晚期蛋白质氧化产物在糖尿病大鼠肾脏损伤中的作用以及Apocynin的干预作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在全球范围内,糖尿病及其并发症已成为危害人类健康的最重要的疾病之一,糖尿病肾病已成为导致终末期肾功能不全的首要原因,严重影响了人类的生活质量和寿命。尽管临床研究已经证实,血糖升高是糖尿病各种并发症发生的重要危险因素,但有效地控制血糖并不能完全阻止糖尿病各种并发症的发生和发展。近年来氧化应激在糖尿病及其并发症发生和发展中的作用日益受到人们的重视。在与高血糖有关的多个生化过程中均伴随着活性氧的生成,包括葡萄糖自氧化,多元醇途径,前列腺素类的合成,蛋白质的糖基化等等。葡萄糖在自氧化过程中不产生分子氧,而是产生氧化反应的中间产物,包括超氧阴离子(O~(2-)·),羟自由基(·OH)和过氧化氢(H_2O_2)。体内过度产生的活性氧可交联脂质、蛋白质等大分子活性物质,损伤血管内皮细胞,诱导炎症介质的释放,进一步造成组织和器官的功能受损。晚期蛋白质氧化产物(AOPPs)最早由Witko-Sarsat等在尿毒症患者的血浆中发现。将血浆或纯化的人血清白蛋白在体外与次氯酸混合,产生AOPPs的浓度可随次氯酸浓度增高呈剂量依赖性增加。双酪氨酸为蛋白质被氧化后的结构特征,AOPPs在血浆中的浓度与双酪氨酸和
Diabetes is the leading cause of end-stage renal disease worldwide. Although clinical studies have demonstrated a clear link between hyperglycemia and the development of diabetic complications of diabetes, the mechanisms through which excess glucose results in tissue damage remain incompletely understand. Accumulated evidence indicate that the over generation of reactive oxygen species(ROS) (oxidative stress) may play an important role in the etiology of diabetic complications. This hypothesis is supported by evidence indicating that many biochemical pathways strictly associated with hyperglycemia (glucose autoxidation, polyol pathway, prostanoid synthesis, protein glycation) can increase the production of free radicals. Accumulation of plasma advanced oxidation protein products (AOPPs) has been found firstly in patients with chronic kidney disease (CKD). AOPPs can be formed in vitro by exposure of serum albumin to hypochlorous acid
引文
1 The DCCT Research Group: The effect of intensive diabetes treatment on the development and progression of long-term complications in insulin-dependent diabetes mellitus the Diabetes Controls and Complications Trial. N Engl J Med 1996,329:977-986
    
    2 UK Prospective Diabetes Study (UKPDS) Group: Intensive blood-glucose controls with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes(UKPDS 33).Lancet 1998,352:837-853
    
    3 Brownlee M. Advanced protein glycosylation in diabetes and aging .Ann Rev Med 1996,46:223-234
    
    4 Vlassara H. Recent progress in advanced glycation end products and diabetic complications. Diabetes 1997,46(Suppl.2):S19-S25
    
    5 Hotta N. New approaches for treatment in diabetes: aldose reductase inhibitors. Biomed Pharmacother 1995,49:232-243
    
    6 Baynes JW. Role of oxidative stress in development of complications of diabetes. Diabetes 1991,40:405-412
    
    7 Giugliano D, Ceriello A, Paolisso G Oxidative stress and diabetic vascular complications. Diabetes Care 1996,19:257-267
    
    8 Baynes JW, Thorpe SR. The role of oxidative stress in diabetic complications. Curr Opin Endocrinol 1997,3:277-284
    
    9 Van Dam PS, Van Asbeck BS, Erkelens BW, et al. The role of oxidative stress in neuropathy and other diabetic complications. Diabetes Metab Rev 1995,11:181-192
    
    10 Williamson JR ,Chang K, Frangos M, et al. Hyperglycemic pseudohypoxia and diabetic complications. Diabetes 1993,42:801-813
    11 Ido Y, Kilo C, Williamson JR. Cytosolic NADH/NAD~+, free radicals ,and vascular dysfunction in early diabetes mellitus. Diabetologia 1997,40 (Supp2):S115-S117
    
    12 Cameron NE, Cotter MA. Metabolic and vascular factors in the pathogenesis of diabetic neuropathy. Diabetes 1997,46(Suppl. 2):S31-S37
    
    13 Lyons TJ, Jenkins AJ. Glycation, oxidation,and lipoxidation in the development of the complications of diabetes: a carbonyl stress hypothesis. Diabetes Rev 1997,5:365-391
    
    14 Degenhardt TP, Brinkmann-Frye E, Thorpe SR, et al. Role of carbonyl stress in aging and age-related diseases. In The Maillard Reaction in Foos and Medicine. O Brien J, Nursten HE, Crabbe MJC, Ames JM. Eds Royal Society of Chemistry London. 1998 P .3-10
    
    15 Witztum JL. Role of modified lipoproteins in diabetic macroangiopathy. Diabetes 1997,46 (Suppl.2):S112-S114
    
    16 Lopes-Virella MF, Mironova M, Virella G LDL-containing immune complexes and atherosclerosis in diabetes. Diabetes Rev 1997,5:410-424
    
    17 Ishii H, Daisuke K, King GL. Protein kinase C-activation and its role in the development of vascular complications in diabetes mellitus. J Mol Mea 1998,76:21-31
    
    18 Pfeiffer A, Schatz H. Diabetic microvascular complications and growth factors. Exp Cin Endocrinol Diabetes 1995,103:7-14
    
    19 Sharma K, Ziyadeh FN. Biochemical events and cytokine interactions linking glucose metabolism to the development of diabetic nephropathy. Sem Nephrol 1997,17: 80-92
    
    20. Cross CE. Halliwell B, Borish ET, et al. Oxygen radicals and human disease. Ann Intern Med 1997,107:526-545
    
    21. Baynes JW. Role of oxidative stress in development of complications in diabetes. Diabetes 1991,40: 405-412
    
    22. Hunt JV, Dean RT, Wolff SP. Hydroxyl radical production and autoxidative glycosylation: glucose autoxidation as the cause of protein damage in the experimental glycation model of diabetes mellitus and ageing. Biochem J 1988, 256: 205-212
    
    23 Witko-Sarsat V, Friedlander M, Capeillere-Blandin C, et al. Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int 1996,49:1304-1313
    
    24 Witko-Sarat V, Friedlander M, Nguyen-Khoa T , et al. Advanced Oxidation Protein Products as Novel Mediators of Inflammation and Monocyte Activation in Chronic Renal Failure. The Journal of Immunology 1998,161: 2524-2532
    
    25 Drueke T, Witko-Sarsat V, Massy ZA, et al. Iron therapy, advanced oxidation protein products, and cartid artery intima-media thickness in end-stage renal disease. Circulation 2002,106:2212-2217
    
    26 Kaneda H, Taguchi J, Ogasawara K, et al. Increased level of advanced oxidation protein products in patients with coronary artery disease. Atherosclerosis May 2002,162(l):221-225
    
    27 Descamps-Latscha B, Witko-Sarsat V, Nguyen-Khoa T ,et al. Early prediction of IgA nephropathy progression: proteinuria and AOPPs are strong prognostic markers. Kidney Int 2004,Oct;66(4):1606-1612
    
    28 M.Kalousova, J.Skrha, T.Zima. Advanced glycation end-products and advanced oxidation protein products in patients with diabetes mellitus. Physiol Res 2002,51:597-604
    
    29 Pilar Martin-Gallan,Antinio Carrascosa,Miguel Gussinye, et al. Biomarkers of diabetes-associated oxidative stress and antioxidant status in young diabetic patients with or without subclinical complications. Free Radical Biology & Medicine 2003,34(12): 1563-1574
    30 Witko-Sarat V, Gausson V, Descamps-Latscha B. Are advanced oxidation protein products potential uremic toxins? Kidney Int 2003, 84:S11-14
    31 张志辉,刘尚喜,侯凡凡等.晚期氧化蛋白产物通过活性氧诱导单核细胞分泌肿瘤坏死因子.第一军医大学学报 2005,25(5):493-497
    32 袁方,刘尚喜,田建伟.晚期氧化蛋白产物诱导内皮细胞产生活性氧.第一军医大学学报 2004,24(12):1350-1352
    33 Stolk J, Hiltermann TJ, Dijkman JH, et al. Characteristics of the inhibition of NADPH oxidase activation in neutrophils by apocynin, a methoxy-substituted catechol. Am J Respir Cell Mol Biol 1994,11(1):95-102
    34 Hart BA, Schmitt ME. Metabolic activation of phenols by stimulated neutrophils: A concept for a selective type of anti-inflammatory drug. Biotechnol Ther 1992,3:119-135
    35 Meyer JW, Schmitt ME. A central role for the endothelial NADPH oxidase in athrosclerosis. FEBS lett 2000,472:1-4
    36 陈瑗,周玫。自由基医学基础与病理生理人民卫生出版社,2002
    37 Versteilen AM, Di Maggio F, Leemreis JR,et al. Molecular mechanisms of acute renal failure following ischemia/reperfusion. Int J Artif Organs 2004,27(12): 1019-1029
    38 Furuichi K, Wada T, Yokoyama H,et al. Role of Cytokines and Chemokines in Renal Ischemia-Reperfusion Injury. Drug News Perspect. 2002,15(8):477-482
    39 Jian-Mei LI, Ajay M.Shah. Ros generation by nonphagocytic NADPH oxidase: potential relevance in diabetic nephropathy. J Am Soc Nephrol 2003,14:s221-226
    40 Griendling KK, Sorescu D, Ushio-Fukai M. NADPH oxidase: Role in cardiovascular biology and disease. Circ Res 2000,86:494-501
    41 Zalba G, Jose GS, Moreno MU, et al. Oxidative stress in arterial hypertension: Role of NADPH oxidase. Hypertension 2001,38:1395-1399
    
    42 Wang Q, Tompkins KD, Simonyi A,et al. Apocynin protects against global cerebral ischemia-reperfusion-induced oxidative stress and injury in the gerbil hippocampus. Brain Res 2006, Apr 29 [Epub ahead of print]
    
    43 Gaddipati JP, Madhavan S, Sidhu GS,et al. Picroliv - a natural product protects cells and regulates the gene expression during hypoxia/reoxygenation. Mol Cell Biochem 1999,194(1-2):271-281
    
    44 Singh AK, Mani H, Seth P,et al. Picroliv preconditioning protects the rat liver against ischemia-reperfusion injury. Eur J Pharmacol. 2000, 395(3):229-239
    
    45 Dodd-0 JM, Pearse DB. Effect of the NADPH oxidase inhibitor apocynin on ischemia-reperfusion lung injury. Am J Physiol Heart Circ Physiol 2000,279(l):H303-312
    
    46 Ben-Shaul V, Lomnitski L, Nyska A,et al. Effect of natural antioxidants and apocynin on LPS-induced endotoxemia in rabbit. Hum Exp Toxicol 2000,19(11):604-614
    
    47 Seth P, Sundar SV, Seth RK,et al. Picroliv modulates antioxidant status and down-regulates API transcription factor after hemorrhage and resuscitation. Shock 2003,19:169-175
    
    48 Barbieri SS, Cavalca V, Eligini S,et al. Apocynin prevents cyclooxygenase 2 expression in human monocytes through NADPH oxidase and glutathione redox-dependent mechanisms. Free Radic Biol Med. 2004,37(2):156-165
    
    49 Paliege A, Parsumathy A, Mizel D, et al. Effect of apocynin treatment on renal expression of COX-2, NOS1, and renin in Wistar-Kyoto and spontaneously hypertensive rats. Am J Physiol Regul Integr Comp Physiol 2006,290(3):R694-670
    
    50 Hink U, Li H, Mollnau H, et al. Mechanisms underlying endothelial dysfunction in diabetes mellitus.Circ Res 2000,88:el4-e22
    51 Ammar RF Jr, Gutterman DD, Brooks LA ,et al. Free radicals mediate endothelial dysfunction of coronary arterioles in diabetes. Cardiovasc Res 2000,47:595-601
    52 Inoguchi T, Li P, Umeda F, et al. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NADPH oxidase in cultured vascular cells. Diabetes 2000,49:1939-1945
    53 Kensuke Asaba, Akihiro Tojo, Maristela Lika Onozato, et al. Effects of NADPH oxidase inhibitor in diabetic nephropathy. Kidney Int 2005,67:1890-1898
    54.庞战军,陈瑗,周玫。自由基医学研究方法人民卫生出版社,2000,3
    55 Flohe L ,Gunzler WA. Assays of glutathione peroxidase. Methods Enzymol 1984,105:114-120
    56 Takashi Furuta, Takao Saito, Tetsuya Ootaka, et al. The role of macrophages in diabetic glomerulosclerosis. American J of Kidney Disease 1993,20(5):480-485
    57 Fiona Chow, Elyce Ozols, David J. et al. Macrophages in mouse type 2 Diabetic nephropathy: Correlation with diabetic state and progressive renal injury. Kidney Int 2004,65:116-128
    58 Bessie A.Young, Richard J. Johnson, Charles E, et al. Cellular events in the evolution of experimental diabetic nephropathy .Kidney Int 1995,47:935-944
    59 Cariline Sassy-Prigent, Didier Heudes, Chantal Mandet, et al. Early glimerular macrophage recruitment in streptozotocin-induced diabetic rats. Diabetes 2000,49:466-475
    60 Fuad N. Ziyadeh, Dong Cheol Han. Involvement of transforming growth factor-β and its receptors in the pathogenesis of diabetic nephropathy. Kidney Int 1997,52(Suppl.60):s7-s11
    61 Border WA, Ruoslahti E. Transforming growth factor-β in disease: The dark side of tissue repair. J Clin Invest 1992,90:1-7
    62 Demetrius Ellis, Kimberly Y-Z Forrest, John Erbey, et al. Urinary measurement of transforming growth factor-6 and type IV collagen as new markers of renal injury: application in diabetic nephropathy. Clinical Chemistry 1998,44(5):950-956