浅水轻型AUV原理样机初步设计与实验
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自主水下航行器(AUV)广泛应用于海洋救助与打捞、深海资源调查、海洋石油开采、水下工程施工、军事和国防建设等诸多方面,己经产生了巨大的经济效益和社会效益,具有潜在的应用前景。自主水下航行器技术也是当前世界各国投巨资争相研究的热点。
     本论文基于国内外水下机器人设计的成功经验,通过对水下机器人结构设计因素的分析研究,成功设计了一推进器、四控制舵水下机器人外形结构,并利用实际试验对其运动稳定性进行了验证。理论分析和试验结果证明:采用一推进器、四控制舵水下机器人结构恰好可以满足水下机器人进行浅水实验的需要。
     本文主要的工作和创新点主要有以下几个方面:
     一、根据水下航行器的任务功能,初步完成了轻型AUV原理样机的结构总体设计,包括形体设计、耐压壳体设计、密封问题等。
     二、完成了轻型AUV原理样机的机械设计、全部机械加工图纸以及成功实现了单片机对AUV舵机的控制。
     三、完成了室外水池平衡试验,并在水池内进行了运动稳定性试验。这将是中国海洋大学完成的第一台浅水轻型AUV原理样机。
The Autonomous Underwater Vehicle (AUV) is applied in the ocean salvage, the deep sea resources investigation, the ocean petroleum mine, underwater engineering construction, the military and national defenses etc. It has produced the huge economic performance and social performances, and it has latent applied foreground. The AUV technique is also hot point that the international community invests huge money in study.
     This thesis depends on the successful experience in designing underwater vehicles all over the world, through the study of structure factors of underwater vehicles, designs the structure of the one-thruster three-rudder Underwater Robot. And judges the kinematic stability of the robot by analyzing and experimenting. It is proved by the result of the analysis and experiment that one-thruster three-rudder Underwater Vehicle is suitable to be used for experimenting in shallow water.
     This dissertation's main work and innovations is following:
     1. Due to mission requirements, This paper firstly made collectivity design of an Light-duty AUV, including body design, hull design and airproof etc.
     2. This paper made the mechanism design and all of the blueprint,and successfully realize the control of the helms throw the singlechip.
     3. This paper done the poor balance examination successfully, and done the laboratory pool kinematic stability experiment in horizontal plane. This machine will be the first Light-duty AUV in Shallow Water in Ocean University of China.
引文
[1]周远清等.智能机器人系统.北京:清华大学出版社.1989: 15-40页
    [2]国家863计划智能机器人专家组.机器人博览.http:// www.kepu.com.cn/gb/technology/rohot
    [3]申功勋,孙建峰,信息融合理论在惯性/天文/GPS组合导航系统中的应用,国防工业出版社,1998, p.42
    [4]朱海,莫军.水下导航信息融合技术.国防工业出版社,2002.P.232
    [5]蒋新松等.水下机器人,沈阳:辽宁科学技术出版社,2000
    [6]李一平、燕奎臣,“CR-02”自治水下机器人在定点调查中的应用,机器人,2003年第4期,359-362
    [7]唐荣庆、曹智裕、张希贤,“探索者”号自治式水下机器人抛载系统的研制,海洋工程,2001年第2期, 85-87
    [8]欧阳晋.空中无人飞艇的建模与控制方法研究.上海交通大学工学博士学位论文.2003
    [9]成大先主编.机械设计手册.北京:化学工业出版社,1993
    [10]何友,王国宏,彭应宁,多传感器信息融合及应用,电子工业出版社,2000.11, p.12
    [11]李一平.水下机器人-过去现在和未来.自动化博览,2002,03
    [12]刘进长,辛键成.机器人世界[M].郑州:河南科学技术出版社,2000
    [13]郭志红.海洋机器人技术开发现状与展望.科学探索,2000,l0
    [14]徐德民等自主式水下航行器(AUV)的发展与关键技术.中国科学技术前沿.北京:高等教育出版社,2004
    [15]刘振明,潜伟建等.水下机器人平面直航运动稳定性分析.舰船工程.2004,26(3)
    [16]李一平.GPS在自治水下机器人中的应用.机器人,2000,8.p.763- 765.
    [17]王晓明,电动机的单片机控制(第一版),北京:北京航空航天大学出版社,2002年5月
    [18]方建军、何广平,智能机器人(第一版),北京:化学工业出版社,2004年2月
    [19]封锡盛,从有缆遥控水下机器人到自治水下机器人,中国工程科学, 2000年12月第2卷第12期, 29-33
    [20]施生达.潜艇操纵性.国防工业出版社.1995:165页
    [21]范尚雍.船舶操纵性.国防工业出版社.1988:24-26页
    [22]严卫生,徐德民,李俊,张福斌,自主水下滑翔器导航技术,火力与指挥控2004.12
    [23]陈鉴富,单片机在捻度测量中的应用,自动化与仪表,2004年第1期, 82-84
    [24]封锡盛、刘永宽,自治水下机器人研究开发的现状和趋势,高技术通讯,1999年9月,55-59
    [25]方建军、何广平,智能机器人(第一版),北京:化学工业出版社,2004年2月
    [26] Healey, A. J.. Obstacle Avoidance While Bottom Following for the REMUS Autonomous Underwater Vehicle. Proceedings of the IFAC-IAV 2004 Conference, Lisbon, Portugal, July 5-7, 2004.
    [27] Marco, D. B., Healey, A. J., McGhee, Autonomous Underwater Vehicles: Hybrid Control of Mission and Motion. Journal of Autonomous Robots 3, 1996,169-186
    [28] Healey, A. J., Horner, D. P., NPS ARIES Forward Look Sonar Integration, Office of Naval Research, Ocean Atmosphere, Space, Annual Reports 2004
    [29] Healey, A. J., Marco, R.B., McGhee, R.B., Autonomous Underwater Vehicle Control Coordination Using a Tri-Level Hybrid Software Architecture, Proceedings of the IEEE Robotics and Automation Conference, Minniapolis, April 1996, 2149 - 2159.
    [30] Marco, D. B., Healey, A. J., McGhee, Autonomous Underwater Vehicles: Hybrid Control of Mission and Motion, Journal of Autonomous Robots 3, 169-186 (1996)
    [31] Healey, A. J., Marco, D. B., McGhee, Brutzman, D. P., Cristi, R., A Trilevel Hybrid Control System for the NPS PHOENIX Autonomous Underwater Vehicle, Proceedings of the Joint US/Portugal Workshop in Undersea Robotics and Intelligent Control, Lisboa, Portugal, March 2-3, 1995.
    [32] Healey, A. J., Rock, S. M., Cody, S., Miles, D., Brown, J. P., Towards anImproved Understanding of Thruster Dynamics for Underwater Vehicles Proceedings of the IEEE 1994 Symposium on Autonomous Underwater Vehicle Technology July 19-20, 1994 Cambridge Mass. P340-352.
    [33] James G. Bellingham. New Oceanographic Uses of Autonomous Underwater Vehicles. Massachusetts Institute of Technology, Sea Grant College Program. Cambridge. MA. MTS Journal. Vol. 31, No. 3
    [34] JHKim,BAMoran,JJLeonard,JGBellingham and STTuohy. Experiments in remote monitoring and control of autonomous underwater vehicles. Sea Grant College Program,Massachusetts Institute of Technology, Massachusetts,02139. Reprinted from Oceans 96 MTS/TEEE,Ft.Lauderdale,Llorida,1996
    [35] Advanced Marine Systems,Florida Atlantic University,Department of Ocean Engineering. Copyright 1997 by Florida Atlantic University. http://www.oe.fau.edu/reseach/ams.html.
    [36] Clark, R. N., and G. A. Swayze. 1995. Mapping minerals, amorphous materials, environmental materials, vegetation, water, ice, and snow, and other materials: The USGS Tricorder Algorithm: in Summaries of the Fifth Annual JPL Airborne Earth Science Workshop, JPL Publication 95-1, P39-40.
    [37] Blidberg, D. R., The Development of Autonomous Underwater Vehicles (AUVs); A Brief Summary, AUSI, ICRA, Seoul, Korea, May 2001.