassicaceae before the Brassica genus divergence from other genus of the tribe Brassiceae. After divergence of the Brassica genus, the evolutionary clade of BolC9.Tic40displayed distinct positive selection. Furthermore, the six possible variation sites related to function differences had a Bayesian posterior probability greater than90%, and3of6with a probability more than
引文
1.陈凤祥,胡宝成,李强生.细胞核不育材料9012A的发现与初步遗传.北京农业大学学报,1993,2:20-25
    2.陈凤祥,胡宝成,李成,李强生,陈维生,张曼琳.甘蓝型油菜细胞核雄性不育性的遗传研究Ⅰ.隐性核不育系9012A的遗传.作物学报,1998,24:431-438
    3.陈玉宁.甘蓝型油菜S45AB隐性细胞核雄性不育表达谱的研究.[博士学位论].武汉:华中农业大学图书馆,2009
    4.傅廷栋.杂交油菜的育种与利用.武汉:湖北科学技术出版社,1995
    5.傅廷栋.杂交油菜的育种与利用.武汉:湖北科学技术出版社,2000
    6.傅廷栋,涂金星.油菜杂种优势利用的现状与展望.见:刘后利主编,作物育种学论丛.北京:中国农业大学出版社,2002
    7.黄镇.分子标记辅助选择培育新型甘蓝型油菜隐性细胞核雄性不育系.[博士学位论文].武汉:华中农业大学图书馆,2008
    8.雷绍林.甘蓝型油菜隐性核不育恢复基因BnMs2的精细定位与候选基因的鉴定.[博士学位论文].武汉:华中农业大学图书馆,2009
    9.李殿荣.甘蓝型油菜(Brassica napus L.)雄性不育系、保持系、恢复系选育成功并已大面积推广.中国农业科学.1986,19:94.
    10.李季.油菜细胞核雄性不育基因Bnms3的克隆及功能标记开发.[博士学位论文].武汉:华中农业大学图书馆,2012
    11.李树林,钱玉秀,吴志华.甘蓝型油菜细胞核雄性不育性的遗传规律探讨及其应用.上海农业学报,1985,1(2):1-12
    12.李树林,周熙荣,周志疆,钱玉秀.显性核不育油菜的遗传与利用.作物研究,1990,4(3):27-32
    13.侯国佐,王华,张瑞茂.甘蓝型油菜细胞核雄性不育材料117A的遗传研究.中国油料作物学报,1990,2:7-10
    14.胡琼,李云昌,梅德圣,方小平,Hansen L N, Andersen S B.属间体细胞杂交创建甘蓝型油菜细胞质雄性不育系及其鉴定.中国农业科学,2004,37:333-338.
    15.何俊平.甘蓝型油菜隐性细胞核雄性不育基因應3的精细定位.[博士学位论文].武汉:华中农业大学图书馆,2008
    16.景兵.芥菜型油菜胞质不育Hau CMS不育相关基因的鉴定及其功能分析.[博士学位论文].武汉:华中农业大学图书馆,2012
    17.潘涛,曾凡亚,吴书慧,赵云.甘蓝型低芥酸油菜雄性不育两用系的选育与利用研究.中国油料,1988,(3):5-8
    18.肖麓.新型甘蓝型油菜核不育系的选育及隐性上位基因Bn;Rf的定位.[博士学位论文].武汉:华中农业大学,2008
    19.谢彦周.甘蓝型油菜隐性细胞核雄性不育上位抑制基因的精细定位.[博士学位论文].武汉:华中农业大学图书馆,2010
    20.易斌.甘蓝型油菜隐性核不育基因Bnmsl的精细定位和克隆.[博士学位论文].武汉:华中农业大学图书馆,2007
    21.曾芳琴.油菜S45AB隐性核不育分子机理与应用研究.[博士学位论文].武汉:华中农业大学图书馆,2010
    22.周正富.甘蓝型油菜隐性核不育分子机理及相关基因功能分析.[博士学位论文].武汉:华中农业大学图书馆,2012
    23.朱云.甘蓝型油菜隐性上位核不育的分子机理研究.[硕士学位论文].武汉:华中农业大学图书馆,2008
    24.俎峰,夏胜前,顿小玲,周正富,曾芳琴,易斌,文静,马朝芝,沈金雄,涂金星,傅廷栋.基于分子标记的油菜隐性核不育7-7365AB遗传模式探究.中国农业科学,2010,43:3067-3075
    25. Akita M, Nielsen E and Keegstra K. Identification of protein transport complexes in the chloroplastic envelope membranes via chemical cross-linking. J. Cell Biol,1997, 136,983-994.
    26. Al-Shehbaz IA, Beilstein MA, Kellogg EA. Systematics and phylogeny of the Brassicaceae (Cruciferae):an overview. Plant Syst Evol,2006,259:89-120.
    27. Ariizumi T, Hatakeyama K, Hinata K, Inatsugi R, Nishida I, Sato S, Kato T, Tabata S, and Toriyama K. Disruption of the novel plant protein NEF1 affects lipid accumulation in the plastids of the tapetum and exine formation of pollen, resulting in male sterility in Arabidopsis thaliana. Plant J,2004,39:170-181.
    28. Ariizumi T, Hatakeyama K, Hinata K, Inatsugi R, Nishida I, Sato S, Kato T, Tabata S, Toriyama K. Disruption of the novel plant protein NEF1 affects lipid accumulation in the plastids of the tapetum and exine formation of pollen, resulting in male sterility in Arabidopsis thaliana. The Plant Journal,2004,2:170-181.
    29. Ariizumi T and Toriyama K. Genetic Regulation of Sporopollenin Synthesis and Pollen Exine Development.Annu.Rev. Plant Biol.2011.62:437-60.
    30. Auger B, Baron C, Lucas MO, Vautrin S, Berges H, Chalhoub B, Fautrel A, Renard M, Nesi N.Brassica orthologs from BANYULS belong to a small multigene family, which is involved in procyanidin accumulation in the seed. Planta,2009, 230:1167-1183.
    31. Babula D, Kaczmarek M, Barakat A, Delseny M, Quiros CF, and Sadowski J. Chromosomal mapping of Brassica oleracea based on ESTs from Arabidopsis thaliana:complexity of the comparative map. Mol. Genet. Genomics,2003,268, 656-665.
    32. Basunanda P, Radoev M, Ecke W, Friedt W, Becker C, Snowdon RJ. Comparative mapping of quantitative trait loci involved in heterosis for seedling and yield traits in oilseed rape (Brassica napus L.) Theor Appl Genet,2010,120:271-281
    33. Batley J, Hopkins CJ, Cogan NOI, Hand M, Jewell E, Kaur J, Kaur S, Li X, Ling AE, Love C, Mountford H, Todorovic M, Vardy M, Walkiewicz M, Spangenberg GC, Edwards D. Identification and characterization of simple sequence repeat markers from Brassica napus expressed sequences. Mol Ecol Notes,2007,7:886-889.
    34. Balsera M, Goetze TA, Kovacs-Bogdan E, Schurmann P, Wagner R, et al. Characterization of Tic110, a channel-forming protein at the inner envelope membrane of chloroplasts, unveils a response to Ca2+and a stromal regulatory disulfide bridge. J. Biol. Chem,2009,284:2603-16
    35. Benz P, Soil J and Bolter B. The role of the tic machinery in chloroplast protein import. In The Enzymes-Molecular Machines Involved in Protein Transport across Cellular Membranes (Dalbey RE, Koehler CM & Tamanoi F, eds),2007 pp.439-462. Elsevier, San Diego, CA.
    36. Bohuon EJR, Keith DJ, Parkin IAP, Sharpe AG, Lydiate DJ. Alignment of the conserved C genomes of Brassica oleracea and Brassica napus. Theor Appl Genet, 1996,93,833-839.
    37. Boivin K, Acarkan A, Mbulu R-S, Clarenz O, and Schmidt R. The Arabidopsis genome sequence as a tool for genome analysis in Brassicaceae. A comparison of the Arabidopsis and Capsella rubella genomes. Plant Physiol,2004,135(2):735-744.
    38. Bowers JE, Chapman BA, Rong JK, Paterson AH. Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature,2003, 422,433-438.
    39. Brown GG, Formanova N, Jin H, Richard W, Dendy C, Patil P, Laforest M, Zhang JF, Cheung WY, Landry BS. The radish Rfo restorer gene of Ogura cytoplasmic male sterility encodes a protein with multiple pentatricopeptide repeats, Plant J,2003,35, 262-272.
    40. Canales C, Bhatt AM, Scott R, Dickinson H. EXS, a putative LRR receptor kinase, regulates male germline cell number and tapetal identity and promotes seed development in Arabidopsis. Curr. Biol.,2002,12,1718-1727.
    41. Catcheside DG. The chromosomal relationships in the Swede and turnip groups of Brassica. Ann. Bot.,1934,48,601-633.
    42. Cavell AC, Lydiate DJ, Parkin IAP, Dean C, Trick M. Collinearity between a 30-centimorgan segment of Arabidopsis thaliana chromosome 4 and duplicated regions within the Brassica napus genome. Genome,1998,41:62-69.
    43. Chai YR, Lei B, Huang HL, Li JN, Yin JM, Tang ZL, Wang R, Chen L.TRANSPARENT TESTA 12 genes from Brassica napus and parental species: cloning, evolution, and differential involvement in yellow seed trait. Mol Genet Genomics,2009,281:109-123。
    44. Chang FY. Wang YX, Wang SS, Ma H. Molecular control of microsporogenesis in Arabidopsis. Curr Opin Plant Biol,2011,14(1),66-73.
    45. Chen W, Zhang Y, Liu X, Chen B, Tu J, Fu T. Detection of QTL for six yield-related traits in oilseed rape (Brassica napus) using DH and immortalized F2 populations. TheorAppl Genet,2007,115:849-858.
    46. Cheng F, Mandakova T, Wu J, Xie Q, Lysak MA, Wang XW. Deciphering the Diploid Ancestral Genome of the Mesohexaploid Brassica rapa. The Plant cell,2013, 25(5),1541-1554.
    47. Cheng X, Xu J, Liu K, et al. Development and genetic mapping of microsatellite markers from genome survey sequence sin Brassica napus. Theor Appl Genet,2009, 118(6):1121一1131.
    48. Cheung F, Trick M, Drou N. et al. Comparative analysis between homoeologous genome segments of Brassica napus and its progenitor species reveals extensive sequence-level divergence. Plant Cell,2009,21,1912-1928.
    49. Chou M-L, Fitzpatrick LM, Tu S-L, Budziszewski G, Potter-Lewis S, Akita M, Levin JZ, Keegstra K, Li H-m. Tic40, a membrane-anchored co-chaperone homologue in the chloroplast protein translocon. EMBOJ,2003,22,2970-2980.
    50. Chou M-L, Chu C-C, Chen L-J, Akita M, Li H-m. Stimulation of transit-peptide release and ATP hydrolysis by a cochaperone during protein import into chloroplasts. J. Cell Biol,2006,175,893-900.
    51. Cline K, and Henry R. Import and routing nucleus-encoded chloroplast protein. Annu. Rev. Cell Dev. Biol,1996,12,1-26.
    52. De Block M, De Brouwer, D Tenning P. Transformation of Brassica napus and Brassica oleracea using Agrobacterium tumefaciens and the expression of the bar and neo genes in the transgenic plants. Plant Physiol,1989,91,694-701.
    53. De Bodt S, Maere S, Van de Peer Y. Genome duplication and the origin of angiosperms. Trends Ecol Evol,2005,20:591-597.
    54. Dong CG, Zhang JP, Qiao J, He GM. Positive selection and functional divergence after melanopsin gene duplication. Biochem Genet 2012,50(3-4),235-248.
    55. Edgar RC. MUSCLE:multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res,2004,32,1792-1797.
    56. Felsenstein J. Confidence limits on phylogenies:an approach using the bootstrap. Evolution,1985,783-791.
    57. Feng XQ, Dickinson HG. Packaging the male germline in plants. Trends in Genetics, 2007,10:503-510.
    58. Formanova N, Stollar R, Geddy R, Mahe L, Laforest M, Landry BS, Brown GG. High-resolution mapping of the Brassica napus Rfp restorer locus using Arabidopsis-derived molecular markers. Theor Appl Genet,2010,120:843-851.
    59. Francis KE, Lam SY, Copenhaver GP. Separation of Arabidopsis pollen tetrads is regulated by QUARTET1, a pectin methylesterase gene. Plant Physiology,2006, 3:1004-1013.
    60. Frydman J. and HoEhfeld J. Chaperones get in touch:the Hip-Hop connection. Trends Biochem Sci,1997,22,87-92.
    61. Furness CA, Rudall PJ, Sampson FB. Evolution of microsporogenesis in angiosperms. Int. J. Plant Sci,2002,163,235-260.
    62. Goldberg RB, Beals TP, and Sanders PM. Anther development:Basic principles and practical applications. Plant Cell,1993,5,1217-1229.
    63. Gould SB, Waller RF and McFadden GI. Plastid evolution. Annu Rev Plant Biol, 2008,59,491-517.
    64. Hajdukiewicz P, Svab Z, and Maliga P. The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant. Mol. Biol,1994,25, 989-994.
    65. He JP, Ke LP, Hong DF,Xie YZ,Wang GC,Liu PW, Yang GS. Fine mapping of a recessive genic male sterility gene (Bnms3) in rapeseed (Brassica napus) with AFLP-and Arabidopsis-derived PCR markers. TheorAppl Genet,2008,117:11-18.
    66. Hohfeld J, Minami Y and Hartl FU. Hip, a novel cochaperone involved in the eukaryotic Hsc70/Hsp40 reaction cycle. Cell,1995,83,589-598.
    67. Hu TT, Pattyn P, Bakker EG, Cao J, Cheng JF, Clark RM, Fahlgren N, Fawcett JA, Grimwood J, Gundlach H, Haberer G, Hollister JD, Ossowski S, Ottilar RP, Salamov AA, Schneeberger K, Spannagl M, Wang X, Yang L, Nasrallah ME, Bergelson J, Carrington JC, Gaut BS, Schmutz J, Mayer KF, Van de Peer Y, Grigoriev IV, Nordborg M, Weigel D, Guo YL. The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nat. Genet.2011,43(5),476-81.
    68. Huang Z, Chen YF, Yi B, Xiao L, Ma CZ, Tu JX, and Fu TD. Fine mapping of the recessive genic male sterility gene (BnMs3) in Brassica napus L. Theor Appl Genet, 2007,115,113-118.
    69. Huang Z, Xiao L, Dun XL, Xia SQ, Yi B, Wen J, Shen JX, Ma CZ, Tu JX, Meng JL, Fu TD. Improvement of the recessive genic male sterile lines with a subgenomic background in Brassica napus by molecular marker-assisted selection. Mol Breeding, 2012,29(1),181-187.
    70. Hord CL, Chen C, De Young BJ, Clark SE, Ma H. The BAM1/BAM2 receptor-like kinases are important regulators of Arabidopsis early anther development. Plant Cell, 2006,18,1667-1680.
    71. Hsieh K and Huang AHC. Lipid-rich tapetosomes in Brassica tapetum are composed of oleosin-coated oil droplets and vesicles, both assembled in and then detached from the endoplasmic reticulum. Plant J,2005,43,889-899.
    72. Huysmans S, El-Ghazaly G, Smets E. Orbicules in angiosperms:morphology, function, distribution, and relation with tapetum types, Bot. Rev,1998,64,240-272.
    73. Inaba T, Alvarez-Huerta M, Li M, Bauer J, Ewers C, et al. Arabidopsis Tic110 is essential for the assembly and function of the protein import machinery of plastids. Plant Cell,2005,17:1482-96.
    74. Ito T, Wellmer F, Yu H, Das P, Ito N, Alves-Ferreira M, Riechmann JL, Meyerowitz E M. The homeotic protein AGAMOUS controls microsporogenesis by regulation of SPOROCYTELESS. Nature,2004,6997:356-360.
    75. Jackson DT, Froehlich JE, Keegstra K. The hydrophilic domain of Tic 110, an inner envelope membrane component of the chloroplastic protein translocation apparatus, faces the stromal compartment. J Biol Chem,1998,273:16583-16588
    76. Jia G, Liu X, Owen HA, Zhao D. Signaling of cell fate determination by the TPD1 small protein and EMS1 receptor kinase. Proceedings of the National Academy of Sciences,2008,6:2220-2225.
    77. Johnston JS, Pepper AE, Hall AE, Chen ZJ, Hodnett G, Drabek J, Lopez R, Price HJ. Evolution of genome size in Brassicaceae. Ann Bot,2005,95:229-235.
    78. Kaczmarek M, Koczyk G, Ziolkowski PA, Skowronska DB, Sadowski J. Comparative analysis of the Brassica oleracea genetic map and the Arabidopsis thaliana genome. Genome,2009,52(7):620-633.
    79. Kawanabe T, Ariizumi T, Kawai-Yamada M et al. Abolition of the tapetum suicide program ruins microsporogenesis. Plant and Cell Physiology,2006,47,784—787.
    80. Kessler F and Blobel G. Interaction of the protein import and folding machineries in the chloroplast. Proc. Natl Acad. Sci,1996,93,7684-7689.
    81. Ke LP, Sun YQ, Liu PW, Yang GS. Identification of AFLP fragments linked to one recessive genie male sterility (RGMS) in rapeseed (Brassica napus L.) and conversion to SCAR markers for marker-aided selection. Euphytica,2004,138, 163-168.
    82. Ko K, Chan K, Karakasis K, and Pedram B. Plastid protein delivery:coping with diversity. Can. J. Bot,2006,84,543-550.
    83. Koch MA, and Kiefer M. Genome evolution among cruciferous plants:a lecture from the comparison of the genetic maps of three diploid species-Capsella rubella, Arabidopsis lyrata ssp. petraea, and A thaliana. Am. J. Bot,2005,92(4):761-767.
    84. Koch MA, Haubold B, Mitchell-Olds T. Comparative evolutionary analysis of chalcone synthase and alcohol dehydrogenase loci in Arabidopsis, Arabis, and related genera (Brassicaceae). Mol Biol Evol,2000,17,1483-1498.
    85. Kouranov A, Chen X, Fuks B, Schnell DJ. Tic20 and Tic22 are new components of the protein import apparatus at the chloroplast inner envelope membrane. J. Cell Biol, 1998,143:991-1002
    86. Kovacheva S, Bedard J, Patel R, Dudley P, Twell D, Rios G, Koncz C, Jarvis P. In vivo studies on the roles of Tic 110, Tic40 and Hsp93 during chloroplast protein import. Plant J,2005,41,412-428.
    87. Kovacs-Bogdan E, Jurgen Soll J, Bolter B. Protein import into chloroplasts:The Tic complex and its regulation. Biochimica et Biophysica Acta,2010,740-747.
    88. Kraitshtein Z, Yaakov B, Khasdan V, Kashkush K. Genetic and epigenetic dynamics of a retrotransposon after allopolyploidization of wheat. Genetics,2010,186, 801-812.
    89. Kuang H, Woo SS, Meyers BC et al. Multiple genetic processes result in heterogeneous rates of evolution within the major cluster disease resistance genes in lettuce. Plant Cell,2004,16,2870-2894.
    90. Lagercrantz U. Comparative mapping between Arabidopsis thaliana and Brassica nigra indicates that Brassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent rearrangements. Genetics,1998,150,1217-1228.
    91. Lagercrantz U, and Lydiate DJ. Comparative genome mapping in Brassica. Genetics, 1996,4,1903-1910.
    92. Lamb J, Tugendreich S. and Hieter P. Tetratrico peptide repeat interactions:to TPR or not to TPR? Trends Biochem,1995, Sci.,20,257-259.
    93. Lei SL, Yao XQ,Yi B, Chen W, Ma CZ, Tu JX, Fu TD. Towards map-based doing: fine mapping of the recessive genie male-sterile gene (Bnms2) in Brassica napus L. and syntenic region identification based on the Arabidopsis thaliana genome sequences. TheorAppl Genet,2007,115:643-651.
    94. Li J, Hong DF, He JP, Ma L, Wan LL, Liu PW, Yang GS. Map-based cloning of a recessive genie male sterility locus in Brassica napus L. and development of its functional marker. TheorAppl Genet,2012, DOI 10.1007/sOO 122-012-1827-5.
    95. Li N, Zhang DS, Liu HS, Yin CS, Li X, Liang W, Yuan Z, Xu B, Chu HW, Wang J, Wen TQ, Huang H, Luo D, Ma H, Zhang DB. The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development. The Plant Cell Online,2006,11:2999-3014.
    96. Li H-M, Chiu C-C. Protein transport into chloroplasts. Annu Rev Plant Biol,2010,61; 157-180
    97. Lukens L, Zou F, Lydiate D, Parkin I, and Osborn T. Comparison of a Brassica oleracea genetic map with the genome of Arabidopsis thaliana. Genetics,2003,164, 359-372.
    98. Lysak MA, Koch MA, Pecinka A, and Schubert, I. Chromosome triplication found across the tribe Brassiceae. Genome Res,2005,15,516-525.
    99. Lysak MA, Berr A, Pecinka A, Schmidt R, McBreen K, Schubert I.2006. Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species. Proc. Natl. Acad. Sci.2006,103(13):5224-5229.
    100.Ma H. Molecular genetic analysis of microsporogenesis and microgametogenesis in flowering plants. Annu Rev Plant Biol,2005,56:393-434.
    lO1.Mariani C, De Beuckeleer M, Truettner J, Leemans J, Goldberg RB. Induction of male sterility in plants by achimeric ribonuclease gene. Nature,1990,347,737-741.
    102.Masearenhas JP. Gene activity during pollen development. Annu. Rev, Plant Physiol. Plant Mo Biol 1990,41,317—338.
    103.Millar AA and Gubler F. The Arabidopsis GAMYB-like genes, MYB33 and MYB65, are microRNA-regulated genes that redundantly facilitate anther development. Plant Cell,2005,17,705-721.
    104.Nielsen E, Akita M, Davila-Aponte J, Keegstra K. Stable association of chloroplastic precursors with protein translocation complexes that contain proteins from both envelope membranes and a stromal Hspl00 molecular chaperone. EMBO J,1997,16, 935-946.
    105.Nicholas KB, Nicholas HBJ, Deerfield DW. GeneDoc:analysis and visualization of genetic variation - Embnew. News,1997
    106.Pacini E, Franchi GG, Hesse M. The tapetum:its form, function, and possible phylogeny in Embryophyta. Plant. Syst. Evol,1985,149,155-185.
    107.Pacini E. Tapetum and microspore function, in:S. Blackmore, R.B. Knox (Eds.), Microspores:Evolution and Ontogeny, Academic Press, London,1990,pp.213-237.
    108.Panjabi P, Jagannath A, Bisht NC, Padmaja KL, Sharma S, Gupta V, Pradhan AK, and Pental D. Comparative mapping of Brassica juncea and Arabidopsis thaliana using Intron Polymorphism (IP) markers:homoeologous relationships, diversification and evolution of the A, B and C Brassica genomes. BMC Genomics,2008,9(1):113.
    109.Papini A, Mosti S, Brighigna L. Programmed-cell death events during tapetum development of angiosperms. Protoplasma,1999,207,213-221.
    110.Parish RW and Li SF. Death of a tapetum:A programme of developmental altruism. Plant Sci,2010,178,73-89.
    111.Parkin IAP, Sharpe AG, Keith DJ, Lydiate DJ. Identification of the A and C genomes of the amphidiploid Brassica napus (oilseed rape). Genome,1995,38:1122-1131.
    112.Parkin IAP, Lydiate DJ, Trick M. Assessing the level of collinearity between Arabidopsis thaliana and Brassica napus for A. thaliana chromosome 5. Genome, 2002,45,356-366.
    113.Parkin IAP, Sharpe AG, Lydiate DJ. Patterns of genome duplication within the Brassica napus genome. Genome,2003,46:291-303.
    114.Parkin IAP, Gulden SM, Sharpe AG, Lukens L, Trick M, Osborn TC, Lydiate DJ. Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics,2005,171:765-81.
    115.Perry SE, Keegstra K. Envelope membrane proteins that interact with chloroplastic precursor proteins. Plant Cell,1994,6:93-105.
    116.Piffanelli P, Ross JHE, Murphy DJ. Biogenesis and function of the lipidic structures of pollen grains. Sex. Plant Reprod,1998,11,65-80.
    117.Platt KA, Huang AHC, Thomson WW. Ultrastructural study of lipid accumulation in tapetal cells of Brassica napus L. cv. Westar during microsporogenesis. Int. J. Plant Sci,1998,159:724-737.
    118.Preuss D, Rhee SY, Davis RW. Tetrad analysis possible in Arabidopsis with mutation of the QUARTET (QRT) genes. Science,1994,5164:1458-1460.
    119.Rana D, van den Boogaart T, O'Neill CM, Hynes L, Bent E, Macpherson L, Park JP, Kim YP, Bancroft I. Conservation of the microstructure of genome segments in Brassica napus and its diploid relatives. Plant J,2004,40:725-733.
    120.Rhee SY and Somerville CR. Tetrad pollen formation in quartet mutants of Arabidopsis thaliana is associated with persistence of pectic polysaccharides of the pollen mother cell wall. The Plant Journal,1998,1:79-88.
    121.Richter S, Zhong R, Lamppa G. Function of the stromal processing peptidase in the chloroplast import pathway. Physiol. Plant,2005,123:362-68
    122.Roebbelen G. Contributions to the analysis of the Brassicagenome. Chromosoma 1960,11,205-228.
    123.Rozen S, Skaletsky HJ. PrimerS on the WWW for general users and for biologist programmers. In:Krawetz S, Misener S (eds) Bioinformatics Methods and Protocols: Methods in Molecular Biology. Humana Press. Totowa. NJ.1999.365-386.
    124.Sanders PM, Bui AQ, Weterings K, McIntire KN, Hsu YC, Lee PY, Truong MT, Beals TP, Goldberg B. Anther developmental defects in Arabidopsis thaliana male-sterile mutants. Sex Plant Reprod,1999,11:297-322.
    125.Saitou N, Nei M. The neighbor-joining method:a new method for reconstructing phylogenetic trees. Molecular biology and evolution,1987,4:406-425
    126.Schiefthaler U, Balasubramanian S, Sieber P, Chevalier D, Wisman E, Schneitz K. Molecular analysis of NOZZLE, a gene involved in pattern formation and early sporogenesis during sex organ development in Arabidopsis thaliana. Proceedings of the National Academy of Sciences,1999,20:11664-11669
    127.Scheufler C, Brinker A, Bourenkov G, Pegpraro S, Morder L, Bartunik H, Hartl F, Moarefi I. Structure of TPR domain-peptide complexes:critical elements in the assembly of the Hsp70-Hsp90 multichaperone machine. Cell,2000,101,199-210.
    128.Schmidt R, Acarkan A, Boivin K. Comparative structural genomics in the Brassicaceae family. Plant Physiol Biochem,2001,39:253-262.
    129.Schmidt R. Plant genome evolution:lessons from comparative genomics at the DNA level. Plant Mol Bio,2002,48:21-37.
    130.Schnell DJ, Kessler F, Blobel G. Isolation of components of the chloroplast protein import machinercy.Science,1994,266:1007-12
    131.Schnell DJ, Blobel G, Keegstra K, Kessler F, Ko K, Soll J. A consensus nomenclature for the protein-import components of the chloroplast envelope. Trends Cell Biol.,1997,7,303-304.
    132.Schranz ME, Lysak MA, Mitchell-Olds T. The ABC's of comparative genomics in the Brassicaceae:building blocks of crucifer genomes. Trends Plant Sci,2006, 11(11):535-542.
    133.Scott R, Hodge R, Paul W, Draper J. The molecular biology of anther differentiation. Plant Sci,1991,80,167-191.
    134.Scott RJ. Pollen exine:the sporopollenin enigma and the physics of pattern. In Molecular and Cellular Aspects of Plant Reproduction (Scott, R.J. and Stead, M.A., eds). Cambridge, UK:Cambridge University Press,1994, pp.49-81.
    135.Scott RJ, Spielman M, Dickinson HG. Stamen structure and function. Plant Cell, 2004,16(Suppl 1), S46-S60.
    136.Shi J, Tan HX, Yu XH, Liu YY, Liang WQ, Ranathunge K, Franke RB, Schreiber L, Wang YJ, Kai GY, Shanklin J, Ma H, Zhang DB. Defective pollen wall is required for anther and microspore development in rice and encodes a fatty acyl carrier protein reductase. Plant Cell,2011,23,2225-2246.
    137.Shivanna KR, Cresti M, Ciampolini, F. Pollen development and pollen-pistil interaction. In Pollen Biotechnology for Crop Production and Improvement, K.R. Shivanna and V.K. Sawhney, ed (Cambridge, UK:Cambridge University Press), 1997, pp.15-39.
    138.Slotte T, Hazzouri KM, A...gren JA, Koenig D, Maumus F, Guo YL, Steige K, Platts AE, Escobar JS, Newman LK, Wang W, MandAikovAi T, Vello E, Smith LM, Henz SR, Steffen J, Takuno S, Brandvain Y, Coop G, Andolfatto P, Hu TT, Blanchette M, Clark RM, Quesneville H, Nordborg M, Gaut BS, Lysak MA, Jenkins J, Grimwood J, Chapman J, Prochnik S, Shu S, Rokhsar D, Schmutz J, Weigel D, Wright SI. The Capsella rubella genome and the genomic consequences of rapid mating system evolution. Nat. Genet.2013,45(7),831-5.
    139.Smith MD, Rounds CM, Wang F, Chen K, Afitlhile M, Schnell DJ. atTocl59 is a selective transit peptide receptor for the import of nucleus-encoded chloroplast proteins. J. Cell Biol,2004,165:323-34.
    140.Snowdon RJ and FRIEDT W. Molecular markers in Brassica oilseed breeding: current status and future possibilities. Plant Breed,2004,123,1-8.
    141.Soll J and E Schleiff. Protein import into chloroplasts. Nat. Rev. Mol. Cell Biol,2004, 5,198-208.
    142.Sorensen A, Krober S, Unte US, Huijser P, Dekker K, Saedler H. The Arabidopsis ABORTED MICROSPORES (AMS) gene encodes a MYC class transcription factor. Plant J,2003,33,413-423.
    143.Staehelin LA. Chloroplast structure:from chlorophyll granules to supra-molecular architecture of thylakoid membranes. Photosynthesis research,2003,76,185-196.
    144.Stahl T, Glockmann C, Soll J, Heins L. Tic40, a new'old'subunit of the chloroplast protein import translocon. J. Biol. Chem,1999,274,37467-37472.
    145.Steer MW. Differentiation of the tapetum in Avena. I. The cell surface. J Cell Sci, 1977,25,125-138
    146.Stengel A, Soll J, Bolter B. Protein import into chloroplasts:new aspects of a well-known topic. Biol Chem,2007,388,765-772.
    147.Stieglitz H and Stern H. Regulation of b-1,3-glucanase activity in developing anthers of Lilium. Dev. Biol,1973,34,169-173.
    148.Sun Y, Hord CLH, Chen C, Ma H. Regulation of Arabidopsis Early Anther Development by Putative Cell-Cell Signaling Molecules and Transcriptional Regulators. Journal of Integrative Plant Biology,2007,1:60-68.
    149.Swarbreck D, Wilks C, Lamesch P, Berardini TZ, Garcia-Hermandez M, Foerster H, Li D, Meyer T, Muller R, Ploetz L, Radenbaugh A, Singh S, Swing V, Tissier C, Zhang P, Huala E. The Arabidopsis Information Resource (TAIR):gene structure and function annotation. Nucleic Acids Res.2008,36 (Database issue), D1009-14.
    150.Tamura K, Dudley J, Nei M, Kumar S. MEGA4:molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular biology and evolution,2007, 8:1596-1599.
    151.Tang H, Woodhouse MR, Cheng F, Schnable JC, Pedersen BS, Conant G, Wang X, Freeling M, Pires JC. Altered patterns of fractionation and exon deletions in Brassica rapa support a two-step model of paleohexaploidy. Genetics.2012,190,1563-1574.
    152.Town CD, Cheung F, Maiti R, Crabtree J, Haas BJ, Wortman JR, Hine E E, Althoff R, Arbogast TS, Tallon LJ,Vigouroux M,Trick M,Bancroft I. Comparative genomics of Brassica oleracea and Arabidopsis thaliana reveal gene loss, fragmentation, and dispersal after polyploidy. Plant Cell,2006,18:1348-1359.
    153.Udall J, Quijada P, Osborn TC. Detection of chromosomal rearrangements derived from homologous recombination in four mapping populations of Brassica napus L. Genetics,2004,169,967-979.
    154.U N. Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn. J. Bot,1935,7, 389—452.
    155.Vizcay-Barrena G and Wilson ZA. Altered tapetal PCD and pollen wall development in the Arabidopsis msl mutant. Journal of Experimental Botany,2006,11:2709-2717
    156.Wan LL, Xia XY, Hong DF, Li J, Yang GS. Abnormal vacuolization of the tapetum during the tetrad stage is associated with male sterility in the recessive genie male sterile Brassica napus L. line 9012A. J Plant Biol,2010,53:121-133
    157.Wan LL, Zha WJ, Cheng XY, Liu C, Lv L, Liu CX, Wang ZQ, Du B, Chen RZ, Zhu LL, He GC. A rice β-1,3-glucanase gene Osgl is required for callose degradation in pollen development. Planta,2011,2:309-323.
    158.Wang J, Long Y, Wu BD, Liu J, Jiang CC, Shi L, Zhao JW, King GJ, Meng JL. The evolution of Brassica napus FLOWERING LOCUST paralogues in the context of inverted chromosomal duplication blocks. BMC Evolutionary Biol,2009,9:271.
    159. Wang XW, Wang HZ, Wang J, et al. The genome of the mesopolyploid crop species Brassica rapa. Nature genetics,2011,43:1035-1039
    160.Wilson ZA and Zhang DB. From Arabidopsis to rice:Pathways in pollen development. J. Exp. Bot,2009,60:1479-1492.
    161.White SR and Lauring B. AAA+ ATPases:achieving diversity of function with conserved machinery. Traffic,2007,8:1657-67.
    162.Wu CB, Seibertn FS, KoK. Identification of chloroplast envelope proteins in close physical proximity to a partially translocated chimeric precursor protein. J Biol Chem, 1994,269:32264-32271.
    163.Wu HM and Cheung AY. Programmed cell death in plant reproduction. Plant Mol. Biol,2000,44,267-281.
    164.Wu SS, Platt KA, Ratnayake C, Wang TW, Ting JT, Huang AH. Isolation and characterization of neutral-lipid-containing organelles and globuli-filled plastids from Brassica napus tapetum. Proc. Natl. Acad. Sci. USA 94,1997,12711-12716.
    165.Wu SSH, Moreau RA, Whitaker BD, Huang AHC. Steryl esters in the elaioplasts of the tapetum in developing Brassica anthers and their recovery on the pollen surface. Lipids,1999,34,517-523.
    166.Xia SQ, Cheng L, Zu F, Dun XL, Zhou ZF,YiB, WenJ, Ma CZ, Shen JX, Tu JX, Fu TD. Mapping of BnMs4 and BnRf to a common microsyntenic region of Arabidopsis thaliana chromosome 3 using intron polymorphism markers. Theor Appl Genet,2012, 124(7):1193-1200.
    167.Xu JS, Qian XJ, Wang AF, Li RY, Cheng XM, Yang Y, Fu J, Zhang SC, King GJ, Wu JS, Liu KD. Construction of an integrated genetic linkage map for the A genome of Brassica napus using SSR markers derived from sequenced BACs in B. rapa. BMC Genomics,2010,11,594.
    168.Xue WY, Xing YZ, Weng XY, Zhao Y, Tang WJ, Wang L, Zhou HJ, Yu SB, Xu CG, Li XH, Zhang QF. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice..Nature Genetics,2008,40,761-767.
    169.Yang J, SM Roe, M Cliff, M Williams, J Ladbury, P Cohen, D. Barford. Molecular basis for TPR domain-mediated regulation of protein phosphatase 5. EMBO J,2005, 24:1-10.
    170.Yang R, Jarvis DE, Chen H, Beilstein MA, Grimwood J, Jenkins J, Shu S, Prochnik S, Xin M, Ma C, Schmutz J, Wing RA, Mitchell-Olds T, Schumaker KS, Wang X. The Reference Genome of the Halophytic Plant Eutrema salsugineum. Front Plant Sci. 2013,4,46.
    171.Yang SL, Xie LF, Mao HZ, Puah CS, Yang WC, Jiang L, Sundaresan V, Ye D. TAPETUM DETERMINANT 1 is required for cell specialization in the Arabidopsis anther. Plant Cell,2003,15,2792-2804.
    172.Yang SL, Jiang L, Puah CS, Xie LF, Zhang XQ, Chen LQ, Yang WC, Ye D. Overexpression of TAPETUM DETERMINANT 1 alters the cell fates in the Arabidopsis carpel and tapetum via genetic interaction with EXCESS MICROSPOROCYTES 1/EXTRA SPOROGENOUS CELLS. Plant Physiol,2005,139, 186-191.
    173.Yang WC, Ye D, Xu J, Sundaresan V. The SPOROCYTELESS gene of Arabidopsis is required for initiation of sporogenesis and encodes a novel nuclear protein. Genes and Development,1999,13:2108-2117.
    174.Yi B, Chen YN, Lei SL, Tu JX, Fu TD. Fine mapping of the recessive genie male-sterile gene (Bnms1) in Brassica napus. Theor Appl Genet,2006,113(4): 643-650
    175.Yi B, Zheng FQ, Lei SL, Chen YN, Yao XQ, Wen J, Shen JX, Mao CZ, Tu JX, and Fu TD. Two duplicate CYP704B1 homologous genes BnMsl and BnMs2 are required for pollen exine formation and tapetal development in Brassica napus. Plant J,2010, 63,925-938.
    176.Yogeeswaran K, Frary A, York TL, Amenta A, Lesser AH, Nasrallah JB, et al. Comparative genome analyses of Arabidopsis spp.:inferring chromosomal rearrangement events in the evolutionary history of A. thaliana. Genome Res,2005, 15(4):505-515.
    177.Yoo SD, Cho YH, Sheen J. Arabidopsis mesophyll protoplasts:a versatile cell system for transient gene expression analysis. Nat Protoc,2007,7:1565-72.
    178.Zhao DZ, Wang GF, Speal B, Ma H. (2002) The EXCESS MICROSPOROCYTES 1 gene encodes a putative leucine-rich repeat receptor protein kinase that controls somatic and reproductive cell fates in the Arabidopsis anther. Genes Dev,2002,16, 2021-2031.
    179.Zhao MX, Du JC, Lin F, Tong CB, Yu JY, Huang SM, Wang XW, Liu SY, Ma JX. Shifts in the evolutionary rate and intensity of purifying selection between two Brassica genomes revealed by analyses of orthologous transposons and relics of a whole genome triplication. Plant J,2013,76(2),211-222.
    180.Zhang W, Sun YJ, Timofejeva L, Chen CB, Grossniklaus U, Ma H. Regulation of Arabidopsis tapetum development and function by DYSFUNCTIONAL TAPETUM1 (DYT1) encoding a putative bHLH transcription factor. Development,2006,133, 3085-3095.
    181.Zhang J, Lu Y, Yuan Y, Zhang X, Geng J, Chen Y, Cloutier S, McVetty PB, Li G Map-based cloning and characterization of a gene controlling hairiness and seed coat color traits in Brassica rapa, Plant Mol. Biol.,2008,69,553-63.
    182.Ziolkowski PA, Kaczmarek M, Babula D, Sadowski J. Genome evolution in Arabidopsis/Brassica:conservation and divergence of ancient rearranged segments and their breakpoints.Plant J,2006,47(1):63-74.
    183.Zhang ZB, Zhu J, Gao JF, Wang C, Li H, Li H, Zhang HQ, Zhang S, Wang DM, Wang QX, Huang H, Xia HJ, Yang ZN. Transcription factor AtMYB103 is required for anther development by regulating tapetum development, callose dissolution and exine formation in Arabidopsis. The Plant Journal,2007,3:528-538
    184.Zhou ZF, Dun XL, Xia SQ, Shi DY, Qin MM, Yi B, Wen J, Shen JX, Ma CZ, Tu JX, Fu TQ. BnMs3 is required for tapetal differentiation and degradation, microspore separation, and pollen wall biosynthesis in Brassica napus. Journal of Experimental Botany,2013,63(5),2041-2058.
    185.Zhu J, Chen H, Li H, Gao JF, Jiang H, Wang C, Guan YF, Yang ZN. Defective in Tapetal development and function 1 is essential for anther development and tapetal function for microspore maturation in Arabidopsis. Plant J,2008,55,266-277.
    186.Zhu Y, Dun XL, Zhou ZF, Xia SQ, Yi B, Wen J, Shen JX, Ma CZ, Tu JX, Fu TD. A separation defect of tapetum cells and microspore mother cells results in male sterility in Brassica napus:the role of abscisic acid in early anther development. Plant Mol Biol,2010,72,111-123
    187.Zhu J, Lou Y, Xu XF, Yang ZN. A genetic gathway for tapetum development and function in Arabidopsis. Journal of Integrative Plant Biology,2011,11:892-900.