碱和超声波预处理技术促进污泥厌氧消化效能及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对传统污泥厌氧消化反应速率慢、消化时间长、池体体积庞大、生物气中甲烷含量低等问题,采用强化预处理的技术研究其对污泥厌氧消化的促进作用。本文分析比较了单独超声波、单独碱解以及碱和超声联合应用对污泥的破解效果;考察了污泥经超声波和碱联合作用后对厌氧消化性能的影响,初步探讨了污泥预处理对厌氧消化反应的促进机理,并在莫诺方程的基础上,建立了预处理污泥厌氧消化反应过程的动力学方程。主要研究成果如下:
     碱和超声波的组合方式对污泥的破解效果明显优于超声波和碱的单独处理,其不但可以提高污泥的水解速率,而且可以减少碱的投加量,缩短超声破解的时间。由SCOD随破解时间的变化曲线可知,各种预处理方式对污泥的水解过程可以分为快速水解和慢速水解两个阶段。对快速水解阶段进行动力学分析可知,碱和超声波同时作用的预处理方式获得的水解速率最高,为130.3 mg SCOD /(L·min)。
     污泥经碱和超声波同时作用后进行厌氧消化,其生物气产量、有机物去除率、固体削减率均较控制组有显著提高,并且在维持同样的污泥产气率和有机物去除率的条件下,碱和超声波的预处理作用可使厌氧消化反应的污泥停留时间由一般的20d缩短到8d。预处理污泥在停留时间为8d时,生物气产量为控制组(污泥停留时间为20d)的2.6倍,VS和TCOD的去除率也分别较控制组(20d)提高了22.87%和14.38%。
     对预处理污泥在厌氧消化中的水解率、产酸率和产甲烷率进行研究得到:与控制组相比,碱和超声预处理可以提高污泥厌氧消化的水解率、产酸率和产甲烷率。预处理污泥在停留时间为8d时,其水解率、产酸率和产甲烷率分别较控制组(20d)提高了82.38%、76.47%和86.54%。对于原污泥的消化反应,水解阶段始终是整个厌氧消化过程的限速步骤;对于预处理污泥的消化反应,当污泥停留时间大于等于8d时,水解反应是整个厌氧消化过程的限速步骤;当污泥停留时间小于5d时,有机物的水解率和产酸率远大于其产甲烷率,因此,产甲烷反应是整个厌氧消化的限速步骤。
     通过对污泥上清液中有机物的成分组成分析和消化系统中产甲烷活性的测定得到预处理促进污泥厌氧消化性能的机理为:碱和超声的共同作用使污泥中的有机物能快速的由固相进入液相,污泥在破解预处理过程中的溶解速率远远高于其自溶速率,有机物的利用率较控制组得到显著提高。与污泥中溶解性有机物的量相对应,预处理污泥在消化反应中生成的有机酸量较控制组也有显著提高,并且当污泥停留时间大于等于8d时,这些生成的有机酸能够迅速被降解转化。当反应器经过预处理的污泥培养驯化后,其消化污泥的产甲烷活性较控制组有显著提高,并且在较短的污泥停留时间下还可以保持较高的产甲烷活性。采用一级动力学方程对消化反应中有机物的降解进行动力学分析可知,碱和超声波预处理可使反应的K值提高89.58%(以TCOD计算),从而加快了有机物的降解速度,使污泥厌氧消化的性能得到提高。
     在莫诺方程的基础上,结合微生物增殖和底物降解的规律,根据微生物和底物的物料衡算方程,得出反应器厌氧消化动力学的四个基本参数为:YG=0.0726, b=0.0413d~(-1),K=-9.65和k0=0.025,在这四个参数的基础上得到的预处理污泥厌氧消化系统的动力学方程式。
Anaerobic digestion is a common process for waste activated sludge stabilization. However, in anaerobic digestion, the biological hydrolysis is so difficult, which results in the slow degradation, long residence time and large volume. In order to reduce the impact of rate-limiting step, several pretreatments for sludge hydrolysis are presented. In this thesis, the effects of ultrasonic pretreatment, alkaline pretreatment and combination of these two methods are compared. The efficiency and mechanism of anaerobic digestion of sludge by alkaline and ultrasonic pretreatment are studied. In addition, basing on the Monod equation, the kinetics equation of anaerobic digestion of pretreated sludge is deduced. The main conclusions of this study are as follows:
     It has been found that the combined ultrasonic and alkaline treatment is more effective than alkaline or ultrasonic treatment alone in releasing SCOD and VSS solubilization, which can not only improve the hydrolysis rate, but also reduce the pretreatment time in ultrasonic pretreatment and alkaline dose in alkaline treatment. There are two distinct phases in sludge hydrolysis with pretreatment. The first phase is a very rapid increase in solubilization, followed by a much slower second phase. According to kinetic analysis for first rapid phase, the initial hydrolysis rate of the simultaneous alkaline and ultrasonic treatment is the highest among these methods being 130.3mgSCOD / (L·min).
     Comparing with the non-pretreated sludge, the reduction of organic matters and biogas production in the anaerobic digestion with simultaneous alkaline and ultrasonic disintegrated sludge can be improved significantly. After pretreatment, the sludge retention time (SRT) of anaerobic digestion can be reduced from 20d to 8d, and the digestion system performs well. When the retention time is 8d, the anaerobic digestion of pretreated sludge shows 2.6 times higher gas production than that of untreated sludge (SRT=20d), and removal efficiency of volatile solid (VS) and total chemical oxygen demand (TCOD) increased by 22.87% and 14.38%, respectively.
     Comparing with the non-pretreated sludge, the percentage hydrolysis, acidification and methanogenesis of TCOD in the anaerobic digestion with pretreated sludge can be improved significantly. When the sludge retention time is 8d, the hydrolysis, acidification and methanogenesis of TCOD with pretreated sludge increased by 82.38%, 76.47% and 86.54%, respectively, compared to the control group. For the non-pretreated sludge, the hydrolysis is found to be the rate-limiting step of the whole digestion process. For the pretreated sludge, when the SRT≥8d, hydrolysis was the rate-limiting step. However, when the SRT<5d, the hydrolysis and acidification of TCOD are higher than the methanogenesis, and the methanogenesis become the rate-limiting step in the anaerobic digestion.
     By analyzing the component of released liquid in the anaerobic digestion, the mechanism of enhancing the anaerobic digestion of sludge by alkaline and ultrasonic pretreatment is explored. The results show that when the sludge is pretreated by the simultaneous alkaline and ultrasound, the substances inside and outside the cell can be released into the liquid rapidly, and the utilization ratio of organic matter is increased. The solubilization rate of sludge in pretreatment process is higher than the decay rate of the sludge. Corresponding to concentration of the soluble substance in the sludge, the higher quantity of VFA is production in the anaerobic digestion with pretreated sludge, and when the SRT≥8d, the produced VFA in the anaerobic digestion can be converted to the biogas quickly. It also found that the activity of methane forming bacteria in the anaerobic digestion fed with pretreated sludge is higher than the control group and at the reduced retention time it can be stable. In order to determine the improvement of the process kinetics a first-order degradation model of organic matter is used over the anaerobic digestion system. Comparing with the control, the K of digestion process with pretreated sludge is increased by 89.58%.
     Basing on the Monod equation, the kinetic equation of anaerobic digestion of pretreated sludge is deduced. Four basic parameters for reactor are YG=0.0726, b=0.0413d~(-1),K=-9.65 andk0=0.025, respectively.
引文
[1]陈声贵,许木启,杨向萍.原生动物在活性污泥中的作用[J].生态学杂志,2002,21(3):47-51.
    [2]尹军,谭学军.污水污泥处理处置与资源化利用[M].北京:化学工业出版社,2005.
    [3]邓宝辉,陶清.城市污水处理厂污泥处置与利用探讨[J].有色冶金设计与研究,2003,24(3):91-93.
    [4]王伟.水热干化技术为污泥处理撑开一片蓝天,中国水网(www.h2o-China.com)2007-9-28.
    [5]张辰.污泥处理处置技术与工程实例[M].北京:化学工业出版社,2006.
    [6]丁敏,朱惟猛.化学一级强化污泥中温厌氧消化工艺的研究[J].上海水务,2005,21(3):11~14
    [7] Pavlostathis S G, Gossett J M. Kinetic model of anaerobic digestion of biological sludge [J]. Biotechnolog and Bioengineering, 1986, 28(10): 1519- 1530.
    [8]程凯.预处理+EGSB工艺消化城市污水厂剩余污泥实验研究[D].安徽:合肥工业大学,2007.
    [9]张希衡.废水厌氧生物处理工程,北京:中国环境科学出版社,1996,61~75.
    [10]周群英,高廷耀.环境工程微生物学(第二版)[M].北京:高等教育出版社,2000.
    [11]任南琪,王爱杰.厌氧生物技术原理与应用[M].北京:化学工业出版社,2004.
    [12] Li Y Y, Noike T. Upgrading of anaerobic digestion of waste activated sludge by thermal pretreatment[J].Water Scinene and Technology, 1992, 26 (3-4): 857-866.
    [13] Glen T D, Henry C L.废水生物处理[M].北京:化学工业出版社,2003.
    [14] Chen Y G, Jiang S, Yuan H Y, et al. Hydrolysis and acidification of wasteactivated sludge at different pHs [J]. Water Research, 2007, 41(3): 683-689.
    [15] Yehuda M, Grietje Z, Jules B, et al. The role of sludge retenton time in the hydrolysis and acdification of lipids, carbohydrates and proteins during digestion of primary sluge in CSTR systems [J]. Water Research, 2000, 34(5): 1705-1713.
    [16] Eastman J A,Ferguson J F. Solubilization of particulate organic carbon during acid phase of anaerobic digestion [J]. Journal Water Pollution Control Federation, 1981, 53(3): 352-366.
    [17]国家环境保护局科技处.高浓度有机废水(我国几种工业废水治理技术,第三分册)[M].北京:化学工业出版社,1988.
    [18]顾夏声.废水处理工程[M].北京:清华大学出版社,1996.
    [19] Hamer A,Mason C A,Hamer G.Death and lysis during aerobic thermophilic sludge treatment;characterization of recalcitrant products[J].Water Research,1994, 28(4): 863-869.
    [20]王治军,王伟.剩余污泥的热水解试验[J].中国环境科学,2005,25(suppl.):56-60.
    [21]王治军,王伟.热水解预处理改善污泥的厌氧消化性能[J].环境科学,2005,26(1):68-71.
    [22] Schl?fer O, Sievers M, Klotzbüher H, et al. Improvement of biological activity by low energy ultrasound assisted bioreactors [J]. Ultrasonics, 2000, 38 (1-8): 711-716.
    [23]张少辉,华玉妹.污泥厌氧消化的强化技术[J].环境保护科学,2004,30(125):13-15
    [24] Nah I W, Kang Y W, Kwang K Y, et al. Mechanical pretreatment of waste activated sludge for anaerobic digestion process [J]. Water Reseach,2000,34(8):2362-2368.
    [25]霍贞,王芬,季民.污泥破解技术的研究与进展[J].工业水处理,2005,25(9):16-19.
    [26]牟艳艳,于鑫,郑正,等.污泥厌氧消化预处理方法研究进展[J].中国给水排水,2004,20(7):31-33.
    [27] Muller J A.Prospects and problems of sludge pretreatment process[J].Water Science and Technology,2001,44(10):l2l-128.
    [28]应崇福.超声学[M].北京:科学出版社,1999.
    [29]冯若.声化学基础研究中的声学问题[J].物理学进展,1996,16(3,4):403-407.
    [30]冯若,李化茂.声化学及其应用[M].合肥:安徽科学技术出版社,1992.
    [31] Hoffmann M R, Hua I, Hochemer R. Application of ultrasonic irradiation for the degradation of chemical contaminants in water [J]. Ultrasonics Sonochemistry, 1996, 3 (3):163-172.
    [32] Bruus J H, Nielsen P, Kieding K. On the stability of activated sludge flocs with implication to dewatering [J]. Water Research, 1992, 26(12) :1597-1604.
    [33]殷绚,阙子龙,吕效平,等.超声波声强及处理时间对污泥结合水的影响[J].化工进展,2005,24(3):307-314.
    [34]杨金美,张光明,王伟.超声波强化给水污泥沉降和脱水性能的研究[J].环境污染治理技术与设备,2006,7(11):58-61.
    [35] Chu C P, Chang B V, Liao G. S, et al. Observations on changes in ultrasonically treated waste-activated sludge [J]. Water Research, 2001, 35(4):1038-1046.
    [36]刘晓艳.超声波对细胞膜通透性的影响及应用[J].应用声学, 2002, 21 (2) : 26-29.
    [37]李晖.超声波强化液-固传质的机理研究[J].沈阳化工学院学报, 1994, 8 (3):175-181.
    [38]刘红,阎怡新,王文燕,等.低强度超声波改善污泥活性[J].环境科学,2005,26(4):124-128.
    [39]曾晓岚,龙腾锐,丁文川,等.低能量超声波辐射提高好氧污泥活性研究[J].中国给水排水,2006,22(5):88-91.
    [40] Chiu Y C, Chang C N et al. Alkaline and ultrasonic pretreatment of sludge before anaerobic digestion [J]. Water Science and Technology, 1997,36 (11):155~162.
    [41]曹秀芹,陈珺,等.剩余污泥超声处理试验研究[J].中国给水排水,2003,19(2):58~60.
    [42]王芬.剩余污泥超声破解的性能与机理研究[D].天津:天津大学,2004.
    [43] Tiehm A, Nickel K, Neis U. The use of ultrasound to accelerate the anaerobic digestion of sewage sludge [J]. Water Science and Technology, 1997,36(11): 121-128.
    [44] Bougrier C, Carrere H, Delgenes J P. Solubilisation of waste-activated sludge by ultrasonic treatment [J]. Chemical Engineering Journal, 2005, 106(2): 163-169.
    [45] Chang B V, Chu C P, Lee D J, et al.“weak”ultrasonic pre-treatment on anaerobic digestion of flocculated activated biosolids [J]. Water Research, 2002, 36(11):2681-2688.
    [46]王芬,季民.污泥超声破解预处理的影响因素分析[J].天津大学学报,2005,38(7):649-653.
    [47] Yoon S H, Kim H S, Lee S. Incorporation of ultrasonic cell disintegration into a membrane bioreactor for zero sludge production [J]. Process Biochemistry, 2004, 39(12): 1923-1929.
    [48] Yoon S H, Lee S. Critical operational parameters for zero sludge production in biological waste water treatment processes combined with sludge disintegration [J]. Water Research, 2005, 39(15):3738-3754.
    [49]杨顺生,高晓勇.超声波技术在污泥处理利用中的应用现状及前景预测[J].四川环境,2006,25(1):61-64.
    [50] Nickel K, Neis U. Ultrasonic disintegration of biosolids for improved biodegr- adatio n [J]. Ultrasonics Sonochemistry, 2007, 14(4): 450-455.
    [51]苑宏英,张星华,陈银光,等. pH值对剩余污泥厌氧发酵产生的COD、磷及氨氮的影响[J].环境科学,2006,27(7):1358-1361.
    [52] Katsiris N, Alexandra K K, Bound water content of biological sludges in relation to filtration and dewatering [J]. Water Research, 1987, 21 (11): 1319–1327.
    [53] Rajan R V, Lin J G, Ray B T. Low-level chemical pretreatment for enhanced sludge solubilization [J]. Journal of Chemical Technology and Biotechnology, 1989, 61(11-12):1678-1683.
    [54] Lin J G, Chang C N, Chang S C. Enhancement of anaerobic digestion of waste activated sludge by alkaline solubilization [J]. Bioresource Technology, 1997, 62(3):35-42.
    [55]林志高,张守中.废弃活性污泥加碱预处理后厌氧消化的试验研究[J].给水排水,1997,23(1):10-15.
    [56] Lin J G, Ma Y S, Huang C C. Alkaline hydrolysis of the sludge generated from a high-strength nitrogenous-waster biological-treatment process [J]. Bioresour- ce Technology, 1998, 65(1-2):35-42.
    [57] Kim J, Park C, Kim T H, et al. Effect of various pretreatment for enhanced anaerobic digestion with waste activated sludge [J]. Journal of Bioscience and Bioengineering, 2003, 95(3):271-275.
    [58] Chiu Y C, Chang C N, Lin J G, et al. Alkaline and ultrasonic pretreatment of sludge before anaerobic digestion[J]. Water Science and Technology, 1997, 36(11):155-162.
    [59] Shirgaonkar I Z, Pandit A B. Degradation of aqueous solution of postassium iodide and sodium cyanide in the presence of carbon tetrachloride [J]. Ultraso- nics Sonochemistry, 1997, 4(3):245-253.
    [60]贺延龄.废水厌氧生物处理[M].北京:中国轻工业出版社,2001.
    [61]《水和废水监测分析方法指南》编委会.水和废水监测分析方法指南(上册)[M].北京:环境科学出版社,1990.
    [62]陈毓荃.生物化学实验方法和技术[M].北京:科学出版社,2002.
    [63]邵雪玲,毛歆,郭一清.生物化学与分子生物学实验指导[M].武汉:武汉大学出版社,2003.
    [64]薛向东,金奇庭,朱文芳.污泥超声破解效应及厌氧消化性能的研究[J].生态环境,2006,15(1):50-53.
    [65]朱昌平,李良学,冉勇,等.频率对双频超声辐照声化学产额增强效应的影响[J].应用声学,1998,17(1):15-17.
    [66]张光明,常爱敏,张盼月.超声波水处理技术[M].北京:中国建筑工业出版设,2006.
    [67]王芬.超声破解对污泥特性的影响机制与零污泥排放工艺研究[D].天津:天津大学,2006.
    [68] Shanable A, Joma S. Production and transformation of volatile fatty acids from sludge subject to hydrothermal treatment [J]. Water Science and Technology, 2001,44(10):129-135.
    [69]白晓慧.超声波技术与污水污泥及难降解废水处理[J].工业水处理,2000,20(12):8-11.
    [70]陈刚,李丹阳,张光明.高浓度难降解有机废水处理技术[J]. 2003,22(3):13-16.
    [71] Tiehm A, Nickle K, Zelhorn M et al. Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization [J]. Water Research, 2001, 35(8):2003-2009.
    [72] Parag R G, Sukti M, Aniruddha B P. Sonochemical reactors for waste water treatment: comparison using formic acid degradation as a model reaction [J]. Advances in Environmental Research. 2003,7(2):283-299.
    [73]朱昌平、冯若,陈兆华,等.双频辐照的声化学产额及其频率效应的研究[J].南京大学学报(自然科学),1998,34(1):93-96.
    [74]廖翠玲.碱前处理对废弃活性污泥中含氮物质影响之研究[D],新竹:台湾交通大学,1993.
    [75]肖本益,刘俊新.污水处理系统剩余污泥碱处理融胞效果研究[J].环境科学,2006,27(2):319-323.
    [76] Vlyssides A G, Karlis P K. Thermal-alkaline solubilization of waste activated sludge as pre-treatment stage for anaerobic digestion, Bioresource Technology, 2004, 91(2):201-206
    [77] Lin J G, Chang C N. Solubilization kinetics of wasted activated sludge with chemical pretreatment [A]. Proceeding 5th IAWQ Asian Regional Conference on Water Quality and Pollution Control, 1995, 660-665.
    [78] Huang W Sh. The solubility and digestion property of applying ultrasound and alkaline to waste activated sludge (WAS) [D]. Taiwan: Tunghai University, Taichung, 1995.
    [79]张晓,Hwang E J, Lee Y O.碱处理对废水污泥生物降解性的影响[J].国外丝绸,2006,5(3):13-15.
    [80] Penaud V, Delgenes J P, Moletta R. Thermo-chemical pretreatment of a micr- obial biomass: influence of sodium hydroxide addition on solubilization and anaerobic biodegradability [J]. Enzyme and Microbial Technology, 1999,25 (3-5): 258-263.
    [81] Gumersindo F, Manuel S, Ramon M, et al .Sodium inhibition in the anaerobic digestion process: Antagonism and adaptation phenomena [J]. Enzyme and Microbial Technology,1995, 17(2):180-188.
    [82]平岡正滕,吉野善弓.污泥处理工程学(宗永平,林喆译)[M].上海:华东化工学院出版社,1990.
    [83]赵庆祥.污泥资源化技术[M].北京:化学工业出版社,2002.
    [84] MeCarty P L. Anaerobic Process- The Birmiham Short Course on Design Aspects of Biological Treatment [M]. Birminham, England: Internation of Water Pollution Research, 1974.
    [85] Leislie C P, Grandy J, Herry C L.废水生物处理理论与应用(李献文,杨西昆译)[M].北京:中国建筑工业出版社,1989.
    [86]秦麟源,废水生物处理[M].上海:同济大学出版社,1989.
    [87] Siegrist H, Renggli D, Gujer W, Mathematical modeling of anaerobic mesophilic sewage sludge treatment[J]. Water Science and Technology,1993,27(2): 25~36.
    [88] Denial M, Miguel A, Dunn I J. Modeling dynamic experiments on the anaerobic degradation of molasses wastewater, Biotechnology and Bioengineering [J]. 1998, 31(3):1-2.
    [89] Ozturk M. Degradation of acetate, propionate and butyrate under shock temperature [J]. Journal of Environmental Engineering, 1993, 119(2):321-331.
    [90] Pavlostathis S G. Kinetics of anaerobic treatment, Water Science and Technology, 1991, 24(8): 35-59.
    [91]顾夏声.废水生物处理数学模型[M].北京:清华大学出版社,1982.
    [92] Choi H, Jeong S W, Chung Y J. Enhanced anaerobic digestion of waste activated sludge pretreated by pluse-power technology [J]. Bioresource Technology, 2006, 97(2):198-203.
    [93]赵杰红,张波,蔡伟民.厌氧消化系统中丙酸积累及控制研究进展[J].中国给水排水,2005,21(3):25-27
    [94] Barber W P, Sturckey D C. The use of anaerobic digestion baffled reactor (ABR) for wastewater treatment: a review [J]. Water Research, 1999, 33 (7):1559-1578.
    [95] Nike T, Endo G, Chang J E, et al. Characteristics of carbohydrate degradation and the rate-limiting step in anaerobic didgestion [J]. Biotechnology and Bioengineering, 1985, 27(10):1482-1489.
    [96] Tong X, Smith L H, McCarty P L, Methane fermentation of selected lignocellulosic materials [J]. Biomass, 1990, 21(4):239-255.
    [97] Mahmoud N, Zeeman G, Gijzen H, et al. Anaerobic stabilistion and conversation of biopolymers in primary sludge-effect of temperature and sluge retention time [J]. Water Research, 2004, 38(4):983-991.
    [98]韩芸,李玉友,任勇翔,等.城市污水处理厂预热处理混合污泥的高温厌氧消化特性研究[J].环境科学学报,2007,27(7):1174-1180.
    [99] Borja R, Martin A, Sánchez E, et al. Kinetic modeling of the hydrolysis, acidogenic and methanogenic steps in the anaerobic digestion of two-phsse olive pomace (TPOP) [J]. Process Biochemistry, 2005, 40(5): 1841-1847.
    [100]胡纪萃,废水厌氧生物处理理论与技术[M].北京:中国建筑工业出版社,2003.
    [101]左剑恶,凌雪峰,王妍春,等. EGSB反应器的动力学模型研究(Ⅰ)-模型测建立[J].中国沼气,2003,21(1):3-7.
    [102]左剑恶,凌雪峰,王妍春等. EGSB反应器的动力学模型研究(Ⅰ)-模型测建立[J].中国沼气,2003,21(2):3-6.
    [103]张自杰,顾夏声.排水工程[M],北京:中国建筑工业出版社,2000.
    [104] Gossett J M, McCarty P L, Wilson J C, et al. Anaerobic digestion of sludge from chemical treatment[J]. Journal Water Pollution Control Federation, 1978, 50(3):533-542.
    [105]范潇梦,竖向管束污泥厌氧消化反应器处理污泥的试验研究[D].哈尔滨:哈尔滨工业大学,2002.