晚期氧化蛋白产物对人血管内皮细胞细胞间黏附分子1表达的影响及其信号转导通路的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     心血管疾病(CVD)是慢性肾脏病(CKD)患者最重要的死亡原因,占总死亡率的44%~51%,其病因由动脉粥样硬化(AS)导致的闭塞性血管病变又占半数以上。CKD患者已被认为是心血管事件的“极高度危险人群”。在导致CVD高发率的众多原因中,CKD患者体内普遍存在的高氧化应激水平与AS之间的关系是近年来受到广泛关注的研究领域。晚期氧化蛋白产物(AOPP)是在尿毒症患者血浆中发现的蛋白质氧化交联产物,是氧化应激过程中由激活的中性粒细胞髓过氧化物酶产生的次氯酸(HClO)作用于蛋白质而形成的,在体外用HClO作用于正常人血浆或纯化的人血清白蛋白(HSA)亦可得到与尿毒症病人血浆中类似的AOPP。已发现在轻度慢性肾功能不全(CRI)病人体内AOPP水平即开始升高,且随肾功能恶化进行性升高,与血清肌酐水平呈正相关,维持性透析者达到顶峰。血浆AOPP水平与双酪氨酸、戊糖素、新喋呤等氧化应激标志物呈正相关,与谷胱甘肽过氧化物酶等抗氧化剂呈负相关,因此AOPP被认为是反映慢性肾衰竭(CRF)时氧化应激的标志物。不仅如此,在体外AOPP可以刺激单核细胞和多形核白细胞呼吸爆发和细胞因子合成,且反应强度与HSA被HClO氧化修饰的程度成正比,提示AOPP本身也是一种新型的炎症介质,能诱导或加重氧化应激。
Background
    Advanced oxidation protein products (AOPPs) were the final cross-linking products of protein oxidation which had been found in the plasma of dialysis patients in 1996. In vitro, exposure of purified plasma albumin to chlorinated oxidants triggered the formation of AOPPs in an oxidant concentration-dependent manner. Serum AOPPs levels elevated in patients with mild chronic renal insufficiency (CRI) and increased with the depravation of renal function, culminating in patients on maintaining dialysis. Serum AOPPs levels were closely related to dityrosine, a marker of protein oxidation, and neopterin, one of the monocyte activation markers. A negative correlation was also found between serum AOPPs levels and glutathione peroxidase (GSH-Px). Therefore, AOPPs were thought to be a novel marker of oxidative stress in chronic kidney disease (CKD) patients. Moreover, AOPPs triggered the oxidative burst and the synthesis of inflammatory cytokines in neutrophils as well as in monocytes in vitro and the intensity of the respiratory burst was dependent on the level of protein oxidation, indicating that AOPPs might act as a
引文
[1] US Renal Data System: excerpts from the US Renal Data System 1999 annual data report [J]. Am J Kidney Dis, 1999, 34 (suppl 1): S1-S176,
    [2] Muntner P, He J, Harem L, et al. Renal insufficiency and subsequent death resulting from cardiovascular disease in the United States[J]. J Am Soc Nephrol, 2002, 13(3):745-53.
    [3] Manjunath G, Tighiouart H, Ibrahim H, et al. Level of kidney function as a risk factor for atherosclerotic cardiovascular outcomes in the community [J]. J Am Coll Cardiol, 2003, 41(1):47-55.
    [4] 侯凡凡。慢性肾脏病并发的心血管疾病及其防治[J]。实用医院临床杂志,2005,2(1): 15-16
    [5] Muntner P, Hamm LL, Kusek JW, et al. The prevalence of nontraditional risk factors for coronary heart disease in patients with chronic kidney disease [J]. Ann Intern Med, 2004, 140(1):9-17.
    [6] Dennis VW. Coronary heart disease in patients with chronic kidney disease [J]. J Am Soc Nephrol, 2005, 16 (Suppl 2):S103-6.
    [7] Drueke T, Witko-Sarsat V, Massy Z, et al. Iron therapy, advanced oxidation protein products, and carotid artery intima-media thickness in end-stage renal disease [J]. Circulation, 2002, 106(17):2212-7.
    [8] Oberg BP, McMenamin E, Lucas FL, et al. Increased prevalence of oxidant stress and inflammation in patients with moderate to severe chronic kidney disease [J]. Kidney Int, 2004, 65(3): 1009-16.
    [9] Himmelfarb J, Stenvinkel P, Ikizler TA, et al. The elephant in uremia: oxidant stress as a unifying concept of cardiovascular disease in uremia [J]. Kidney Int, 2002, 62(5): 1524-38.
    [10] Himmelfarb J, Hakim RM. Oxidative stress in uremia [J]. Curr Opin Nephrol Hypertens, 2003, 12(6):593-8.
    [11] Witko-Sarsat V, Friedlander M, Capeillere-Blandin C, et al. Advanced oxidation protein products as a novel marker of oxidative stress in uremia [J]. Kidney Int, 1996, 49(5): 1304-13
    [12] Witko-Sarsat V, Friedlander M, Nguyen Khoa T, et al. Advanced oxidation protein products as novel mediators of inflammation and monocyte activation in chronic renal failure [J]. J Immunol, 1998, 161(5):2524-32.
    [13] Witko-Sarsat V, Gausson V, Nguyen AT, et al. AOPP-induced activation of human neutrophil and monocyte oxidative metabolism: a potential target for N-acetylcysteine treatment in dialysis patients [J]. Kidney Int, 2003, 64(1):82-91
    [14] Drueke T, Witko-Sarsat V, Massy Z, et al. Iron therapy, advanced oxidation protein products and carotid artery intima-media thickness in end-stage renal disease [J]. Circulation 2002, 106(17):2212-17
    [15] 杨小兵,侯凡凡,武强,等。慢性肾脏病患者晚期氧化蛋白产物血症及其与动脉粥样硬化的关系[J]。中华内科杂志,2005,44(5):342-46
    [16] Woods AA, Linton SM, Davies MJ. Detection of HOCl-mediated protein oxidation products in the extracellular matrix of human atherosclerotic plaques [J].Biochem J, 2003, 370(Pt 2):729-35.
    [17] Martin-Gallan P, Carrascosa A, Gussinye M, et al. Biomarkers of diabetes-associated oxidative stress and antioxidant status in young diabetic patients with or without subclinical complications [J]. Free Radic Biol Med, 2003, 34(12): 1563-74
    [18] Kaneda H, Taguchi J, Ogasawara K, et al. Increased level of advanced oxidation protein products in patients with coronary artery disease [J]. Atherosclerosis, 2002, 162(1):221-5
    [19] Descamps-Latscha B, Witko-Sarsat V, Nguyen-Khoa T, et al. Advanced oxidation protein products as risk factors for atherosclerotic cardiovascular events in nondiabetic predialysis patients[J]. Am J Kidney Dis, 2005, 45(1):39-47.
    [20] 郭志坚,侯凡凡,刘尚熹,等。糖化和氧化产物修饰的蛋白质促进兔动脉粥样斑块形成[J]。北京大学学报,2004,36(2):127-30
    [21] 袁方,刘尚喜,侯凡凡,等。晚期氧化蛋白产物导致血管内皮细胞氧化应激损伤[J]。解放军医学杂志,2004,29(11):951-954
    [22] Kalousova M, Zima T, Tesar V, et al. Advanced glycation end products and advanced oxidation protein products in hemodialyzed patients[J].Blood Purif, 2002, 20(6):531-6
    [23] Lander HM, Tauras JM, Ogiste JS, et al. Activation of the receptor for advanced glycation end products triggers a p21(ras)-dependent mitogen-activated protein kinase pathway regulated by oxidant stress[J]. J Biol Chem, 1997, 272(28): 17810-4.
    [24] Jaffe EA, Nachman RL, Becket CG, et al. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria [J]. J Clin Invest, 1973, 52(11):2745-2756.
    [25] Shan YX, Liu TJ, Su HF, et al. Hsp10 and Hsp60 modulate Bcl-2 family and mitochondria apoptosis signaling induced by doxorubicin in cardiac muscle cells [J]. J Mol Cell Cardiol, 2003, 35(9): 1135-43.
    [26] Foley RN, Parfrey PS, Sarnak MJ. Clinical epidemiology of cardiovascular disease in chronic renal disease. Am J Kidney Dis, 1998, 32(5 Suppl 3):S112-9.
    [27] Liu SX, Zhou M, Chen Y, et al. Lipoperoxidative injury to macrophages by oxidatively modified low density lipoprotein may play an important role in foam cell formation. Atherosclerosis, 1996, 121(1):55-61.
    [28] Ong-Ajyooth L, Ong-Ajyooth S, Sirisalee K, et al. Lipoproteins and lipid peroxidation abnormalities in patients with chronic renal disease. J Med Assoc Thai, 1996, 79(8):505-12.
    [29] Mimic-Oka J, Simic T, Djukanovic L, et aL. Alteration in plasma antioxidant capacity in various degrees of chronic renal failure. Clin Nephrol, 1999, 51(4):233-41.
    [30] 余月明,侯凡凡,周华等。慢性肾衰竭患者同型半胱氨酸血症与动脉粥样硬化的关系。中华内科杂志,2002,41(8):517-21
    [31] Raj DS, Lim G, Levi M, et al. Advanced glycation end products and oxidative stress are increased in chronic allograft nephropathy. Am J Kidney Dis, 2004, 43(1):154-60.
    [32] Endemann DH, Schiffrin EL. Endothelial Dysfunction[J]. J Am Soc Nephrol, 2004, 15(8): 1983-92.
    [33] Ross R. The pathogenesis of atherosclerosis--an update[J]. N Engl J Med, 1986, 314(8):488-500.
    [34] Annuk M, Zilmer M, Lind L, et al. Oxidative stress and endothelial function in chronic renal failure[J]. J Am Soc Nephrol, 2001, 12(12): 2747-52.
    [35] Hasdan G, Benchetrit S, Rashid G, et al. Endothelial dysfunction and hypertension in 5/6 nephrectomized rats are mediated by vascular superoxide[J]. Kidney Int, 2002, 61(2):586-90.
    [36] Vaziri ND, Ni Z, Oveisi F, et al. Enhanced nitric oxide inactivation and protein nitration by reactive oxygen species in renal insufficiency[J]. Hypertension, 2002, 39(1):135-41.
    [37] van der Wal AC, Das PK, Tigges AJ, et al. Adhesion molecules on the endothelium and mononuclear cells in human atherosclerotic lesions[J]. Am J Pathol, 1992, 141(6): 1427-33.
    [38] Zund G, Uezono S, Stahl GL, Dzus AL, et al. Hypoxia enhances induction of endothelial ICAM-I: role for metabolic acidosis and proteasomes[J]. Am J Physiol, 1997, 273(5 Pt 1):C1571-1580.
    [39] Van den Worm E. Beukelman CJ. Van den Berg AJ. et al. Effects of methoxylation of apocynin and analogs on the inhibition of reactive oxygen species production by stimulated human neutrophils[J]. Eur J Pharmacol, 2001, 433(2-3):225-30.
    
    [40] Ben-Shaul V, Lomnitski L, Nyska A, et al. Effect of natural antioxidants and apocynin on LPS-induced endotoxemia in rabbit[J]. Hum Exp Toxicol, 2000, 19(11):604-14.
    
    [41] Griendling KK, Sorescu D, Ushio-Fukai M. NAD(P)H oxidase: role in cardiovascular biology and disease[J]. Circ Res, 2000, 86(5):494-501.
    
    [42] Lin YZ, Yao SY, Veach RA, et al. Inhibition of nuclear translocation of transcription factor NF-kappa B by a synthetic peptide containing a cell membrane-permeable motif and nuclear localization sequence[J]. J Biol Chem, 1995, 270(24): 14255-8.
    
    [43] Pagano PJ, Chanock SJ, Siwik DA, et al. Angiotensin II induces p67phox mRNA expression and NADPH oxidase superoxide generation in rabbit aortic adventitial fibroblasts[J]. Hypertension, 1998, 32(2):331-7.
    
    [44] Babior BM. The NADPH oxidase of endothelial cells[J]. IUBMB Life, 2000, 50(4-5):267-9.
    
    [45] Leusen JH, Verhoeven AJ, Roos D. Interactions between the components of the human NADPH oxidase: intrigues in the phox family. J Lab Clin Med, 1996, 128(5):461-76.
    
    [46] Dziarski R, Jin YP, Gupta D. Differential activation of extracellular signal-regulated kinase (ERK) 1, ERK2, p38, and c-Jun NH2-terminal kinase mitogen-activated protein kinases by bacterial peptidoglycan[J]. J Infect Dis, 1996, 174(4):777-85.
    
    [47] Johnson GL, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases[J]. Science, 2002, 298(5600): 1911-2.
    [48] Han J, Lee JD, Bibbs L, et al. A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells[J]. Science, 1994, 265(5173):808-11.
    
    [49] Ono K, Han J. et al. The p38 signal transduction pathway: activation and function[J]. Cell Signal, 2000, 12(1): 1-13.
    
    [50] Herskowitz I. MAP kinase pathways in yeast: for mating and more[J]. Cell, 1995, 80(2): 187-97.
    
    [51] Quehenberger P, Bierhaus A, Fasching P, et al. Endothelin 1 transcription is controlled by nuclear factor-kappaB in AGE-stimulated cultured endothelial cells[J]. Diabetes, 2000, 49(9): 1561-70.
    
    [52] Baeuerle PA. The inducible transcription activator NF-kappa B: regulation by distinct protein subunits[J]. Biochim Biophys Acta, 1991, 1072(1):63-80.
    
    [53] Cybulsky MI, Fries JW, Williams AJ, et al. Gene structure, chromosomal location, and basis for alternative mRNA splicing of the human VCAM1 gene[J]. Proc Natl Acad Sci U S A, 1991, 88(17):7859-63.
    
    [54] Iademarco MF, McQuillan JJ, Rosen GD, et al. Characterization of the promoter for vascular cell adhesion molecule-1 (VCAM-1) [J]. J Biol Chem, 1992, 267(23): 16323-9.
    
    [55] Degitz K, Li LJ, Caughman SW. Cloning and characterization of the 5'-transcriptional regulatory region of the human intercellular adhesion molecule 1 gene[J]. J Biol Chem, 1991, 266(21): 14024-30.
    
    [56] Collins T, Williams A, Johnston GI, et al. Structure and chromosomal location of the gene for endothelial-leukocyte adhesion molecule 1[J]. J Biol Chem, 1991, 266(4):2466-73.
    
    [57] Montgomery KF, Osborn L, Hession C, et al. Activation of endothelial-leukocyte adhesion molecule 1 (ELAM-1) gene transcription[J]. Proc Natl Acad Sci USA, 1991, 88(15):6523-7.
    [58] Brand K, Page S, Rogler G, et al. Activated transcription factor nuclear factor-kappa B is present in the atherosclerotic lesion[J]. J Clin Invest. 1996, 97(7):1715-22.
    
    [59] Vlassara H.The AGE-receptor in the pathogenesis of diabetic complications[J]. Diabetes Metab Res Rev, 2001, 17(6):436-43.
    
    [60] Yan SD, Schmidt AM, Anderson GM, et al. Enhanced cellular oxidant stress by the interaction of advanced glycation end products with their receptors/binding proteins[J]. J Biol Chem, 1994, 269(13):9889-97.
    
    [61] Yeh CH, Sturgis L, Haidacher J, et al. Requirement for p38 and p44/p42 mitogen-activated protein kinases in RAGE-mediated nuclear factor-kappaB transcriptional activation and cytokine secretion[J]. Diabetes, 2001, 50(6): 1495-504.
    
    [62] Bierhaus A, Ziegler R, Nawroth PP. Molecular mechanisms of diabetic angiopathy--clues for innovative therapeutic interventions[J]. Horm Res, 1998, 50(Suppl 1):1-5.
    
    [63] Thornalley PJ. Cell activation by glycated proteins. AGE receptors, receptor recognition factors and functional classification of AGEs[J].Cell Mol Biol (Noisy-le-grand), 1998 , 44(7): 1013-23.
    
    [64] Park L, Raman KG, Lee KJ, et al. Suppression of accelerated diabetic atherosclerosis by the soluble receptor for advanced glycation end products[J]. Nat Med, 1998,4(9):1025-31.
    
    [65] Stitt AW, He C, Vlassara H. Characterization of the advanced glycation end-product receptor complex in human vascular endothelial cells[J]. Biochem Biophys Res Commun, 1999, 256(3):549-56.
    
    [66] Iacobini C, Amadio L, Oddi G, et al. Role of galectin-3 in diabetic nephropathy. J Am Soc Nephrol, 2003, 14(8 Suppl 3):S264-70. [0]
    
    [67] Goldstein JL, Ho YK, Basu SK, et al. Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition[J]. Proc Natl Acad Sci USA, 1979, 76(1):333-7.
    
    [68] Ohgami N, Nagai R, Ikemoto M, et al. CD36, a member of class B scavenger receptor family, is a receptor for advanced glycation end products[J]. Ann N Y Acad Sci, 2001,947:350-5.
    
    [69] Kopprasch S, Pietzsch J, Westendorf T, et al. The pivotal role of scavenger receptor CD36 and phagocyte-derived oxidants in oxidized low density lipoprotein-induced adhesion to endothelial cells[J]. Int J Biochem Cell Biol, 2004, 36(3):460-71.
    
    [70] Stewart BW, Nagarajan S. Recombinant CD36 inhibits ox-LDL-induced ICAM-1-dependent monocyte adhesion[J]. Mol Immunol, 2006,43(3):255-67.
    
    [71] Sawamura T, Kume N, Aoyama T, et al. An endothelial receptor for oxidized low-density lipoprotein[J]. Nature, 1997, 386(6620):73-7.
    
    [72] Cominacini L, Pasini AF, Garbin U, et al. Oxidized low density lipoprotein (OX-LDL) binding to OX-LDL receptor-1 in endothelial cells induces the activation of NF-kappaB through an increased production of intracellular reactive oxygen species[J]. J Biol Chem, 2000, 275(17): 12633-8.
    
    [73] Li D, Mehta JL. Antisense to LOX-1 inhibits oxidized LDL-mediated upregulation of monocyte chemoattractant protein-1 and monocyte adhesion to human coronary artery endothelial cells[J].Circulation, 2000, 101(25):2889-95.
    
    [74] Cominacini L, Rigoni A, Pasini AF, et al. The binding of oxidized low density lipoprotein (OX-LDL) to OX-LDL receptor-1 reduces the intracellular concentration of nitric oxide in endothelial cells through an increased production of superoxide[J]. J Biol Chem, 2001, 276(17): 13750-5.
    
    [75] Kume N, Kita T. Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) in atherogenesis[J]. Trends Cardiovasc Med, 2001, 11(1):22-5.
    [1] Lindner A, Charra B, Sherrard DJ, et al. Accelerated atherosclerosis in prolonged maintenance haemodialysis[J]. N Engl J Med, 1974, 290(13):697-701.
    [2] Ma KW, Greene EL, Raij L. Cardiovascular risk factors in chronic renal failure and haemodialysis populations[J]. Am J Kidney Disease, 1992, 19(6):505-13.
    [3] Lameire N, Bernaert P, Lambert MC, et al. Cardiovascular risk factors and their management in patients on continuous ambulatory peritoneal dialysis[J]. Kidney Int Suppl, 1994, 48:S31-S38.
    [4] Leskinen Y, Lehtimaki T, Loimaala A, et al. Carotid atherosclerosis in chronic renal failure-the central role of increased plaque burden[J]. Atherosclerosis, 2003, 171(2):295-302
    [5] Shoji T, Emoto M, Tabata T, et al. Advanced atherosclerosis in predialysis patients with chronic renal failure[J]. Kidney Int, 2002, 61(6):2187-92
    [6] 侯凡凡。如何改善慢性肾衰患者心血管疾病的预后[J]。中华内科的杂志 2002,41(8):507-8
    [7] Loughrey CM, Young IS, Lightbody JH, et al. Oxidative stress in haemodialysis[J]. Q J Med, 1994, 87(11):679-83
    [8] Siems W, Quast S, Carluccio F, et al. Oxidative stress in chronic renal failure as a cardiovascular risk factor[J]. Clin Nephrol, 2002, 58(Suppl 1):S12-S19.
    [9] Stenvinkel P, Heimburger O, Paultre F, et al. Strong association between malnutrition, Inflammation, and atherosclerosis in chronic renal failure[J]. Kidney Int, 1999, 55(5): 1899-911.
    [10] Miyata T, Kurokawa K, van Ypersele de Strihou C. Relevence of oxidative stress to long-term uremic complications[J]. Kidney Int, 2000, 58(Suppl 76):S120-S125.
    [11] Miyata T, van Ypersele de Strihou C, Kurokawa K, et al. Alterations in nonenzymatic biochemistry in uremia: Origin and significance of "carbonyl stress" in long-term uremic complications[J]. Kidney Int, 1999, 55(2):389-399
    [12] Himmelfarb J, Hakim RM. Oxidative stress in uremia[J]. Current Opinion in Nephrology and Hypertention, 2003, 12(6):593-8
    [13] Himmelfarb J, Stenvinkel P, Ikizler TA, et al. The elephant in uremia: oxidant stress as a unifying concept of cardiovascular disease in uremia[J]. Kidney Int, 2002, 62 (5): 1524-38
    [14] Witko-Sarsat V, Friedlander M, Capeillere-Blandin C, et al. Advanced oxidation protein products as a novel marker of oxidative stress in uremia[J]. Kidney Int, 1996, 49(5): 1304-13
    [15] Witko-Sarsat V, Friedlander M, Nguyen Khoa T, et al. Advanced oxidation protein products as novel mediators of inflammation and monocyte activation in chronic renal failure[J]. J Immunol, 1998, 161(5):2524-32.
    [16] Capeillere-Blandin C, Gausson V, Descamps-Latscha B, et al. Biochemical and spectrophotometric significance of advanced oxidized protein products[J]. Biochim Biophys Acta, 2004, 1689(2):91-102.
    
    [17] Kalousova M, Zima T, Tesar V, et al. Relationship between advanced glycoxidation end products, inflammatory markers/acute-phase reactants, and some autoantibodies in chronic hemodialysis patients[J]. Kidney Int, 2003, 63(suppl 84):S62-S64
    
    [18] Witko-Sarsat V, Gausson V, Nguyen AT, et al. AOPP-induced activation of human neutrophil and monocyte oxidative metabolism: a potential target for N-acetylcysteine treatment in dialysis patients[J]. Kidney Int, 2003, 64(1):82-91
    
    [19] Witko-Sarsat V, Gausson V, Descamps-Latscha B. Are advanced oxidation protein products potential uremic toxins[J]? Kidney Int, 2003, 63(suppl 84):S11-S14
    
    [20] Descamps-Latscha B, Witko-Sarsat V. Importance of oxidatively modified proteins in chronic renal failure[J]. Kidney Int, 2001, 59(suppl 78):S108-S113
    
    [21] Kalousova M, Zima T, Tesar V, et al. Advanced glycation end products and advanced oxidation protein products in haemodialyzed patients[J]. Blood Purif, 2002, 20(6):531-536
    
    [22] Monnier VM, Sell DR, Nagaraj RH, et al. Maillard reaction-mediated molecular damage to extracellular matrix and other tissue proteins in diabetes, aging, and uremia[J]. Diabetes, 1992, 41(suppl 2):36-41.
    
    [23] Kawamura M, Heinecke JW, Chait A. Pathophysiological concentrations of glucose promote oxidative modification of low density lipoprotein by a superoxide-dependent pathway[J]. J Clin Invest, 1994, 94(2):771-8.
    
    [24] Miyata T, Wada Y, Cai Z, et al. Implication of an increased oxidative stress in the formation of advanced glycation end products in patients with end-stage renal failure[J]. Kidney Int, 1997, 51(4): 1170-1181
    
    [25] Sebekova K, Gazdikova K, Syrova D, et al. Effects of ramipril in nondiabetic nephropathy: improved parameters of oxidatives stress and potential modulation of advanced glycation end products[J]. J Hum Hypertens, 2003, 17(4):265-70.
    [26] Drueke T, Witko-Sarsat V, Massy Z, et al. Iron therapy, advanced oxidation protein products and carotid artery intima-media thickness in end-stage renal disease[J]. Circulation, 2002, 106(17):2212-7
    [27] Kaneda H, Taguchi J, Ogasawara K, et al. Increased level of advanced oxidation protein products in patients with coronary artery disease[J]. Atherosclerosis, 2002, 162(1):221-5
    [28] Martin-Gallan R Carrascosa A, Gussinye M, et al. Biomarkers of diabetes-associated oxidative stress and antioxidant status in young diabetic patients with or without subclinical complications[J]. Free Radic Biol Med, 2003, 34(12): 1563-74
    [29] Woods AA, Linton SM, Davies MJ. Detection of HOCl-mediated protein oxidation products in the extracellular matrix of human atherosclerotic plaques[J]. Biochem J, 2003, 370(Pt 2):729-35.
    [30] 郭志坚,侯凡凡,刘尚熹,等。糖化和氧化产物修饰的蛋白质促进兔动脉粥样斑块形成[J]。北京大学学报,2004,36(2):127-130