胰腺组织特异性敲除Grb10基因对胰岛beta细胞功能改善的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:制备胰腺组织特异性Grb1O基因敲除小鼠并确定其基因敲除表型
     方法用flox-loxp技术制备Grb10flox/-小鼠,并通过传代以及杂合子交配得到Grb10loxp+/+小鼠,与PDX-Cre+/-小鼠交配,得到胰腺组织特异性Grb10基因敲除小鼠(下称"pGrb10 KO小鼠”)以及Grb10flox/-小鼠(下称“野生型小鼠”)作为对照组。从各个主要组织中提取DNA并用Southern Blot以及PCR方法在DNA层面确定Grb10基因敲除情况。用Western Blot以及免疫组化的方法从蛋白层面了解Grb10基因敲除情况以及蛋白表达情况。
     结果Southern Blot显示Grb10flox/-小鼠基因标记位置正确,PCR显示在各个组织中,基因敲除仅发生在胰腺,其他组织没有影响。Western Blot显示,野生型小鼠体内Grb10在胰腺中表达量最高,在基因敲除小鼠中Grb10蛋白被完全敲除;比较pGrb10 KO小鼠和野生型小鼠,其他各组织中的Grb10蛋白表达量没有改变。免疫组化显示,Grb10在胰腺各种细胞中都有表达,在胰岛中表达量相对较高,但在pGrb10 KO小鼠胰腺中Grb10蛋白完全无表达。
     结论成功制备胰腺组织特异性Grb10基因敲除小鼠,对于pGrb10 KO小鼠,Grb10蛋白在胰腺中完全敲除,在身体其他组织中没有变化。
     目的研究Grb10基因在beta细胞中敲除对胰岛beta细胞胰岛素释放、胰岛大小、以及血糖代谢、胰岛beta细胞增殖的影响。
     方法小鼠出生4周后,根据PCR结果设置pGrb10 KO小鼠组及野生型小鼠组(n=8-13),以标准食物喂养18周,测量其体重、摄食(从第4周开始,每周一次,至22周)、以及身体脂肪比重(第22周)、身体各个器官重量。小鼠成年后实行葡萄糖耐量实验(GTT)(了解beta细胞对葡萄糖的敏感性)、胰岛素耐量实验(ITT)(了解周围组织对胰岛素的敏感性)、空腹胰岛素水平、总胰岛细胞重量。用BrdU标记法检测野生型小鼠与pGrb10 KO小鼠胰岛beta细胞增殖率的区别。
     结果pGrb10 KO小鼠在体重、摄食、身体脂肪比重、各个器官重量(除胰腺外)、周围组织对胰岛素的敏感性没有明显改变。pGrb10KO小鼠有更大的胰腺,较低的血糖水平以及明显增高的beta细胞增殖率,但空腹胰岛素水平以及总胰岛细胞重量无明显区别。
     结论与野生型小鼠比较,基因敲除小鼠血糖水平相对较低,但空腹胰岛素水平以及胰岛beta细胞团重量无明显差异。pGrb10 KO小鼠有明显升高的beta细胞增殖率。
     目的在2型糖尿病小鼠模型中研究Grb10基因在beta细胞中敲除对beta细胞胰岛素释放、胰岛大小、以及血糖代谢的影响
     方法小鼠出生4周后,根据PCR结果设置pGrb 10 KO小鼠组及野生型小鼠组(n≥10),以60%高脂饮食喂养18周测量其体重、摄食(从第4周开始,每周一次,至22周)、以及身体脂肪比重(第22周)。实行葡萄糖耐量实验(GTT)(了解beta细胞对葡萄糖的敏感性)、胰岛素耐量实验(ITT)(了解周围组织对胰岛素的敏感性)、空腹胰岛素水平、所有胰岛细胞重量。用胰酶消化胰腺后,分离得到胰岛细胞,用IGF-1和Insulin分别刺激后,用Western Blot测定不同组小鼠p-AKT及其下游通路p-Foxo以及MAK激酶磷酸化是否改变。用透射电镜检测野生型和pGrb10 KO小鼠胰岛beta细胞内胰岛素颗粒有无区别。
     结果pGrb 10 KO小鼠在体重、摄食、身体脂肪比重、周围组织对胰岛素的敏感性没有明显改变。pGrb 10 KO小鼠有明显低血糖水平(与正常饮食小鼠近)以及高胰岛素水平,明显增多的胰岛beta细胞团以及胰岛beta细胞内明显增多的胰岛素颗粒。pGrb10 KO小鼠胰岛beta细胞内Akt磷酸化水平及其下游通路Foxo磷酸化水平明显上调,MAP激酶信号通路明显上调。电镜下显示pGrb10 KO小鼠胰岛beta细胞内胰岛素颗粒明显增多。
     结论在2型糖尿病模型中,与野生型小鼠比较,pGrb 10 KO小鼠血糖水平相对正常,胰岛素水平增高,胰岛beta细胞明显增多以及beta细胞内胰岛素颗粒明显增多。pGrb10 KO小鼠胰岛beta细胞内胰岛素信号通路明显上调,胰岛beta细胞内胰岛素颗粒明显增多。
     目的在糖尿病小鼠模型中研究Grb10基因在beta细胞中敲除对beta细胞胰岛素释放、胰岛大小、以及血糖代谢的影响
     方法选取3个月大小鼠,用STZ 75mg/kg(雄性,n=8-14)80mg/kg(雌性,n=14)注射5天后每3日在同一时间点测量血糖,体重。21天后处死小鼠,测量胰腺重量,胰岛细胞重量以及胰岛素水平。并用In Situ Cell Death Detection Kit (Roche)测定不同小鼠beta细胞凋亡情况。
     结果基因敲除小鼠相对对照组小鼠有明显低的血糖水平,体重维持较平稳,beta细胞明显较多,血胰岛素水平明显较高。TUNEL实验显示pGrb10 KO小鼠比野生型小鼠有明显减低的胰岛beta细胞凋亡率。
     结论基因敲除小鼠对STZ诱导的beta细胞凋亡有更好的抵抗作用
Objectives:To generate pancreas-specific Grb10 knockout mice and test the phenotype.
     Methods:Grb10flox/- mice have been generated and bred for 6 generation, and then heterozygote mice have been bred with heterozygote mice to get homozygote mice. Breed Grb10flox/flox mice with PDX-Cre+/-mice then get pancreas-specific Grb10 knockout mice (pGrb10 KO mice) and Grb10flox/- mice (WT control mice). DNA has been digested from tails for Sounthern blot, and DNA has been digested from different tissues for PCR to confirm in DNA level that Grb10 has been deleted only in pancreas. Western Blot and Immunohistochemistry have been used to detect whether Grb10 protein has been removed yet.
     Results:Southern Blot shows that in pGrb10 KO mice the gene target sites locate right. PCR shows that deletion happens only in pancreas, no any effect on other tissues. According to Western Blot, Grb10 is highest expressed in pancreas, but completely deleted in pGrb10 KO mice. Immunohistochemistry of pancreas shows that Grb10 expresses in all of the endocrine cells and exocrine cells, conparablly higher expresses in islets.
     Conclusion:pGrb10 KO mice have been successfully generated. Grb10 has been completely deleted in pancreas in pGrb10 KO mice, without effect on any other tissues.
     Objectives:Study the effect on insulin releasing from the beta cell, islet mass size and glucose tolerance after deleting Grb10 in pancreas.
     Methods:PGrb10 KO mice group and WT mice group(n=8-13) have been set to measure body weight, food intake(from 4 weeks old to 22 weeks, once per week), fat percentage(22 weeks old), organ weight. Feed with normal chow for 18 weeks, Glucose Tolerance Test(GTT) will be carried out to study the insulin secretion after glucose stimulation and periphery tissues'insulin sensitivity; Insulin Tolerance Test(ITT) will be carried out to study periphery tissues'insulin sensitivity. Fasting plasma insulin level and beta cell mass weight will also be tested. Pancreatic beta cell proliferation rate will be tested by BrdU labeling.
     Results:pGrb10 KO mice have no difference with WT mice in Body weight, food intake, fat percentage, different organs (excluding pancreas), and periphery tisuue insulin sensitivity. pGrb10 KO mice have bigger pancreas, lower glucose level but pGrb10 KO mice have similar insulin level and beta cell mass weight. pGrb10 KO mice have higher proliferation rate than WT mice.
     Conclusion:Compared with WT control mice, pGrb10 KO mice have bigger pancreas, lower Glucose level, and much higher pancreatic beta cell proliferation rate.
     Objectives:Study the effect on insulin releasing from the beta cell, islet mass size and glucose tolerance in High Fat Diet induced type 2 diabetes mice model after deleting Grb10 in pancreas.
     Methods:When mice are 4 weeks old, feed them with 60%HFD for 18 weeks. pGrb10 KO micegroup and WT mice group(n≥10) have been set up to measure body weight, food intake(from 4 weeks old to 22 weeks, once per week), fat percentage(22 weeks old). Glucose Tolerance Test(GTT) will be carried out to study the insulin secretion after glucose stimulation and periphery tissues'insulin sensitivity; Insulin Tolerance Test(ITT) will be carried out to study periphery tissues'insulin sensitivity. Fasting plasma insulin level and beta cell mass weight will also be tested. Islet isolation will be done to study the detail mechanism of Grb10 effect in beta cells. After digested with Collagenase P, the pancreas tissue will be dispersed into plate and then islets will be hand-picked and culture in 12-well plate. After stimulated with IGF-1 and insulin, cells will be collected to test whether p-AKT and downstream have been changed in pGrb10 KO mice. TEM will be used to test insulin granule in pancreatic beta cell in both WT and pGrb10 KO mice.
     Results:Under high fat diet, PGrb10 KO micehave no difference with WT mice in Body weight, food intake, fat percentage, and periphery tissue insulin sensitivity. pGrb10 KO micehave significantly more beta cells, much lower glucose level, higher insulin level and much more insulin granule in pancreatic beta cells. In pGrb10 KO mice, p-Akt, p-Foxo and p-Erk have been upregulated.
     Conclusion:In type 2 diabetes model, compared with WT control mice, pGrb10 KO mice have lower Glucose level, higher insulin lever, much more beta cell mass and insulin granules in pancreatic beta cells. Insulin signaling has been upregulated in pGrb10 KO mice.
     Objectives:Study the effect on insulin releasing from the beta cell, islet mass size and glucose tolerance in STZ-induced type 1 diabetes mice model after deleting Grb10 in pancreas.
     Methods:3-months-old normal chow mice have been chosen in pGrb10 KO mice and WT control mice(n=8-14). The male mice have been injected STZ 75mg/kgBW and females have been injected 80mg/kgBW for 5 days, and then test blood glucose every 3 days at the same time point.21 days later, the mice have been sacrificed, and the pancreas weight, islets weight and blood insulin will be tested. Similar age of mice will be chosen and inject with STZ for 2days,48 hours later, mice will be sacrificed and the pancreas will be taken, fixed in 10%formalin, bedded in wax, and cut sections. In Situ Cell Death Detection Kit (Roche) will be used to detect beta cell apoptosis.
     Results:Compared with Wt control mice, pGrb10 KO mice have significant low glucose level much less weight losing, significant more beta cells and much higher plasma insulin level. TUNEL assay shows that pGrb10 KO mice have lower apoptosis rate than the WT mice.
     Conclusion:In type 1 diabetes model, Compared with WT control mice, pGrb10 KO micehave higher ability to conquer apoptosis.
引文
1. Bell, G.I. and K.S. Polonsky, Diabetes mellitus and genetically programmed defects in beta-cell function. Nature,2001.414(6865):p.788-91.
    2. Kahn, S.E., The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of Type 2 diabetes. Diabetologia,2003.46(1):p.3-19.
    3. Lim, M.A., H. Riedel, and F. Liu, Grb10:more than a simple adaptor protein. Front Biosci, 2004.9:p.387-403.
    4. Holt, L.J. and K. Siddle, GrblO and Grbl4:enigmatic regulators of insulin action-and more? Biochem J,2005.388(Pt 2):p.393-406.
    5. Smith, F.M., et al., Mice with a disruption of the imprinted Grb10 gene exhibit altered body composition, glucose homeostasis, and insulin signaling during postnatal life. Mol Cell Biol, 2007.27(16):p.5871-86.
    6. Wang, L., et al., Peripheral disruption of the Grb10 gene enhances insulin signaling and sensitivity in vivo. Mol Cell Biol,2007.27(18):p.6497-505.
    7. Xu, X. and X.D. Fu, Conditional knockout mice to study alternative splicing in vivo. Methods, 2005.37(4):p.387-92.
    8. Miyoshi, N., et al., Identification of the Megl/GrblO imprinted gene on mouse proximal chromosome 11, a candidate for the Silver-Russell syndrome gene. Proc Natl Acad Sci U S A, 1998.95(3):p.1102-7.
    9. Liu, F. and R.A. Roth, Grb-IR:a SH2-domain-containing protein that binds to the insulin receptor and inhibits its function. Proc Natl Acad Sci U S A,1995.92(22):p.10287-91.
    10. Dong, L.Q., et al., Cloning, chromosome localization, expression, and characterization of an Src homology 2 and pleckstrin homology domain-containing insulin receptor binding protein hGrblOgamma. J Biol Chem,1997.272(46):p.29104-12.
    11. Frantz, J.D., et al., Human GRB-IRbeta/GRB10. Splice variants of an insulin and growth factor receptor-binding protein with PH and SH2 domains. J Biol Chem,1997.272(5):p.2659-67.
    12. Hansen, H., et al., Interaction between the Grb10 SH2 domain and the insulin receptor carboxyl terminus. J Biol Chem,1996.271(15):p.8882-6.
    13. Laviola, L., et al., The adapter protein Grb10 associates preferentially with the insulin receptor as compared with the IGF-I receptor in mouse fibroblasts. J Clin Invest,1997.99(5):p.830-7.
    14. Nantel, A., et al., Interaction of the Grb10 adapter protein with the Rafl and MEK1 kinases. J Biol Chem,1998.273(17):p.10475-84.
    15. O'Neill, T.J., et al., Interaction of a GRB-IR splice variant (a human GRB10 homolog) with the insulin and insulin-like growth factor I receptors. Evidence for a role in mitogenic signaling. J Biol Chem,1996.271(37):p.22506-13.
    16. Pandey, A., et al., The Ret receptor protein tyrosine kinase associates with the SH2-containing adapter protein Grbl0. J Biol Chem,1995.270(37):p.21461-3.
    17. Tsien, J.Z., et al., Subregion-and cell type-restricted gene knockout in mouse brain. Cell,1996. 87(7):p.1317-26.
    18. Jumaa, H., G. Wei, and P.J. Nielsen, Blastocyst formation is blocked in mouse embryos lacking the splicing factor SRp20. Curr Biol,1999.9(16):p.899-902.
    19. Morioka, T., et al., Disruption of leptin receptor expression in the pancreas directly affects beta cell growth and function in mice. J Clin Invest,2007.117(10):p.2860-8.
    20. Lammert, E., et al., Role of VEGF-A in vascularization of pancreatic islets. Curr Biol,2003. 13(12):p.1070-4.
    21. Hikichi, T., et al., Imprinting regulation of the murine Meg1/Grb10 and human GRB10 genes; roles of brain-specific promoters and mouse-specific CTCF-binding sites. Nucleic Acids Res, 2003.31(5):p.1398-406.
    22. Margolis, B., et al., High-efficiency expression/cloning of epidermal growth factor-receptor-binding proteins with Src homology 2 domains. Proc Natl Acad Sci U S A,1992.89(19):p. 8894-8.
    23. Ooi, J., et al., The cloning of GrblO reveals a new family of SH2 domain proteins. Oncogene, 1995.10(8):p.1621-30.
    24. Daly, R.J., et al., Cloning and characterization of GRB14, a novel member of the GRB7 gene family. J Biol Chem,1996.271(21):p.12502-10.
    25. Charalambous, M., et al., Disruption of the imprinted GrblO gene leads to disproportionate overgrowth by an Igf2-independent mechanism. Proc Natl Acad Sci U S A,2003.100(14):p. 8292-7.
    26. Jerome, C.A., et al., Assignment of growth factor receptor-bound protein 10 (GRB10) to human chromosome 7p11.2-p12. Genomics,1997.40(1):p.215-6.
    27. Surani, M.A., Imprinting and the initiation of gene silencing in the germ line. Cell,1998.93(3): p.309-12.
    28. Polychronakos, C. and A. Kukuvitis, Parental genomic imprinting in endocrinopathies. Eur J Endocrinol,2002.147(5):p.561-9.
    29. Cattanach, B.M., et al., Time of initiation and site of action of the mouse chromosome 11 imprinting effects. Genet Res,1996.68(1):p.35-44.
    30. Newgard, C.B. and J.D. McGarry, Metabolic coupling factors in pancreatic beta-cell signal transduction. Annu Rev Biochem,1995.64:p.689-719.
    31. Iynedjian, P.B., Mammalian glucokinase and its gene. Biochem J,1993.293 (Pt 1):p.1-13.
    32. Matschinsky, F.M., Banting Lecture 1995. A lesson in metabolic regulation inspired by the glucokinase glucose sensor paradigm. Diabetes,1996.45(2):p.223-41.
    33. Porter, J.R. and T.G. Barrett, Monogenic syndromes of abnormal glucose homeostasis:clinical review and relevance to the understanding of the pathology of insulin resistance and beta cell failure. J Med Genet,2005.42(12):p.893-902.
    34. Mertz, R.J., et al., Activation of stimulus-secretion coupling in pancreatic beta-cells by specific products of glucose metabolism. Evidence for privileged signaling by glycolysis. J Biol Chem, 1996.271(9):p.4838-45.
    35. Zawalich, W.S. and K.C. Zawalich, Influence of pyruvic acid methyl ester on rat pancreatic islets. Effects on insulin secretion, phosphoinositide hydrolysis, and sensitization of the beta cell. J Biol Chem,1997.272(6):p.3527-31.
    36. Dukes, I.D., et al., Dependence on NADH produced during glycolysis for beta-cell glucose signaling. J Biol Chem,1994.269(15):p.10979-82.
    37. Sekine, N., et al., Low. lactate dehydrogenase and high mitochondrial glycerol phosphate dehydrogenase in pancreatic beta-cells. Potential role in nutrient sensing. J Biol Chem,1994. 269(7):p.4895-902.
    38. Schuit, F., et al., Metabolic fate of glucose in purified islet cells. Glucose-regulated anaplerosis in beta cells. J Biol Chem,1997.272(30):p.18572-9.
    39. Ishihara, H., et al., Overexpression of monocarboxylate transporter and lactate dehydrogenase alters insulin secretory responses to pyruvate and lactate in beta cells. J Clin Invest,1999. 104(11):p.1621-9.
    40. Zhao, C., et al., Expression and distribution of lactate/monocarboxylate transporter isoforms in pancreatic islets and the exocrine pancreas. Diabetes,2001.50(2):p.361-6.
    41. Pralong, W.F., C. Bartley, and C.B. Wollheim, Single islet beta-cell stimulation by nutrients: relationship between pyridine nucleotides, cytosolic Ca2+ and secretion. EMBO J,1990.9(1):p. 53-60.
    42. Eto, K., et al., Role of NADH shuttle system in glucose-induced activation of mitochondrial metabolism and insulin secretion. Science,1999.283(5404):p.981-5.
    43. Kennedy, E.D., P. Maechler, and C.B. Wollheim, Effects of depletion of mitochondrial DNA in metabolism secretion coupling in INS-1 cells. Diabetes,1998.47(3):p.374-80.
    44. Maechler, P., et al., Mitochondrial activation directly triggers the exocytosis of insulin in permeabilized pancreatic beta-cells. EMBO J,1997.16(13):p.3833-41.
    45. Duchen, M.R., P.A. Smith, and F.M. Ashcroft, Substrate-dependent changes in mitochondrial function, intracellular free calcium concentration and membrane channels in pancreatic beta-cells. Biochem J,1993.294 (Pt 1):p.35-42.
    46. Litsky, M.L. and D.R. Pfeiffer, Regulation of the mitochondrial Ca2+ uniporter by external adenine nucleotides:the uniporter behaves like a gated channel which is regulated by nucleotides and divalent cations. Biochemistry,1997.36(23):p.7071-80.
    47. Hansford, R.G., Dehydrogenase activation by Ca2+ in cells and tissues. J Bioenerg Biomembr, 1991.23(6):p.823-54.
    48. Territo, P.R., et al., Calcium activation of heart mitochondrial oxidative phosphorylation:rapid kinetics of mVO2, NADH, AND light scattering. J Biol Chem,2001.276(4):p.2586-99.
    49. Erecinska, M., et al., Energy metabolism in islets of Langerhans. Biochim Biophys Acta,1992. 1101(3):p.273-95.
    50. Ashcroft, S.J. and F.M. Ashcroft, The sulfonylurea receptor. Biochim Biophys Acta,1992. 1175(1):p.45-59.
    51. Aguilar-Bryan, L. and J. Bryan, Molecular biology of adenosine triphosphate-sensitive potassium channels. Endocr Rev,1999.20(2):p.101-35.
    52. Ashcroft, F.M. and F.M. Gribble, ATP-sensitive K+ channels and insulin secretion:their role in health and disease. Diabetologia,1999.42(8):p.903-19.
    53. Dukes, I.D. and L.H. Philipson, K+ channels:generating excitement in pancreatic beta-cells. Diabetes,1996.45(7):p.845-53.
    54. Rorsman, P., The pancreatic beta-cell as a fuel sensor:an electrophysiologist's viewpoint. Diabetologia,1997.40(5):p.487-95.
    55. Tucker, S.J., et al., Truncation of Kir6.2 produces ATP-sensitive K+ channels in the absence of the sulphonylurea receptor. Nature,1997.387(6629):p.179-83.
    56. John, S.A., et al., The sulphonylurea receptor SUR1 regulates ATP-sensitive mouse Kir6.2 K+ channels linked to the green fluorescent protein in human embryonic kidney cells (HEK 293). J Physiol,1998.510 (Pt 2):p.333-45.
    57. Mikhailov, M.V., et al., Expression of functionally active ATP-sensitive K-channels in insect cells
    using baculovirus. FEBS Lett,1998.429(3):p.390-4.
    58. Tucker, S.J., et al., Molecular determinants of KATP channel inhibition by ATP. EMBO J,1998. 17(12):p.3290-6.
    59. Drain, P., L. Li, and J. Wang, KATP channel inhibition by ATP requires distinct functional domains of the cytoplasmic C terminus of the pore-forming subunit. Proc Natl Acad Sci U S A, 1998.95(23):p.13953-8.
    60. Koster, J.C., et al., ATP inhibition of KATP channels:control of nucleotide sensitivity by the N-terminal domain of the Kir6.2 subunit. J Physiol,1999.515 (Pt 1):p.19-30.
    61. Aguilar-Bryan, L., et al., Cloning of the beta cell high-affinity sulfonylurea receptor:a regulator of insulin secretion. Science,1995.268(5209):p.423-6.
    62. Philipson, L.H. and D.F. Steiner, Pas de deux or more:the sulfonylurea receptor and K+ channels. Science,1995.268(5209):p.372-3.
    63. Ashfield, R., et al., Identification of the high-affinity tolbutamide site on the SUR1 subunit of the K(ATP) channel. Diabetes,1999.48(6):p.1341-7.
    64. Ashcroft, S.J., The beta-cell K(ATP) channel. J Membr Biol,2000.176(3):p.187-206.
    65. Cook, K.K. and D.A. Fadool, Two adaptor proteins differentially modulate the phosphorylation and biophysics of Kvl.3 ion channel by SRC kinase. J Biol Chem,2002.277(15):p.13268-80.
    66. Ureche, O.N., et al., Differential modulation of cardiac potassium channels by Grb adaptor proteins. Biochem Biophys Res Commun,2009.384(1):p.28-31.
    67. Kelly, R.P., R. Sutton, and F.M. Ashcroft, Voltage-activated calcium and potassium currents in human pancreatic beta-cells. J Physiol,1991.443:p.175-92.
    68. Ohta, M., et al., Effect of Ca++ channel blockers on energy level and stimulated insulin secretion in isolated rat islets ofLangerhans. J Pharmacol Exp Ther,1993.264(1):p.35-40.
    69. Olofsson, C.S., et al., Palmitate increases L-type Ca2+ currents and the size of the readily releasable granule pool in mouse pancreatic beta-cells. J Physiol,2004.557(Pt 3):p.935-48.
    70. Graves, T.K. and P.M. Hinkle, Ca(2+)-induced Ca(2+) release in the pancreatic beta-cell:direct evidence of endoplasmic reticulum Ca(2+) release. Endocrinology,2003.144(8):p.3565-74.
    71. Lang, J., Molecular mechanisms and regulation of insulin exocytosis as a paradigm of endocrine secretion. Eur J Biochem,1999.259(1-2):p.3-17.
    72. Hidalgo, C., et al., Redox regulation of RyR-mediated Ca2+ release in muscle and neurons. Biol Res,2004.37(4):p.539-52.
    73. Rorsman, P. and E. Renstrom, Insulin granule dynamics in pancreatic beta cells. Diabetologia, 2003.46(8):p.1029-45.
    74. Rorsman, P., et al., The Cell Physiology of Biphasic Insulin Secretion. News Physiol Sci,2000. 15:p.72-77.
    75. Bratanova-Tochkova, T.K., et al., Triggering and augmentation mechanisms, granule pools, and biphasic insulin secretion. Diabetes,2002.51 Suppl 1:p. S83-90.
    76. Olofsson, C.S., et al., Fast insulin secretion reflects exocytosis of docked granules in mouse pancreatic B-cells. Pflugers Arch,2002.444(1-2):p.43-51.
    77. Gembal, M., P. Gilon, and J.C. Henquin, Evidence that glucose can control insulin release independently from its action on ATP-sensitive K+ channels in mouse B cells. J Clin Invest,1992. 89(4):p.1288-95.
    78. Henquin, J.C., Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes,2000.49(11):p.1751-60.
    79. Ohara-Imaizumi, M., et al., Imaging exocytosis of single insulin secretory granules with evanescent wave microscopy:distinct behavior of granule motion in biphasic insulin release. J Biol Chem,2002.277(6):p.3805-8.
    80. Ohara-Imaizumi, M., et al., TIRF imaging of docking and fusion of single insulin granule motion in primary rat pancreatic beta-cells:different behaviour of granule motion between normal and Goto-Kakizaki diabetic rat beta-cells. Biochem J,2004.381(Pt 1):p.13-8.
    81. Straub, S.G., G. Shanmugam, and G.W. Sharp, Stimulation of insulin release by glucose is associated with an increase in the number of docked granules in the beta-cells of rat pancreatic islets. Diabetes,2004.53(12):p.3179-83.
    82. Pouli, A.E., et al., Secretory-granule dynamics visualized in vivo with a phogrin-green fluorescent protein chimaera. Biochem J,1998.333 (Pt 1):p.193-9.
    83. Varadi, A., et al., Involvement of conventional kinesin in glucose-stimulated secretory granule movements and exocytosis in clonal pancreatic beta-cells. J Cell Sci,2002.115(Pt 21):p.4177-89.
    84. Hisatomi, M., H. Hidaka, and I. Niki, Ca2+/calmodulin and cyclic 3,5'adenosine monophosphate control movement of secretory granules through protein phosphorylation/dephosphorylation in the pancreatic beta-cell. Endocrinology,1996.137(11):p. 4644-9.
    85. Varadi, A., T. Tsuboi, and G.A. Rutter, Myosin Va transports dense core secretory vesicles in pancreatic MIN6 beta-cells. Mol Biol Cell,2005.16(6):p.2670-80.
    86. Nevins, A.K. and D.C. Thurmond, Glucose regulates the cortical actin network through modulation of Cdc42 cycling to stimulate insulin secretion. Am J Physiol Cell Physiol,2003. 285(3):p. C698-710.
    87. Eliasson, L., et al., Rapid ATP-dependent priming of secretory granules precedes Ca(2+)-induced exocytosis in mouse pancreatic B-cells. J Physiol,1997.503 (Pt 2):p.399-412.
    88. Barg, S., et al., Priming of insulin granules for exocytosis by granular Cl(-) uptake and acidification. J Cell Sci,2001.114(Pt 11):p.2145-54.
    89. Renstrom, E., R. Ivarsson, and S.B. Shears, Inositol 3,4,5,6-tetrakisphosphate inhibits insulin granule acidification and fusogenic potential. J Biol Chem,2002.277(30):p.26717-20.
    90. Deeney, J.T., et al., Acute stimulation with long chain acyl-CoA enhances exocytosis in insulin-secreting cells (HIT T-15 and NMR1 beta-cells). J Biol Chem,2000.275(13):p.9363-8.
    91. Duvillie, B., et al., Increased islet cell proliferation, decreased apoptosis, and greater vascularization leading to beta-cell hyperplasia in mutant mice lacking insulin. Endocrinology, 2002.143(4):p.1530-7.
    92. Kulkarni, R.N., et al., Tissue-specific knockout of the insulin receptor in pancreatic beta cells creates an insulin secretory defect similar to that in type 2 diabetes. Cell,1999.96(3):p.329-39.
    93. Kulkarni, R.N., et al., beta-cell-specific deletion of the Igfl receptor leads to hyperinsulinemia and glucose intolerance but does not alter beta-cell mass. Nat Genet,2002.31(1):p.111-5.
    94. Xuan, S., et al., Defective insulin secretion in pancreatic beta cells lacking type 1 IGF receptor. J Clin Invest,2002.110(7):p.1011-9.
    95. Ueki, K., et al., Total insulin and IGF-I resistance in pancreatic beta cells causes overt diabetes. Nat Genet,2006.38(5):p.583-8.
    96. Kubota, N., et al., Disruption of insulin receptor substrate 2 causes type 2 diabetes because of liver insulin resistance and lack of compensatory beta-cell hyperplasia. Diabetes,2000.49(11): p.1880-9.
    97. Withers, D.J., et al., Disruption ofIRS-2 causes type 2 diabetes in mice. Nature,1998.391(6670): p.900-4.
    98. Choudhury, A.I., et al., The role of insulin receptor substrate 2 in hypothalamic and beta cell function. J Clin Invest,2005.115(4):p.940-50.
    99. Kubota, N., et al., Insulin receptor substrate 2 plays a crucial role in beta cells and the hypothalamus. J Clin Invest,2004.114(7):p.917-27.
    100. Lin, X., et al., Dysregulation of insulin receptor substrate 2 in beta cells and brain causes obesity and diabetes. J Clin Invest,2004.114(7):p.908-16.
    101. Cantley, J., et al., Pancreatic deletion of insulin receptor substrate 2 reduces beta and alpha cell mass and impairs glucose homeostasis in mice. Diabetologia,2007.50(6):p.1248-56.
    102. Bernal-Mizrachi, E., et al., Defective insulin secretion and increased susceptibility to experimental diabetes are induced by reduced Akt activity in pancreatic islet beta cells. J Clin Invest,2004.114(7):p.928-36.
    103. Bernal-Mizrachi, E., et al., Islet beta cell expression of constitutively active Aktl/PKB alpha induces striking hypertrophy, hyperplasia, and hyperinsulinemia. J Clin Invest,2001.108(11):p. 1631-8.
    104. Dickson, L.M. and C.J. Rhodes, Pancreatic beta-cell growth and survival in the onset of type 2 diabetes:a role for protein kinase B in the Akt? Am J Physiol Endocrinol Metab,2004.287(2):p. E192-8.
    105. Fatrai, S., et al., Akt induces beta-cell proliferation by regulating cyclin Dl, cyclin D2, and p21 levels and cyclin-dependent kinase-4 activity. Diabetes,2006.55(2):p.318-25.
    106. Trumper, K., et al., Integrative mitogenic role of protein kinase B/Akt in beta-cells. Ann N Y Acad Sci,2000.921:p.242-50.
    107. Tuttle, R.L., et al., Regulation of pancreatic beta-cell growth and survival by the serine/threonine protein kinase Aktl/PKBalpha. Nat Med,2001.7(10):p.1133-7.
    108. Hashimoto, N., et al., Ablation of PDK1 in pancreatic beta cells induces diabetes as a result of loss of beta cell mass. Nat Genet,2006.38(5):p.589-93.
    109. Guillemain, G., et al., Glucose is necessary for embryonic pancreatic endocrine cell differentiation. J Biol Chem,2007.282(20):p.15228-37.
    110. Olson, L.K., et al., Reduction of insulin gene transcription in HIT-T15 beta cells chronically exposed to a supraphysiologic glucose concentration is associated with loss of STF-1 transcription factor expression. Proc Natl Acad Sci U S A,1995.92(20):p.9127-31.
    111. Jonas, J.C., et al., Chronic hyperglycemia triggers loss of pancreatic beta cell differentiation in an animal model of diabetes. J Biol Chem,1999.274(20):p.14112-21.
    112. Poitout, V. and R.P. Robertson, Minireview:Secondary beta-cell failure in type 2 diabetes-a convergence of glucotoxicity and lipotoxicity. Endocrinology,2002.143(2):p.339-42.
    113. Alonso, L.C., et al., Glucose infusion in mice:a new model to induce beta-cell replication. Diabetes,2007.56(7):p.1792-801.
    114. Jetton, T.L., et al., Enhanced beta-cell mass without increased proliferation following chronic mild glucose infusion. Am J Physiol Endocrinol Metab,2008.294(4):p. E679-87.
    115. Downward, J., PI 3-kinase, Akt and cell survival. Semin Cell Dev Biol,2004.15(2):p.177-82.
    116. Srinivasan, S., et al., Glucose promotes pancreatic islet beta-cell survival through a PI 3-kinase/Akt-signaling pathway. Am J Physiol Endocrinol Metab,2002.283(4):p. E784-93.
    117. Hugl, S.R., M.F. White, and C.J. Rhodes, Insulin-like growth factor I (IGF-I)-stimulated pancreatic beta-cell growth is glucose-dependent. Synergistic activation of insulin receptor substrate-mediated signal transduction pathways by glucose and IGF-I in INS-1 cells. J Biol Chem,1998.273(28):p.17771-9.
    118. Withers, D.J., et al., Irs-2 coordinates Igf-1 receptor-mediated beta-cell development and peripheral insulin signalling. Nat Genet,1999.23(1):p.32-40.
    119. Nguyen, K.T., et al., Essential role of Pten in body size determination and pancreatic beta-cell homeostasis in vivo. Mol Cell Biol,2006.26(12):p.4511-8.
    120. Jung, H.S., et al., Loss of autophagy diminishes pancreatic beta cell mass and function with resultant hyperglycemia. Cell Metab,2008.8(4):p.318-24.
    121. Kahn, B.B., Type 2 diabetes:when insulin secretion fails to compensate for insulin resistance. Cell,1998.92(5):p.593-6.
    122. Rhodes, C.J., Type 2 diabetes-a matter of beta-cell life and death? Science,2005.307(5708):p. 380-4.
    123. Wajchenberg, B.L., beta-cell failure in diabetes and preservation by clinical treatment. Endocr Rev,2007.28(2):p.187-218.
    124. Maechler, P. and C.B. Wollheim, Mitochondrial function in normal and diabetic beta-cells. Nature,2001.414(6865):p.807-12.
    125. Maechler, P., Mitochondria as the conductor of metabolic signals for insulin exocytosis in pancreatic beta-cells. Cell Mol Life Sci,2002.59(11):p.1803-18.
    126. Henquin, J.C., et al., Signals and pools underlying biphasic insulin secretion. Diabetes,2002.51 Suppl1:p. S60-7.
    127. Nolan, C.J., et al., Beta cell compensation for insulin resistance in Zucker fatty rats:increased lipolysis and fatty acid signalling. Diabetologia,2006.49(9):p.2120-30.
    128. Prentki, M., et al., Malonyl-CoA signaling, lipid partitioning, and glucolipotoxicity:role in beta-cell adaptation and failure in the etiology of diabetes. Diabetes,2002.51 Suppl 3:p. S405-13.
    129. Magnan, C., et al., Lipid infusion lowers sympathetic nervous activity and leads to increased beta-cell responsiveness to glucose. J Clin Invest,1999.103(3):p.413-9.
    130. Gilon, P. and J.C. Henquin, Mechanisms and physiological significance of the cholinergic control of pancreatic beta-cell function. Endocr Rev,2001.22(5):p.565-604.
    131. Drucker, D.J., The biology of incretin hormones. Cell Metab,2006.3(3):p.153-65.
    132. Itoh, Y., et al., Free fatty acids regulate insulin secretion from pancreatic beta cells through GPR40. Nature,2003.422(6928):p.173-6.
    133. Steneberg, P., et al., The FFA receptor GPR40 links hyperinsulinemia, hepatic steatosis, and impaired glucose homeostasis in mouse. Cell Metab,2005..1(4):p.245-58.
    134. Roduit, R., et al., A role for the malonyl-CoA/long-chain acyl-CoA pathway of lipid signaling in the regulation of insulin secretion in response to both fuel and nonfuel stimuli. Diabetes,2004. 53(4):p.1007-19.
    135. Prentki, M. and B.E. Corkey, Are the beta-cell signaling molecules malonyl-CoA and cystolic long-chain acyl-CoA implicated in multiple tissue defects of obesity and NIDDM? Diabetes, 1996.45(3):p.273-83.
    136. Carling, D., The AMP-activated protein kinase cascade-a unifying system for energy control. Trends Biochem Sci,2004.29(1):p.18-24.
    137. Ruderman, N. and M. Prentki, AMP kinase and malonyl-CoA:targets for therapy of the metabolic syndrome. Nat Rev Drug Discov,2004.3(4):p.340-51.
    138. Hardie, D.G., S.A. Hawley, and J.W. Scott, AMP-activated protein kinase-development of the energy sensor concept. J Physiol,2006.574(Pt 1):p.7-15.
    139. Xue, B. and B.B. Kahn, AMPK integrates nutrient and hormonal signals to regulate food intake and energy balance through effects in the hypothalamus and peripheral tissues. J Physiol,2006. 574(Pt 1):p.73-83.
    140. Leclerc, I., et al., Metformin, but not leptin, regulates AMP-activated protein kinase in pancreatic islets:impact on glucose-stimulated insulin secretion. Am J Physiol Endocrinol Metab,2004.286(6):p. E1023-31.
    141. Eto, K., et al., Genetic manipulations of fatty acid metabolism in beta-cells are associated with dysregulated insulin secretion. Diabetes,2002.51 Suppl 3:p. S414-20.
    142. Gleason, C.E., et al., The role of AMPK and mTOR in nutrient sensing in pancreatic beta-cells. J Biol Chem,2007.282(14):p.10341-51.
    143. Pratley, R.E. and C. Weyer, The role of impaired early insulin secretion in the pathogenesis of Type II diabetes mellitus. Diabetologia,2001.44(8):p.929-45.
    144. Kaiser, N., et al., Psammomys obesus, a model for environment-gene interactions in type 2 diabetes. Diabetes,2005.54 Suppl 2:p. S137-44.
    145. Leibowitz, G., et al., Insulin does not mediate glucose stimulation of proinsulin biosynthesis. Diabetes,2003.52(4):p.998-1003.
    146. Wicksteed, B., et al., Glucose-induced translational control of proinsulin biosynthesis is proportional to preproinsulin mRNA levels in islet beta-cells but not regulated via a positive feedback of secreted insulin. J Biol Chem,2003.278(43):p.42080-90.
    147. Minn, A.H., et al., Insulinomas and expression of an insulin splice variant. Lancet,2004. 363(9406):p.363-7.
    148. Minn, A.H., et al., Increased insulin translation from an insulin splice-variant overexpressed in diabetes, obesity, and insulin resistance. Mol Endocrinol,2005.19(3):p.794-803.
    149. Leibowitz, G., et al., Mitochondrial regulation of insulin production in rat pancreatic islets. Diabetologia,2005.48(8):p.1549-59.
    150. Attali, V., et al., Regulation of insulin secretion and proinsulin biosynthesis by succinate. Endocrinology,2006.147(11):p.5110-8.
    151. Skelly, R.H., et al., A distinct difference in the metabolic stimulus-response coupling pathways for regulating proinsulin biosynthesis and insulin secretion that lies at the level of a requirement for fatty acyl moieties. Biochem J,1998.331 (Pt 2):p.553-61.
    152. Alarcon, C., et al., Succinate is a preferential metabolic stimulus-coupling signal for glucose-induced proinsulin biosynthesis translation. Diabetes,2002.51(8):p.2496-504.
    153. Melloul, D., S. Marshak, and E. Cerasi, Regulation of insulin gene transcription. Diabetologia, 2002.45(3):p.309-26.
    154. Seufert, J., G.C. Weir, and J.F. Habener, Differential expression of the insulin gene transcriptional repressor CCAAT/enhancer-binding protein beta and transactivator islet duodenum homeobox-1 in rat pancreatic beta cells during the development of diabetes mellitus. J Clin Invest,1998.101(11):p.2528-39.
    155. Poitout, V., et al., Regulation of the insulin gene by glucose and fatty acids. J Nutr,2006.136(4): p.873-6.
    156. Harmon, J.S., et al., In vivo prevention of hyperglycemia also prevents glucotoxic effects on PDX-1 and insulin gene expression. Diabetes,1999.48(10):p.1995-2000.
    157. Hagman, D.K., et al., Palmitate inhibits insulin gene expression by altering PDX-1 nuclear localization and reducing MafA expression in isolated rat islets of Langerhans. J Biol Chem, 2005.280(37):p.32413-8.
    158. Zangen, D.H., et al., Reduced insulin, GLUT2, and IDX-1 in beta-cells after partial pancreatectomy. Diabetes,1997.46(2):p.258-64.
    159. Leibowitz, G., et al., Glucose-regulated proinsulin gene expression is required for adequate insulin production during chronic glucose exposure. Endocrinology,2002.143(9):p.3214-20.
    160. Leibowitz, G., et al., IPF1/PDX1 deficiency and beta-cell dysfunction in Psammomys obesus, an animal With type 2 diabetes. Diabetes,2001.50(8):p.1799-806.
    161. Gauthier, B.R., et al., Oligonucleotide microarray analysis reveals PDX1 as an essential regulator of mitochondrial metabolism in rat islets. J Biol Chem,2004.279(30):p.31121-30.
    162. Hart, A.W., et al., Attenuation of FGF signalling in mouse beta-cells leads to diabetes. Nature, 2000.408(6814):p.864-8.
    163. Bonner-Weir, S., Life and death of the pancreatic beta cells. Trends Endocrinol Metab,2000. 11(9):p.375-8.
    164. Xu, X., et al., Beta cells can be generated from endogenous progenitors in injured adult mouse pancreas. Cell,2008.132(2):p.197-207.
    165. Collombat, P., et al., The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into alpha and subsequently beta cells. Cell,2009.138(3):p.449-62.
    166. Liu, Z. and J.F. Habener, Alpha cells beget beta cells. Cell,2009.138(3):p.424-6.
    167. Bonner-Weir, S., et al., A second pathway for regeneration of adult exocrine and endocrine pancreas. A possible recapitulation of embryonic development. Diabetes,1993.42(12):p.1715-20.
    168. Hayek, A., et al., Growth factor/matrix-induced proliferation of human adult beta-cells. Diabetes, 1995.44(12):p.1458-60.
    169. Dor, Y., et al., Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature,2004.429(6987):p.41-6.
    170. Nir, T., D.A. Melton, and Y. Dor, Recovery from diabetes in mice by beta cell regeneration. J Clin Invest,2007.117(9):p.2553-61.
    171. XuTeta, M., et al., Growth and regeneration of adult beta cells does not involve specialized progenitors. Dev Cell,2007.12(5):p.817-26.
    172. Manning, B.D. and L.C. Cantley, AKT/PKB signaling:navigating downstream. Cell,2007. 129(7):p.1261-74.
    173. Briaud, I., et al., Insulin receptor substrate-2 proteasomal degradation mediated by a mammalian target of rapamycin (mTOR)-induced negative feedback down-regulates protein kinase B-mediated signaling pathway in beta-cells. J Biol Chem,2005.280(3):p.2282-93.
    174. Lingohr, M.K., et al., Specific regulation of 1RS-2 expression by glucose in rat primary pancreatic islet beta-cells. J Biol Chem,2006.281(23):p.15884-92.
    175. Park, S., et al., Exendin-4 uses Irs2 signaling to mediate pancreatic beta cell growth and function. J Biol Chem,2006.281(2):p.1159-68.
    176. Kitamura, T., et al., The forkhead transcription factor Foxol links insulin signaling to Pdxl regulation of pancreatic beta cell growth. J Clin Invest,2002.110(12):p.1839-47.
    177. Boucher, M.J., et al., Phosphorylation marks IPF1/PDX1 protein for degradation by glycogen synthase kinase 3-dependent mechanisms. J Biol Chem,2006.281(10):p.6395-403.
    178. Wullschleger, S., R. Loewith, and M.N. Hall, TOR signaling in growth and metabolism. Cell, 2006.124(3):p.471-84.
    179. Butler, A.E., et al., Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes,2003.52(1):p.102-10.
    180. Pick, A., et al., Role of apoptosis in failure of beta-cell mass compensation for insulin resistance and beta-cell defects in the male Zucker diabetic fatty rat. Diabetes,1998.47(3):p.358-64.
    181. Topp, B.G., L.L. Atkinson, and D.T. Finegood, Dynamics of insulin sensitivity,-cell function, and-cell mass during the development of diabetes in fa/fa rats. Am J Physiol Endocrinol Metab, 2007.293(6):p. E1730-5.
    182. Sakuraba, H., et al., Reduced beta-cell mass and expression of oxidative stress-related DNA damage in the islet of Japanese Type II diabetic patients. Diabetologia,2002.45(1):p.85-96.
    183. Yoon, K.H., et al., Selective beta-cell loss and alpha-cell expansion in patients with type 2 diabetes mellitus in Korea. J Clin Endocrinol Metab,2003.88(5):p.2300-8.
    184. Guiot, Y., et al., No decrease of the beta-cell mass in type 2 diabetic patients. Diabetes,2001.50 Suppl1:p. S188.
    185. Elghazi, L. and E. Bernal-Mizrachi, Akt and PTEN:beta-cell mass and pancreas plasticity. Trends Endocrinol Metab,2009.20(5):p.243-51.
    186. Belfiore, A., The role of insulin receptor isoforms and hybrid insulin/IGF-I receptors in human cancer. Curr Pharm Des,2007.13(7):p.671-86.
    187. Benyoucef, S., et al., Characterization of insulin/IGF hybrid receptors:contributions of the insulin receptor L2 and Fnl domains and the alternatively spliced exon 11 sequence to ligand binding and receptor activation. Biochem J,2007.403(3):p.603-13.
    188. Katz, L.E., et al., IGF-Ⅱ, IGF-binding proteins and IGF receptors in pancreatic beta-cell lines. J Endocrinol,1997.152(3):p.455-64.
    189. Hribal, M.L., et al., Chronic hyperglycemia impairs insulin secretion by affecting insulin receptor expression, splicing, and signaling in RIN beta cell line and human islets of Langerhans. FASEB J,2003.17(10):p.1340-2.
    190. Leibiger, B., et al., Selective insulin signaling through A and B insulin receptors regulates transcription of insulin and glucokinase genes in pancreatic beta cells. Mol Cell,2001.7(3):p. 559-70.
    191. Muller, D., et al., Identification of insulin signaling elements in human beta-cells:autocrine regulation of insulin gene expression. Diabetes,2006.55(10):p.2835-42.
    192. Virkamaki, A., K. Ueki, and C.R. Kahn, Protein-protein interaction in insulin signaling and the molecular mechanisms of insulin resistance. J Clin Invest,1999.103(7):p.931-43.
    193. Kulkarni, R.N., et al., Altered function of insulin receptor substrate-1-deficient mouse islets and cultured beta-cell lines. J Clin Invest,1999.104(12):p. R69-75.
    194. Uhles, S., et al., Selective gene activation by spatial segregation of insulin receptor B signaling. FASEB J,2007.21(7):p.1609-21.
    195. Rothenberg, P.L., et al., Glucose-induced insulin receptor tyrosine phosphorylation in insulin-secreting beta-cells. Diabetes,1995.44(7):p.802-9.
    196. Velloso, L.A., et al., Glucose-and insulin-induced phosphorylation of the insulin receptor and its primary substrates IRS-1 and IRS-2 in rat pancreatic islets. FEBS Lett,1995.377(3):p.353-7.
    197. Leibiger, B., et al., Glucose-stimulated insulin biosynthesis depends on insulin-stimulated insulin gene transcription. J Biol Chem,2000.275(39):p.30153-6.
    198. Leibiger, I.B., et al., Exocytosis of insulin promotes insulin gene transcription via the insulin receptor/PI-3 kinase/p70 s6 kinase and CaM kinase pathways. Mol Cell,1998.1(6):p.933-8.
    199. Tillmar, L., C. Carlsson, and N. Welsh, Control of insulin mRNA stability in rat pancreatic islets. Regulatory role of a 3'-untranslated region pyrimidine-rich sequence. J Biol Chem,2002.277(2): p.1099-106.
    200. Xu, G.G. and P.L. Rothenberg, Insulin receptor signaling in the beta-cell influences insulin gene expression and insulin content:evidence for autocrine beta-cell regulation. Diabetes,1998. 47(8):p.1243-52.
    201. Da Silva Xavier, G., et al., Distinct roles for insulin and insulin-like growth factor-1 receptors in pancreatic beta-cell glucose sensing revealed by RNA silencing. Biochem J,2004.377(Pt 1):p. 149-58.
    202. Otani, K., et al., Reduced beta-cell mass and altered glucose sensing impair insulin-secretory function in betaIRKO mice. Am J Physiol Endocrinol Metab,2004.286(1):p. E41-9.
    203. Ohsugi, M., et al., Reduced expression of the insulin receptor in mouse insulinoma (MIN6) cells reveals multiple roles of insulin signaling in gene expression, proliferation, insulin content, and secretion. J Biol Chem,2005.280(6):p.4992-5003.
    204. Ohsugi, M., et al., Glucose and insulin treatment of insulinoma cells results in transcriptional regulation of a common set of genes. Diabetes,2004.53(6):p.1496-508.
    205. Johnson, J.D. and S. Misler, Nicotinic acid-adenine dinucleotide phosphate-sensitive calcium stores initiate insulin signaling in human beta cells. Proc Natl Acad Sci U S A,2002.99(22):p. 14566-71.
    206. Zawalich, W.S. and K.C. Zawalich, Effects of glucose, exogenous insulin, and carbachol on C-peptide and insulin secretion from isolated perifused rat islets. J Biol Chem,2002.277(29):p. 26233-7.
    207. Aspinwall, C.A., J.R. Lakey, and R.T. Kennedy, Insulin-stimulated insulin secretion in single pancreatic beta cells. J Biol Chem,1999.274(10):p.6360-5.
    208. Aspinwall, C.A., et al., Roles of insulin receptor substrate-1, phosphatidylinositol 3-kinase, and release of intracellular Ca2+ stores in insulin-stimulated insulin secretion in beta-cells. J Biol Chem,2000.275(29):p.22331-8.
    209. Xu, G.G., et al., Insulin regulation of beta-cell function involves a feedback loop on SERCA gene expression, Ca(2+) homeostasis, and insulin expression and secretion. Biochemistry,2000. 39(48):p.14912-9.
    210. Xu, G.G., et al., Insulin receptor substrate 1-induced inhibition of endoplasmic reticulum Ca2+ uptake in beta-cells. Autocrine regulation of intracellular ca2+ homeostasis and insulin secretion. J Biol Chem,1999.274(25):p.18067-74.
    211. Durick, K., et al., Mitogenic signaling by Ret/ptc2 requires association with enigma via a LIM domain. J Biol Chem,1996.271(22):p.12691-4.
    212. Stein, E., D.P. Cerretti, and T.O. Daniel, Ligand activation of ELK receptor tyrosine kinase promotes its association with Grbl0 and Grb2 in vascular endothelial cells. J Biol Chem,1996. 271(38):p.23588-93.
    213. Mounier, C., et al., Specific inhibition by hGRB1Ozeta of insulin-induced glycogen synthase activation:evidence for a novel signaling pathway. Mol Cell Endocrinol,2001.173(1-2):p.15- 27.
    214. Deng, Y, et al., Growth factor receptor-binding protein 10 (Grb10) as a partner of phosphatidylinositol 3-kinase in metabolic insulin action. J Biol Chem,2003.278(41):p.39311-22.
    215. He, W., et al., Grb10 interacts differentially with the insulin receptor, insulin-like growth factor Ⅰ receptor, and epidermal growth factor receptor via the Grb10 Src homology 2 (SH2) domain and a second novel domain located between the pleckstrin homology and SH2 domains. J Biol Chem, 1998.273(12):p.6860-7.
    216. Stein, E.G., T.A. Gustafson, and S.R. Hubbard, The BPS domain of Grb10 inhibits the catalytic activity of the insulin and IGF1 receptors. FEBS Lett,2001.493(2-3):p.106-11.
    217. Bereziat, V., et al., Inhibition of insulin receptor catalytic activity by the molecular adapter Grbl4. J Biol Chem,2002.277(7):p.4845-52.
    218. Wick, K.R., et al., Grb10 inhibits insulin-stimulated insulin receptor substrate (IRS)-phosphatidylinositol 3-kinase/Akt signaling pathway by disrupting the association of IRS-1/IRS-2 with the insulin receptor. J Biol Chem,2003.278(10):p.8460-7.
    219. Langlais, P., et al., Negative regulation of insulin-stimulated mitogen-activated protein kinase signaling by Grb10. Mol Endocrinol,2004.18(2):p.350-8.
    220. Giorgetti-Peraldi, S., et al., The adapter protein, Grb10, is a positive regulator of vascular endothelial growth factor signaling. Oncogene,2001.20(30):p.3959-68.
    221. Deng, Y., M. Zhang, and H. Riedel, Mitogenic roles of Gab1 and Grb10 as direct cellular partners in the regulation of MAP kinase signaling. J Cell Biochem,2008.105(5):p.1172-82.
    222. Riedel, H., Grb10 exceeding the boundaries of a common signaling adapter. Front Biosci,2004. 9:p.603-18.
    223. Moutoussamy, S., et al., GrblO identified as a potential regulator of growth hormone (GH) signaling by cloning of GH receptor target proteins. J Biol Chem,1998.273(26):p.15906-12.
    224. Bai, R.Y, et al., The SH2-containing adapter protein GRB10 interacts with BCR-ABL. Oncogene, 1998.17(8):p.941-8.
    225. Mano, H., et al., Grb10/GrbIR as an in vivo substrate of Tec tyrosine kinase. Genes Cells,1998. 3(7):p.431-41.
    226. Jahn, T., et al., Role for the adaptor protein Grb10 in the activation of Akt. Mol Cell Biol,2002. 22(4):p.979-91.
    227. Konrad, R.J., et al., The potential mechanism of the diabetogenic action of streptozotocin: inhibition of pancreatic beta-cell O-GlcNAc-selective N-acetyl-beta-D-glucosaminidase. Biochem J,2001.356(Pt 1):p.31-41.
    228. Liu, W., et al., Activation of phosphatidylinositol 3-kinase contributes to insulin-like growth factor I-mediated inhibition of pancreatic beta-cell death. Endocrinology,2002.143(10):p. 3802-12.
    229. Turk, J., et al., Biochemical evidence for nitric oxide formation from streptozotocin in isolated pancreatic islets. Biochem Biophys Res Commun,1993.197(3):p.1458-64.
    230. Lu, Y, et al., Pancreatic-specific inactivation of IGF-Ⅰ gene causes enlarged pancreatic islets and significant resistance to diabetes. Diabetes,2004.53(12):p.3131-41.
    231. Alessi, D.R. and C.P. Downes, The role of PI 3-kinase in insulin action. Biochim Biophys Acta, 1998.1436(1-2):p.151-64.
    232. Hennige, A.M., et al., Upregulation of insulin receptor substrate-2 in pancreatic beta cells prevents diabetes. J Clin Invest,2003.112(10):p.1521-32.
    233. D'Alessandris, C., et al., Increased O-glycosylation of insulin signaling proteins results in their impaired activation and enhanced susceptibility to apoptosis in pancreatic beta-cells. FASEB J, 2004.18(9):p.959-61.
    234. Elghazi, L., N. Balcazar, and E. Bernal-Mizrachi, Emerging role of protein kinase B/Akt signaling in pancreatic beta-cell mass and function. Int J Biochem Cell Biol,2006.38(2):p. 157-63.
    235. Kim, S.J., et al., Glucose-dependent insulinotropic polypeptide (GIP) stimulation of pancreatic beta-cell survival is dependent upon phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB) signaling, inactivation of the forkhead transcription factor Foxol, and down-regulation of bax expression. J Biol Chem,2005.280(23):p.22297-307.
    236. Srinivasan, S., et al., Endoplasmic reticulum stress-induced apoptosis is partly mediated by reduced insulin signaling through phosphatidylinositol 3-kinase/Akt and increased glycogen synthase kinase-3beta in mouse insulinoma cells. Diabetes,2005.54(4):p.968-75.
    237. Wobser, H., et al., Downregulation of protein kinase B/Akt-1 mediates INS-1 insulinoma cell apoptosis induced by dominant-negative suppression of hepatocyte nuclear factor-1alpha function. Diabetologia,2006.49(3):p.519-26.