SPIO标记大鼠BMSCs移植治疗缺血性脑梗死的MR成像研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景和目的:
     缺血性脑血管病(ischemic cerebrovascular disease, ICVD)是一种致死率和致残率均很高的脑血管疾病,随着我国老龄化人口的增多,其发病率呈逐年升高趋势。ICVD的治疗手段有限,这也是其预后不良的主要原因。随着干细胞生物学特性研究的深入,冲破了成年生物体内神经细胞不可再生的传统观念,干细胞移植治疗ICVD已经成为研究的热点。尤其是活体状态下监测干细胞移植后在宿主脑组织中的分布、迁移及转归,对于评估干细胞移植后的疗效至关重要。
     本研究包括以下三部分内容:①体外分离、培养、纯化及鉴定大鼠骨髓间充质干细胞(bone marrow mesenchymal stem cells, BMSCs);②超顺磁性氧化铁颗粒(superparamagnetic iron oxide, SPIO)标记大鼠BMSCs,并探讨磁标记对干细胞生物学活性及向神经样细胞(neurocyte-like cells)分化的影响;③干细胞移植入大脑中动脉阻塞(middle cerebral artery occlusion, MCAO)大鼠脑内后,使用磁共振成像(magnetic resonace imaging, MRI)活体监测移植干细胞的存活及迁移。
     材料和方法:
     1.大鼠BMSCs的培养和鉴定:全骨髓贴壁培养筛选法分离和培养大鼠BMSCs,通过不断换液及传代纯化培养的细胞。倒置显微镜及透射电镜观察培养的BMSCs形态学特征,免疫组织细胞化学染色法检测BMSCs表面分子,流式细胞仪分析细胞周期以及酶标仪测定生长曲线的方法鉴定培养的细胞。最后对培养的BMSCs进行成骨、成脂及向神经样细胞分化的横向分化能力进行鉴定。
     2. SPIO标记大鼠BMSCs及磁共振细胞成像实验研究:首先通过使用扫描电镜观察Resovist和Feridex的分子表面形态及激光纳米粒度仪测定两种标记物的粒径和Zeta电位,对照两种标记物的不同。随后使用14μg/ml、28μg/ml、56μg/ml和112μg/ml铁浓度的Resovist标记大鼠BMSCs,并通过使用细胞爬片普鲁氏蓝染色及透射电镜观察细胞内铁颗粒,酶标仪及流式细胞仪分别测定Resovist标记对大鼠BMSCs生长曲线及细胞凋亡的影响;RT-PCR和Western blot对照研究Resovist未标记组及标记组向神经样细胞分化后,神经上皮干细胞蛋白(Nestin)、神经元特异性烯醇化酶(neuron specific enolase, NSE)和神经胶质原纤维酸性蛋白(glial fibrillary acidic protein,GFAP)的mRNA及蛋白表达。最后对不同浓度Resovist标记的大鼠BMSCs进行离体试管及移植入正常大鼠脑内的磁敏感加权成像(Susceptibility weighted imaging, SWI)观察。
     3.Resovist标记大鼠BMSCs移植治疗缺血性脑梗死的磁共振成像监测:线栓法制作MCAO模型,实验动物共分5组:A组(假手术组):仅分离结扎颈外动脉分支,不插入栓线;B组(MCAO组):MCAO模型成功后不进行移植;C组(MCAO后假移植组):MCAO后对侧顶叶皮层移植PBS液;D组(MCAO后实验1组):MCAO后移植未经Resovist标记的BMSCs;E组(MCAO后实验2组):MCAO后移植Resovist标记的BMSCs.移植成功后分别在1天、1周、2周和4周参照改良神经功能缺损评分法(modifiedNeurological Severity Scores, mNSS)进行神经功能缺损评分,SIEMENS Trio Tim 3.0 T超导高场磁共振扫描仪动态观察移植细胞的存活及迁移,将所得到的影像学检查结果与脑组织切片的HE染色及普鲁士蓝染色进行对照研究。
     结果:
     1.大鼠BMSCs传至P3代后,形态为均匀分布的梭形成纤维样细胞,透射电镜下可表现为为两种不同的细胞形态结构类型。免疫细胞化学染色法检测大鼠CD分子表达结果为CD44及CD105的阳性表达及CD34及CD45阴性表达,流式细胞周期分析显示G0/G1期细胞占90.18%。生长曲线显示大鼠BMSCs依次经历停滞期、指数递增期和平台期。横向分化能力检测结果显示:成骨诱导后14天ALP活性显著增高,成脂诱导后21天胞浆内可见大小不等的油滴状结构,神经方向诱导后NSE、Nestin及GFAP染色均为阳性。
     2.Resovist和Feridex的扫描电镜观察发现两者形态极为不同;粒径和Zeta电位分析显示,前者的粒径明显大于后者,而后者的Zeta电位绝对值大于前者。细胞普鲁氏蓝染色及透射电镜分别显示细胞内蓝染颗粒或高电子密度铁颗粒。MTT及流式细胞仪测定结果显示对照组与不同浓度标记细胞组相比,吸光度值差异及细胞凋亡率无统计学意义(P>0.05)>RT-PCR结果显示各组Nestin、NSE和GFAP的mRNA均呈高表达,Western blot显示未标记组及不同浓度标记组在240 Kd处均出现特异性蛋白阳性条带。离体试管SWI序列显示随标记浓度的增高,标记细胞的EP管信号强度在SWI序列图像上依次降低。标记细胞移植入正常大鼠脑内后7周仍可在SWI上显示为局部低信号。
     3. MCAO模型建立后HE染色显示神经元细胞数量减少,TTC染色显示缺血侧额颞顶皮层及基底节区为白色。BMSCs移植后1天、1周、2周和4周的神经功能评分显示A组和B组、A组和C组、C组和D组及C组和E组评分差异具有统计学意义(P<0.05)。磁共振检查结果显示移植后1天呈边界清晰的团块状类圆形低信号,1周后的低信号边界略显模糊,2周后移植位点形态变为“彗星状”,彗星尾指向对侧缺血病灶,4周后彗星尾向缺血侧延伸,甚至跨越中线迁移至对侧缺血异常高信号区域边缘。
     结论:
     1.全骨髓贴壁培养筛选法操作简便,需要的骨髓量少,原代培养时更符合细胞生长的微环境,是培养大鼠BMSCs的理想方案。
     2.不同浓度梯度Resovist标记大鼠BMSCs未对细胞细胞增殖造成影响,且未对向特定神经样细胞分化造成影响。
     3.不同浓度Resovist标记大鼠BMSCs在SWI上随标记浓度的增高,标记细胞信号逐渐降低,且移植入正常大鼠脑内的标记细胞7周后仍可显示。
     4. Resovist标记大鼠BMSCs移植入缺血性脑梗死大鼠脑内后,磁共振成像在长达4周的活体监测过程中,均可明确显示移植干细胞的部位及迁移。
Background and Purpose:
     Ischemic cerebrovascular disease (ICVD) is a kind of significant high rate of deformity and mortality cerebral vascular disease, and its morbidity has the increasing tendency year by year, with the progressing of population aging and rising living standards in China. As we all known, ICVD has the limited method of treatment, which is the main reason for its poor prognosis. With the continuous researching of the biological characteristics of stem cell, traditional concepts of adult nerve cells do not have the ability of renewable had been broken down. In recent years, stem cell transplantation for treatment of ICVD becomes the research focus, especially researching the distribution, migration and turnover of transplanted stem cell in the host brain tissue in vivo after the transplantation of stem cell, which is essential for assessing the treatment efficacy of stem cell.
     Our research was divided into three parts to assessing the magnetic resonance monitoring after stem cell transplantation:1.Isolation, culture, purification and identification of rat bone marrow mesenchymal stem cells (BMSCs),2. Superparamagnetic iron oxide (SPIO) labeling of rat BMSCs and exploring the biological activity and the capability of differencing into neural-like cells after labeling,3.Magnetic resonance in vivo monitor the survival and migration of stem cells transplanted into the rat brain of middle cerebral artery occlusion (MCAO).
     Materials and Methods:
     1.Culture and identification of rat BMSCs:adherent culture and isolation method of whole bone marrow was employed to acquire BMSCs, and the cultured BMSCs were purified by continuous change of medium and pass on from generation to generation. Characteristic morphology of cultured BMSCs was observed by inverted phase contrast microscope and transmission electron microscopy, and the surface molecules of BMSCs was detected by immunocytochemistry staining, as well as the cell cycle and cell growth curve was analyzed by flow cytometry and microplate reader, respectively. Finally, the horizontal differentiation ability of BMSCs, including the osteogenic, adipogenic and neural-like differentiation,were identified. 2.SPIO labeling of rat bone marrow mesenchymal stem cells and magnetic resonance imaging of labeled cells:First, molecular surface morphology, as well as the size of particles and Zeta electric potential, between Resovist and Feridex, were measured by using scanning electron microscopy and laser particle size analyzer, respectively. Then, rat BMSCs were labeled by different concentration (14μg/ml,28μg/ml,56μg/ml and 112μg/ml) of Resovist, and intracellular iron particles were identified by using Prune's blue staining and transmission electron microscopy. The influence of Resovist labeling on rat BMSCs cell growth curve were measured by microplate reader. After the neural-like differentiation of Resovist labeled and non-labeled BMSCs, the mRNA and protein expression of neuroepithelial stem cell protein (Nestin), neuron specific enolase (NSE) and glial fibrillary acidic protein (GFAP) were analyzed by RT-PCR and Western blot technique. Finally, rat BMSCs labeled with different concentrations of Resovist were measured in vitro, and transplanted into normal rat brain were observed by susceptibility weighted imaging.
     3.MR monitoring of SPIO labeled rat BMSCs transplanting into cerebral ischemic rats:left middle cerebral artery (MCA) was occluded with the suture, and all of the rats were randomly and equally divided into 5 groups. In A group (sham group), only separated branches of the external carotid artery (ECA), and tip of the suture was not inserted within the left common carotid artery (CCA).For B group (MCAO group):only the left common carotid artery was occluded, and did not performed transplantation. As to C group (sham transplantation after MCAO), contralateral parietal cortex transplantation of PBS solution was applied after MCAO.For D group (experimental group 1 after MCAO), rat BMSCs without Resovist labeled were transplanted into MCAO model. As well as E group (experimental group 2 after MCAO), rat BMSCs labeled with Resovist were transplanted. After the success of transplantation, modified Neurological Severity Scores (mNSS) methods were performed to assess the neurological deficit at 1 day,1 week,2 weeks and 4 weeks after transplantation. The survival and migration of transplanted BMSCs were dynamically observed by Siemens Trio Tim 3.0 T superconducting high-field MRI scanner. The imaging results and brain tissue sections of HE staining together with Prussian blue staining were researched contradistinctively.
     Results:
     1.P3 generation of rat BMSCs demonstrated uniform distribution of the spindle or fiber-like cells, and showed the morphology of two different cell types under transmission electron microscope. Immunocytochemical staining results of rat CD molecules exhibited positive expression of CD44 and CD105 and negative expression of CD34 and CD45.Flow cytometry cell cycle analysis showed G0/G1 stage of rat BMSCs accounting more than 90 percent. Growth curve showed rat BMSCs had undergone halt stage, index increase stage, and plateau phase. Horizontal differentiation results revealed:ALP activity was significantly increased 14 days after osteogenic induction, and different size of droplets-like structure were detected 21 days after adipogenic induction, as well as NSE, Nestin and GFAP staining was positive after neural induction.
     2.Scanning electron microscope manifested that there were extremely different between Resovist and Feridex, besides, particle size and Zeta potential analysis exhibited that the diameter of the former is significantly greater than the latter, whereas the absolute value of Zeta potential of the latter is greater than former. Cell Prune's blue staining and transmission electron microscopy displayed blue iron particles or granules of high electron density, respectively. The control group and different concentrations of labeled cells group had no significant differences in optical density measured by MTT method. The mRNA of Nestin, NSE and GFAP showed high expression after neural induction detected by RT-PCR. Besides, specific positive bands were manifested in the 240 Kd position on Western blot. Susceptibility weighted imaging of in vitro EP tube revealed that the more increased concentration of labeling, the lower signal intensity were detected. Finally, lower signal density still could be demonstrated on susceptibility weighted imaging 7 weeks after transplanted into normal rat brain.
     3.After middle cerebral artery occlusion, HE staining showed decline of neurons number, besides, TTC staining manifest that the ischemic side of the frontal-temporal cortex and basal ganglia area had none staining. Neurological function score showed that A group vs. B and C group, C group vs. D and E group had statistically significant between each other 1 day,1 week,2 weeks and 4 weeks after transplantation. MRI results showed block oval low signal low signal with clear boundary 1 day after transplantation, along with blurred boundary 1 week later, as well as transformed to "comet-like" with a tail pointed contralateral ischemic lesions 2 weeks after transplantation, finally, tail extended to the ischemic side, and even migrate across the midline to the opposite edge of ischemic high intensity signal region 4 weeks after transplantation.
     Conclusion:
     1.The whole bone marrow adherent culture method, which had the advantage of simple, required less bone marrow, and accorded with the micro-environment of cell growth, is the ideal solution for rat BMSCs culture.
     2.Different concentrations labeling by using Resovist had none influence on cell proliferation of rat BMSCs, and none impact of specific neural induction.
     3.The more increased concentration of labeling, the lower signal intensity were detected on susceptibility weighted imaging, and lower signal density still could be demonstrated on susceptibility weighted imaging 7 weeks after transplanted into normal rat brain.
     4.The location and migration of Resovist labeled rat BMSCs could be detected by in vivo magnetic resonance imaging after transplanted into the ischemic rat brain as long as 4 weeks.
引文
[1]Gou S, Wang C, Liu T, et al.Spontaneous differentiation of murine bone marrow-derived mesenchymal stem cells into adipocytes without malignant transformation after long-term culture[J].Cells Tissues Organs,2010,191(3):185-192
    [2]Magaki T, Kurisu K, Okazaki T. Generation of bone marrow-derived neural cells in serum-free monolayer culture[J].Neurosci Lett,2005,384(3):282-287
    [3]Li Y, Chen J, Wang L, et al. Treatment of stroke in rat with intracarotid administration of marrow stromal cells[J].Neurology,2001,56(12):1666-1672
    [4]Fang YQ, Wong WQ, Yap YW,et al. Stem cells and combinatorial science[J].Comb Chem High Throughput Screen,2007,10(8):635-651
    [5]Ronaghi M, Erceg S, Moreno-Manzano V, et al. Challenges of stem cell therapy for spinal cord injury:human embryonic stem cells, endogenous neural stem cells, or induced pluripotent stem cells?[J].Stem Cells,2010,28(1):93-99
    [6]Mckay R. Stem cells in the central nervous system[J].science,1997,276(5309):66-71
    [7]Yasuhara T, Matsukawa N, Hara K, et al. Notch-induced rat and human bone marrow stromal cell grafts reduce ischemic cell loss and ameliorate behavioral deficits in chronic stroke animals[J].Stem Cells Dev,2009,18(10):1501-1514
    [8]Bianco P, Riminucci M, Gronthos S, et al. Bone marrow stromal stem cells:nature, biology, and potential applications[J].Stem Cells,2001,19(3):180-192
    [9]Bianco P, Gehron Robey P. Marrow stromal stem cells[J].J Clin Invest,2000,105(12): 1663-1668
    [10]程雷,聂林,谢青,等.大鼠骨髓基质干细胞的培养鉴定及向成骨细胞诱导分化的实验研究[J].中华物理医学与康复杂志,2005,27(3):138-140
    [11]Martin I, Shastri VP, Padera RF, et al. Selective differentiation of mammalian bone marrow stromal cells cultured on three-dimensional polymer foams[J].J Biomed Mater Res,2001, 55(2):229-235
    [12]Lennon DP, Edmison JM, Caplan Al. Cultivation of rat marrow-derived mesenchymal stem cells in reduced oxygen tension:effects on in vitro and in vivo osteochondrogenesis[J].J Cell Physiol,2001,187(3):345-355
    [13]Yeo C, Saunders N, Locca D, et al. Ficoll-Paque versus Lymphoprep:a comparative study of two density gradient media for therapeutic bone marrow mononuclear cell preparations[J].Regen Med,2009,4(5):689-696
    [14]Jaiswal RK, Jaiswal N, Bruder SP, et al. Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogen-activated protein kinase[J].J Biol Chem,2000,275(13):9645-9652
    [15]Van Vlasselaer P, Falla N, Snoeck H, et al. Characterization and purification of osteogenic cells from murine bone marrow by two-color cell sorting using anti-Sca-1 monoclonal antibody and wheat germ agglutinin[J].Blood,1994,84(3):753-763
    [16]Shpall EJ, Gee A, Cagnoni PJ, et al. Stem cell isolation[J].Curr Opin Hematol,1995,2(6): 452-459
    [17]Tateishi K, Ando W, Higuchi C, et al. Comparison of human serum with fetal bovine serum for expansion and differentiation of human synovial MSC:potential feasibility for clinical applications[J].Cell Transplant,2008,17(5):549-557
    [18]周永志,张世明,李明忠,等.骨髓间质细胞在丝素膜上生物相容性研究[J].中华神经外科杂志,2006,22(10):633-635
    [19]Campagnoli C, Roberts IA, Kumar S, et al. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow[J].Blood,2001,98(8): 2396-2402
    [20]Liu XN, Yin Q, Zhang H, et al. Tissue extracts from infarcted myocardium of rats in promoting the differentiation of bone marrow stromal cells into cardiomyocyte-like cells[J]. Biomed Environ Sci,2008,21(2):110-117
    [21]Chen X, Xu H, Wan C, et al. Bioreactor expansion of human adult bone marrow-derived mesenchymal stem cells[J].Stem Cells,2006,24(9):2052-2059
    [22]Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells[J].Science,1999,284(5411):143-147
    [23]Tamir A, Petrocelli T, Stetler K, et al. Stem cell factor inhibits erythroid differentiation by modulating the activity of G1-cyclin-dependent kinase complexes:a role for p27 in erythroid differentiation coupled G1 arrest[J].Cell Growth Differ,2000,11(5):269-277
    [24]O'Connor MD, Kardel MD, Iosfina I, et al. Alkaline phosphatase-positive colony formation is a sensitive, specific, and quantitative indicator of undifferentiated human embryonic stem cells[J].Stem Cells;2008,26(5):1109-1116
    [25]王义生,李杰,李月白,等.酒精诱导鼠骨髓基质细胞成脂分化的实验研究[J].中华骨科杂志,2003,23(11):697-698
    [1]Greaves JM, Russo SS, Azmitia EC. Gender-specific 5-HT1A receptor changes in BrdU nuclear labeling patterns in neonatal dentate gyrus[J].Brain Res Dev Brain Res,2005, 157(1):65-73
    [2]Li N, Yang H, Lu L, et al. Comparison of the labeling efficiency of BrdU, DiI and FISH labeling techniques in bone marrow stromal cells[J].Brain Res,2008,1215(18):11-19
    [3]Bulte JW,Douglas T, Witwer B, et al. Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells[J].Nat Biotechnol,2001,19(12):1141-1147
    [4]Bian J, Nazor KE, Angers R, et al. GFP-tagged PrP supports compromised prion replication in transgenic mice[J].Biochem Biophys Res Commun,2006,340(3):894-900
    [5]Amsalem Y, Mardor Y, Feinberg MS, et al. Iron-oxide labeling and outcome of transplanted mesenchymal stem cells in the infarcted myocardium[J].Circulation,2007,116(11):38-45
    [6]Wu Z, Mittal S, Kish K, et al. Identification of calcification with MRI using susceptibility-weighted imaging:a case report[J].Magn Reson Imaging,2009,29(1): 177-182
    [7]Hoehn M, Kustermann E, Blunk J, et al. Monitoring of implanted stem cell migration in vivo:a highly resolved in vivo magnetic resonance imaging investigation of experimental stroke in rat[J].Proc Natl Acad Sci USA,2002,99(25):16267-16272
    [8]Weissleder R. Molecular imaging:exploring the next frontier[J].Radiology,1999,212(3): 609-614
    [9]Hill JM, Dick AJ, Raman VK, et al. Serial cardiac magnetic resonance imaging of injected mesenchymal stem cells[J].Circulation,2003,108(8):1009-1014
    [10]Arbab AS, Bashaw LA, Miller BR, et al. Intracytoplasmic tagging of cells with ferumoxides and transfection agent for cellular magnetic resonance imaging after cell transplantation:methods and techniques[J].Transplantation,2003,76(7):1123-1130
    [11]Frank JA, Miller BR, Arbab AS, et al. Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents[J]. Radiology,2003,228(2):480-487
    [12]Arbab AS, Yocum GT, Kalish H, et al. Efficient magnetic cell labeling with protamine sulfate complexed to ferumoxides for cellular MRI[J].Blood,2004,104(4):1217-1223
    [13]Mailander V, Lorenz MR, Holzapfel V, et al. Carboxylated superparamagnetic iron oxide particles label cells intracellularly without transfection agents[J].Mol Imaging Biol,2008, 10(3):138-146
    [14]Politi LS,Bacigaluppi M, Brambilla E, et al.Magnetic-resonance-based tracking and quantification of intravenously injected neural stem cell accumulation in the brains of mice with experimental multiple sclerosis[J].Stem Cells,2007,25(10):2583-2592
    [15]Ittrich H, Lange C, Dahnke H, et al. Labeling of mesenchymal stem cells with different superparamagnetic particles of iron oxide and detectability with MRI at 3T[J].Rofo,2005, 177(8):1151-1163
    [16]Arbab AS, Yocum GT, Rad AM, et al. Labeling of cells with ferumoxides-protamine sulfate complexes does not inhibit function or differentiation capacity of hematopoietic or mesenchymal stem cells[J].NMR Biomed,2005,18(8):553-559
    [17]Song M, Moon WK, Kim Y, et al. Labeling efficacy of superparamagnetic iron oxide nanoparticles to human neural stem cells:comparison of ferumoxides, monocrystalline iron oxide,cross-linked iron oxide (CLIO)-NH2 and tat-CLIO[J].Korean J Radiol,2007,8(5): 365-371
    [18]修俊刚,柯以铨,杨志军,等.菲立磁标记兔骨髓基质细胞生物学特性的实验研究[J].中国微侵袭神经外科杂志,2007,12(3):125-128
    [19]蔡金华,冯敢生,刘官信,等.不同浓度菲立磁对大鼠间充质干细胞标记效率和细胞活力的影响[J].临床放射学杂志,2007,26(2):190-193
    [20]Dai GH, Xiu JG, Zhou ZJ, et al. Effect of superparamagnetic iron oxide labeling on neural stem cell survival and proliferation[J].Nan FangYi Ke Da Xue Xue Bao,2007,27(1): 49-51
    [21]Himes N, Min JY, Lee R, et al. In vivo MRI of embryonic stemcells in a mouse model of myocardial infarction[J].Magn Reson Med,2004,52 (5):1214-1219
    [22]Ko IK, Song HT, Cho EJ, et al. In vivo MR imaging of tissue-engineered human mesenchymal stem cells transplanted to mouse:a preliminary study[J].Ann Biomed Eng, 2007,35(1):101-108
    [23]Omidkhoda A, Mozdarani H, Movasaghpoor A, et al. Study of apoptosis in labeled mesenchymal stem cells with superparamagnetic iron oxide using neutral comet assay[J]. Toxicol In Vitro,2007,21(6):1191-1196
    [24]居胜红,膝皋军,毛曦,等.脐血间充质干细胞磁探针标记和MR成像研究[J].中华放射学杂志,2005,1(39):101-106
    [25]Sanchez-Ramos J, Song S, Cardozo-Pelaez F, et al. Adult bone marrow stromal cells differentiate into neural cells in vitro[J].Exp Neurol,2000,164(2):247-256
    [26]Woodbury D, Schwarz EJ, Prockop DJ, et al.Adult rat and human bone marrow stromal cells differentiate into neurons[J].J Neurosci Res,2000,61(4):364-370
    [27]郭再玉,姜晓丹,徐如祥,等.骨髓基质细胞源性神经干细胞体外分化及电生理特性的研究[J].中华神经医学杂志,2005,4(6):545-550
    [28]李禄全,余加林,刘官信,等.复方丹参注射液诱导鼠骨髓间充质干细胞向神经样细胞分化的研究[J].中华儿科杂志,2005,43(1):53-54
    [29]杨于嘉,周燕,宋元宗,等.黄芩甙诱导大鼠骨髓基质细胞向神经细胞分化的研究[J].中华医学杂志,2002,82(19):1337-1341
    [30]邬伟,闫峻,张艳梅,等.人参皂苷Rgl诱导骨髓间充质干细胞分化为神经样细胞的作用[J].中风与神经疾病杂志,2007,24(3):282-284
    [31]肖庆,张亚卓,王红云,等.损伤脑组织诱导骨髓基质细胞向神经元方向分化[J].中华神经外科杂志,2003,19(2):132-134
    [32]Alexanian AR. Neural stem cells induce bone-marrow-derived mesenchymal stem cells to generate neural stem-like cells via juxtacrine and paracrine interactions[J].Exp Cell Res, 2005,310(2):383-391
    [33]Farrell E, Wielopolski P, Pavljasevic P, et al. Effects of iron oxide incorporation for long term cell tracking on MSC differentiation in vitro and in vivo[J].Biochem Biophys Res Commun,2008,369(4):1076-1081
    [34]Tong KA, Ashwal S, Obenaus A. Susceptibility-weighted MR imaging:a review of clinical applications in children[J].AJNR,2008,29(1):9-17
    [35]Haacke EM, Xu Y, Cheng YC, et al. Susceptibility weighted imaging (SWI)[J].Magn Reson Med,2004,52(3):612-618
    [1]Lansberg MG, Albers GW, Wijman CA. Symptomatic intracerebral hemorrhage following thrombolytic therapy for acute ischemic stroke:a review of the risk factors[J]. Cerebrovasc Dis,2007,24(1):1-10
    [2]Alexanian AR. Neural stem cells induce bone-marrow-derived mesenchymal stem cells to generate neural stem-like cells via juxtacrine and paracrine interactions[J].Exp Cell Res,2005,310(2):383-391
    [3]Modo M, Mellodew K, Cash D, et al. Mapping transplanted stem cell migration after a stroke:a serial, in vivo magnetic resonance imaging study[J].Neuroimage,2004,21(1): 311-317
    [4]Li Y, Chopp M, Chen J, et al. Intrastriatal transplantation of bone marrow nonhematopoietic cells improves functional recovery after stroke in adult mice[J].J Cereb Blood Flow Metab,2000,20(9):1311-1319
    [5]Chen J, Li Y, Wang L, et al. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats[J].Stroke,2001,32(4):1005-1011
    [6]Akiyama Y, Radtke C, Kocsis JD.Remyelination of the rat spinal cord by transplantation of identified bone marrow stromal cells[J].J Neurosci,2002,22(15): 6623-6630
    [7]Li Y, Chen J, Wang L, et al. Treatment of stroke in rat with intracarotid administration of marrow stromal cells[J].Neurology,2001,56(12):1666-1672
    [8]Gloor SM, Wachtel M, Bolliger MF, et al. Molecular and cellular permeability control at the blood-brain barrier[J].Brain Res Brain Res Rev,2001,36(2-3):258-264
    [9]Longa EZ, Weinstein PR, Carlson S, et al. Reversible middle cerebral artery occlusion without craniectomy in rats[J].Stroke,1989,20(1):84-91
    [10]Chen B,Gao XQ, Yang CX, et al. Neuroprotective effect of grafting GDNF gene-modified neural stem cells on cerebral ischemia in rats[J].Brain Res,2009, 1284(11):1-11
    [11]张勇,程敬亮,杨运俊,等.实验动物头部固定架[J].实用放射学杂志,2004,20(11):1055
    [12]Dittmar M, Spruss T, Schuierer G, et al. External carotid artery territory ischemia impairs outcome in the endovascular filament model of middle cerebral artery occlusion in rats[J].Stroke,2003,34(9):2252-2257
    [13]Aspey BS, Taylor FL, Terruli M, et al. Temporary middle cerebral artery occlusion in the rat:consistent protocol for a model of stroke and reperfusion[J].Neuropathol Appl Neurobiol,2000,26(3):232-242
    [14]Zhang ZG, Jiang Q, Zhang R, et al.Magnetic resonance imaging and neurosphere therapy of stroke in rat[J].Ann Neurol,2003,53(2):259-263
    [15]Zhao LR, Duan WM, Reyes M, et al. Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats[J].Exp Neurol,2002,174(1):11-20
    [16]Gao Q, Li Y, Chopp M. Bone marrow stromal cells increase astrocyte survival via upregulation of phosphoinositide 3-kinase/threonine protein kinase and mitogen-activated protein kinase kinase/extra cellular signal-regulated kinase pathways and stim ulate astrocyte trophic factor gene expression after anaerobic in sult[J].Neuroscience Epub,2005,136(1):123-134
    [17]Song H, Kwon K, Lim S, et al. Transfection of mesenchymal stem cells with the FGF-2 gene improves their survival under hypoxic conditions[J].Mol Cells,2005,19(3): 402-407
    [18]Kurozumi K, Nakamura K, Tamiya T, et al. BDNF gene-modified mesenchymal stem cells promote functional recovery and reduce infarct size in the rat middle cerebral artery occlusion model[J].Mol Ther,2004,9(2):189-197
    [19]Chen J, Zhang ZG, Li Y, et al. Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats[J]. Circ Res,2003,92(6):692-699
    [20]Arbab AS, Yocum GT, Kalish H, et al. Efficient magnetic cell labeling with protamine sulfate complexed to ferumoxides for cellular MRI[J].Blood,2004,104(4):1217-1223
    [21]Lewin M, Carlesso N, Tung CH, et al. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells[J].Nat Biotechnol,2000,18(4): 410-414
    [22]Ittrich H, Lange C, Dahnke H, et al. Labeling of mesenchymal stem cells with different superparamagnetic particles of iron oxide and detectability with MRI at 3T[J].Rofo, 2005,177(8):1151-1163
    [23]Peldschus K, Kaul M, Lange C, et al. Magnetic resonance imaging of single SPIO labeled mesenchymal stem cells at 3 Tesla[J].Rofo,2007,179(5):473-479
    [24]Hoehn M, Kustermann E, Blunk J, et al. Monitoring of implanted stem cell migration in vivo:a highly resolved in vivo magnetic resonance imaging investigation of experimental stroke in rat[J].Proc Natl Acad Sci U S A,2002,99(25):16267-16272
    [25]Kim DE, Schellingerhout D, Ishii K, et al. Imaging of stem cell recruitment to ischemic infarcts in a murine model[J].Stroke,2004,35(4):952-957
    [26]薛静,高培毅,李晋,等.脑梗死大鼠脑内移植超顺磁性氧化铁颗粒标记神经干细胞后的MR示踪研究[J].中华放射学杂志,2006,40(2):122-126
    [1]Hyun I. The bioethics of stem cell research and therapy[J].J Clin Invest,2010,120(1): 71-75
    [2]Greaves JM, Russo SS, Azmitia EC.Gender-specific 5-HT1 A receptor changes in BrdU nuclear labeling patterns in neonatal dentate gyrus[J].Brain Res Dev Brain Res,2005, 157(1):65-73
    [3]Li N, Yang H, Lu L, et al. Comparison of the labeling efficiency of BrdU,Dil and FISH labeling techniques in bone marrow stromal cells[J].Brain Res,2008,1215(18):11-19
    [4]Bulte JW, Douglas T, Witwer B, et al. Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells[J].Nat Biotechnol,2001,19(12):1141-1147
    [5]Bian J, Nazor KE, Angers R, et al. GFP-tagged PrP supports compromised prion replication in transgenic mice[J].Biochem Biophys Res Commun,2006,340(3): 894-900
    [6]Amsalem Y, Mardor Y, Feinberg MS, et al. Iron-oxide labeling and outcome of transplanted mesenchymal stem cells in the infarcted myocardium[J].Circulation,2007, 116(11):38-45
    [7]金莉蓉,洪震,钟春玖,等.超顺磁氧化铁标记骨髓基质干细胞移植治疗帕金森病鼠的实验研究[J].中国临床神经科学,2006,14(4):348-353
    [8]Weissleder R. Molecular imaging:exploring the next frontier[J].Radiology,1999, 212(3):609-614
    [9]Frank JA, Miller BR, Arbab AS, et al. Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents[J]. Radiology,2003,228(2):480-487
    [10]Modo M, Cash D, Mellodew K, et al. Tracking transplanted stem cell migration using bifunctional, contrast agent-enhanced, magnetic resonance imaging[J].Neuroimage, 2002,17(2):803-811
    [11]Daldrup-Link HE, Rudelius M, Oostendorp RA, et al. Targeting of hematopoietic progenitor cells with MR contrast agents[J].Radiology,2003,228(3):760-767
    [12]UrdzikovaL, JendelovaP, GlogarovaK, et al. Transplantation of bone marrow stem cells as well as mobilization by granulocytecolony stimulating factor promotes recovery after spinal cord injury in rats[J].J Neurotrauma,2006,23(9):1379-1391
    [13]Schafer R, Kehlbach R, Wiskirchen J, et al. Transferrin receptor upregulation:in vitro labeling of rat mesenchymal stem cells with superparamagnetic iron oxide[J].Radiology, 2007,244(2):514-523
    [14]Clement O, Siauve N, Cuenod CA, et al.Liver imaging with ferumoxides (Feridex): fundamentals, controversies, and practical aspects[J].Top Magn Reson Imaging,1998, 9(3):167-182
    [15]Arbab AS, Yocum GT, Rad AM, et al. Labeling of cells with ferumoxides-protamine sulfate complexes does not inhibit function or differentiation capacity of hematopoietic or mesenchymal stem cells[J].NMR Biomed,2005,18(8):553-559
    [16]Schafer R, Kehlbach R, Muller M, et al. Labeling of human mesenchymal stromal cells with superparamagnetic iron oxide leads to a decrease in migration capacity and colony formation ability[J].Cytotherapy,2009,11(1):68-78
    [17]Guzman R, Uchida N, Bliss TM, et al. Long-term monitoring of transplanted human neural stem cells in developmental and pathological contexts with MRI[J].Proc Natl Acad Sci U S A,2007,104(24):10211-10216
    [18]Cohen ME, Muja N, Fainstein N, et al. Conserved fate and function of ferumoxides-labeled neural precursor cells in vitro and in vivo[J].J Neurosci Res,2010, 88(5):936-944
    [19]Arai T, Kofidis T, Bulte JW,et al. Dual in vivo magnetic resonance evaluation of magnetically labeled mouse embryonic stem cells and cardiac function at 1.5 T[J].Magn Reson Med,2006,55(1):203-209
    [20]Wang L, Deng J, Wang J, et al. Superparamagnetic iron oxide does not affect the viability and function of adipose-derived stem cells, and superparamagnetic iron oxide-enhanced magnetic resonance imaging identifies viable cells[J].Magn Reson Imaging,2009,27(1):108-119
    [21]Reimer P, Balzer T. Ferucarbotran (Resovist):a new clinically approved RES-specific contrast agent for contrast-enhanced MRI of the liver:properties, clinical development, and applications[J].Eur Radiol,2003,13(6):1266-1276
    [22]Wersebe A, Wiskirchen J, Decker U, et al. Comparison of Gadolinium-BOPTA and Ferucarbotran enhanced three-dimensional T1-weighted dynamic liver magnetic resonance imaging in the same patient[J].Invest Radiol,2006,41(3):264-271
    [23]Allkemper T, Bremer C, Matuszewski L, et al. Contrast-enhanced blood-pool MR angiography with optimized iron oxides:effect of size and dose on vascular contrast enhancement in rabbits[J].Radiology,2002,223(2):432-438
    [24]Mailander V, Lorenz MR, Holzapfel V, et al. Carboxylated superparamagnetic iron oxide particles label cells intracellularly without transfection agents[J]. Mol Imaging Biol, 2008,10(3):138-146
    [25]Politi LS, Bacigaluppi M, Brambilla E, et al. Magnetic-resonance-based tracking and quantification of intravenously injected neural stem cell accumulation in the brains of mice with experimental multiple sclerosis[J].Stem Cells,2007,25(10),2583-2592
    [26]Simon GH, Bauer J, Saborovski O, et al. T1 and T2 relaxivity of intracellular and extracellular USPIO at 1.5T and 3T clinical MR scanning[J].Eur Radiol,2006,16(3): 738-745
    [27]李祥,漆剑频,朱文珍,等.体外磁共振成像对神经干细胞标记后弛豫活性的实验 研究[J].放射学实践,2006,21(2):114-117
    [28]Sun R, Dittrich J, Le-Huu M, et al. Physical and biological characterization of superparamagnetic iron oxide-and ultrasmall superparamagnetic iron oxide-labeled cells: a comparison[J].Invest Radiol,2005,40(8):504-513
    [29]Chen ZC, Xu RX, Yang ZJ, et al. Sinerem labeling and MRI tracking of neural stem cells in vivo and in vitro[J].Nan Fang Yi Ke Da Xue Xue Bao,2007,27(5):611-615
    [30]Norman AB,Thomas SR, Pratt RG, et al. Magnetic resonance imaging of neural transplants in rat brain using a superparamagnetic contrast agent[J]. Brain Res,1992, 594(2):279-283
    [31]Weber A, Pedrosa I, Kawamoto A, et al. Magnetic resonance mapping of transplanted endothelial progenitor cells for therapeutic neovascularization in ischemic heart disease[J].Eur J Cardiothorac Surg,2004,26(1):137-143
    [32]Hill JM, Dick AJ, Raman VK, et al. Serial cardiac magnetic resonance imaging of injected mesenchymal stem cells[J].Circulation,2003,108(8):1009-1014
    [33]Arbab AS, Bashaw LA, Miller BR, et al. Intracytoplasmic tagging of cells with ferumoxides and transfection agent for cellular magnetic resonance imaging after cell transplantation:methods and techniques[J].Transplantation,2003,76(7):1123-1130
    [34]Arbab AS, Yocum GT, Kalish H, et al. Efficient magnetic cell labeling with protamine sulfate complexed to ferumoxides for cellular MRI[J].Blood,2004,104(4):1217-1223
    [35]Bos C, Delmas Y, Desmouliere A, et al. In vivo MR imaging of intravascularly injected magnetically labeled mesenchymal stem cells in rat kidney and liver[J].Radiology,2004, 233(3):781-789
    [36]郑敏文,宦怡,徐健,等.超顺磁性氧化铁纳米颗粒标记兔骨髓间充质干细胞的孵育时间优选[J].实用放射学杂志,2006,22(8):897-900
    [37]van den Bos EJ, Wagner A, Mahrholdt H, et al. Improved efficacy of stem cell labeling for magnetic resonance imaging studies by the use of cationic liposomes[J].Cell Transplant,2003,12(7):743-756
    [38]Ittrich H, Lange C, Dahnke H, et al. Labeling of mesenchymal stem cells with different superparamagnetic particles of iron oxide and detectability with MRI at 3T[J].Rofo, 2005,177(8):1151-1163
    [39]Song M, Moon WK, Kim Y, et al.Labeling efficacy of superparamagnetic iron oxide nanoparticles to human neural stem cells:comparison of ferumoxides, monocrystalline iron oxide,cross-linked iron oxide(CLIO)-NH2 and tat-CLIO[J].Korean J Radiol,2007, 8(5):365-371
    [40]修俊刚,柯以铨,杨志军,等.菲立磁标记兔骨髓基质细胞生物学特性的实验研究[J].中国微侵袭神经外科杂志,2007,12(3):125-128
    [41]蔡金华,冯敢生,刘官信,等.不同浓度菲立磁对大鼠间充质干细胞标记效率和细胞活力的影响[J].临床放射学杂志,2007,26(2):190-193
    [42]Dai GH, Xiu JG, Zhou ZJ, et al.Effect of superparamagnetic iron oxide labeling on neural stem cell survival and proliferation[J].Nan FangYi Ke Da Xue Xue Bao,2007, 27(1):49-51
    [43]Himes N, Min JY, Lee R, et al. In vivo MRI of embryonic stemcells in a mouse model of myocardial infarction[J].Magn Reson Med,2004,52 (5):1214-1219
    [44]Ko IK, Song HT, Cho EJ, et al. In vivo MR imaging of tissue-engineered human mesenchymal stem cells transplanted to mouse:a preliminary study[J].Ann Biomed Eng, 2007,35(1):101-108
    [45]Omidkhoda A, Mozdarani H, Movasaghpoor A, et al.Study of apoptosis in labeled mesenchymal stem cells with superparamagnetic iron oxide using neutral comet assay[J]. Toxicol In Vitro,2007,21(6):1191-1196
    [46]居胜红,膝皋军,毛曦,等.脐血间充质干细胞磁探针标记和MR成像研究[J].中华放射学杂志,2005,1(39):101-106
    [47]Yano S, Kuroda S, Shichinohe H, et al. Do bone marrow stromal cells proliferate after transplantation into mice cerebral infarct?--a double labeling study[J].Brain Res,2005, 1065(1-2):60-67
    [48]薛静,高培毅,李晋,等.脑梗死大鼠脑内移植超顺磁性氧化铁颗粒标记神经干细胞后的MR示踪研究[J].中华放射学杂志,2006,40(2):122-126
    [49]Gubin AN, Reddy B, Njoroge JM, et al.Long-term stable expression of green fluorescent protein in mammalian cells[J].Biochem Biophys Res Commun,1997,236 (2):347-350
    [50]Rice HE, Hsu EW, Sheng H, et al. Superparamagnetic iron oxide labeling and transplantation of adipose-derived stem cells in middle cerebral artery occlusion-injured mice[J].AJR,2007,188(4):1101-1108
    [51]Lee GM, Fong SS, Oh DJ, et al. Characterization and efficacy of PKH26 as a probe to study the replication history of the human hematopoietic KG1a progenitor cell line[J].In Vitro Cell Dev Biol Anim,2002,38(2):90-96
    [52]Krishan A, Dandekar PD. DAPI fluorescence in nuclei isolated from tumors[J].J Histochem Cytochem,2005,53(8):1033-1036
    [53]Bertoncello I, Williams B.Hematopoietic stem cell characterization by Hoechst 33342 and rhodamine 123 staining[J].Methods Mol Biol,2004,263(1):181-200
    [54]蔡金华,冯敢生,王新,等.磁标记大鼠间充质干细胞肝脏移植的磁共振成像活体示踪[J].中华肝脏病杂志,2007,15(3):170-173
    [55]Yao M, Dieterle T, Hale SL, et al. Long-term outcome of fetal cell transplantation on postinfarction ventricular remodeling and function[J].J Mol Cell Cardiol,2003,35(6): 661-670
    [56]Matsushita T, Oyamada M, Kurata H,et al. Formation of cell junctions between grafted and host cardiomyocytes at the border zone of rat myocardial infarction[J]. Circulation, 1999,100(Suppl Ⅱ):262-281
    [57]Brekke C, Williams SC, Price J, et al.Cellular multiparametric MRI of neural stem cell therapy in a rat glioma model[J].Neuroimage,2007,37(3):769-782
    [58]Brekke C, Morgan SC, Lowe AS, et al. The in vitro effects of a bimodal contrast agent on cellular functions and relaxometry[J].NMR Biomed,2007,20(2):77-89
    [1]赵冬.我国人群脑卒中发病率和死亡率的流行病学研究[J].中华流行病学杂志,2003,24(3):236-239
    [2]Hong KS, Saver JL. Years of disability-adjusted life gained as a result of thrombolytic therapy for acute ischemic stroke[J].Stroke,2010,41(3):471-477
    [3]Lansberg MG, Albers GW, Wijman CA. Symptomatic intracerebral hemorrhage following thrombolytic therapy for acute ischemic stroke:a review of the risk factors[J]. Cerebrovasc Dis,2007,24(1):1-10
    [4]Legos JJ, Barone FC. Update on pharmacological strategies for stroke:prevention, acute intervention and regeneration[J].Curr Opin Investig Drugs,2003,4(7):847-858
    [5]Hicks AU, Lappalainen RS, Narkilahti S, et al. Transplantation of human embryonic stem cell-derived neural precursor cells and enriched environment after cortical stroke in rats:cell survival and functional recovery[J].Eur J Neurosci,2009,29(3):562-574
    [6]Fang YQ, Wong WQ, Yap YW, et al. Stem cells and combinatorial science[J].Comb Chem High Throughput Screen,2007,10(8):635-651
    [7]Ronaghi M, Erceg S, Moreno-Manzano V, et al. Challenges of stem cell therapy for spinal cord injury:human embryonic stem cells, endogenous neural stem cells, or induced pluripotent stem cells?[J].Stem Cells,2010,28(1):93-99
    [8]Hodgkinson T, Yuan XF, Bayat A. Adult stem cells in tissue engineering[J].Expert Rev Med Devices,2009,6(6):621-640
    [9]Mckay R. Stem cells in the central nervous system[J].Science,1997,276(5309):66-71
    [10]Gou S, Wang C, Liu T, et al. Spontaneous differentiation of murine bone marrow-derived mesenchymal stem cells into adipocytes without malignant transformation after long-term culture[J].Cells Tissues Organs,2010,191(3):185-192
    [11]Magaki T, Kurisu K, Okazaki T. Generation of bone marrow-derived neural cells in serum-free monolayer culture[J].Neurosci Lett,2005,384(3):282-287
    [12]Yasuhara T, Matsukawa N, Hara K, et al. Notch-induced rat and human bone marrow stromal cell grafts reduce ischemic cell loss and ameliorate behavioral deficits in chronic stroke animals[J].Stem Cells Dev,2009,18(10):1501-1514
    [13]Bianco P, Riminucci M, Gronthos S, et al. Bone marrow stromal stem cells:nature, biology, and potential applications[J].Stem Cells,2001,19(3):180-192
    [14]Bianco P, Gehron Robey P. Marrow stromal stem cells[J].J Clin Invest,2000,105(12): 1663-1668
    [15]Li Y, Chen J, Wang L, et al. Treatment of stroke in rat with intracarotid administration of marrow stromal cells[J].Neurology,2001,56(12):1666-1672
    [16]Li Y, Chopp M, Chen J, et al. Intrastriatal transplantation of bone marrow nonhematopoietic cells improves functional recovery after stroke in adult mice[J].J Cereb Blood Flow Metab,2000,20(9):1311-1319
    [17]Kim DE, Schellingerhout D, Ishii K, et al.Imaging of stem cell recruitment to ischemic infarcts in a murine model[J].Stroke,2004,35(4):952-957
    [18]Veizovic T, Beech TS, Stroomer RP, et al. Resolution of stroke deficits follow in contralateral grafts of conditionally immortal neuroepithelial stem cells[J].Stroke,2001, 32(4):1012-1019
    [19]Jin K, Sun Y, Xie L, et al. Comparison of ischemia-directed migration of neural precursor cells after intrastriatal, intraventricular, or intravenous transplantation in the rat[J].Neurobiol Dis,2005,18(2):366-374
    [20]Watson DJ, Walton RM, Magnitsky SG, et al. Structure-specific patterns of neural stem cell engraftment after transplantation in the adult mouse brain[J].HumGene Ther,2006, 17(7):693-704
    [21]Orlic D, Kajstura J, Chimenti S, et al. Bone marrow cells regenerate infarcted myocardium[J].Nature,2001,410(6829):701-705
    [22]Hoehn M, Kustermann E, Blunk J, et al. Monitoring of implanted stem cell migration in vivo:a highly resolved in vivo magnetic resonance imaging investigation of experimental stroke in rat[J].Proc Natl Acad Sci U S A,2002,99(25):16267-16272
    [23]Dousset V, Tourdias T, Brochet B,et al. How to trace stem cells for MRI evaluation?[J]. J Neurol Sci,2008,265(1-2):122-126
    [24]Zhao LR, Duan WM, Reyes M, et al. Human bone marrow stem cells exibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats[J].Experimental neurology,2002,174(1):11-20
    [25]Li Y, Chen J,Chen XG, et al. Human marrow stromal cell thrapy for stroke in rat:neurotrophins and functional recovery[J].Neurology,2002,59(4):514-523
    [26]Zhang ZG, Jiang Q, Zhang R, et al. Magnetic resonance imaging and neurosphere therapy of stroke in rat[J].Ann Neurol,2003,53(2):259-263
    [27]Modo M, Stroemer RP, Tang E, et al. Effects of implantation site of stem cell grafts on behavioral recovery from stroke damage[J].Stroke,2002,33(9):2270-2278
    [28]Kopen GC, Prockop DJ, Phinney DG, et al. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differ entiate into astrocytes after injection into neonatal mouse brains[J].Proc Natl Acad Sci USA,1999,96(19):10711-10716
    [29]Wang L, Li Y, Chen X, et al. MCP-1,MIP-1,IL-8 and ischemic cerebral tissue enhance human bone marrow stromal cell migration in interface culture[J].Hematology,2002, 7(2):113-117
    [30]Chen J, Li Y, Wang L, et al. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats[J].Stroke,2001,32(4):1005-1011
    [31]Brazelton TR, Rossi FM, Keshet GI, et al.From marrow to brain:expression of neuronal phenotypes in adult mice[J].Science,2000,290(5497):1775-1779
    [32]Chen J, Li Y, Katakowski M, et al. Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat[J].J Neurosci Res,2003:73(6):778-786
    [33]Bang OY, Lee JS, Lee PH, et al. Autologous mesenchymal stem cell transplantation in stroke patients[J].Ann Neurol,2005 57(6):874-882
    [34]Harting MT, Jimenez F, Xue H, et al.Intravenous mesenchymal stem cell therapy for traumatic brain injury[J].J Neurosurg,2009,110(6):1189-1197
    [35]Chen J, Li Y, Wang L, et al. Therapeutic benefit of intracerebral transplantation of bone marrow stromal cells after cerebral ischemia in rats[J].J Neurol Sci,2001,189(1-2): 49-57
    [36]景文莉,凤霞.经颈动脉移植骨髓间充质干细胞治疗局灶性大鼠脑缺血损伤[J].中国组织工程研究与临床康复,2007,11(24):4747-4751
    [37]Ukai R, Honmou O, Harada K, et al. Mesenchymal stem cells derived from peripheral blood protects against ischemia[J].J Neurotrauma,2007,24(3):508-520
    [38]Li Y, Chen J, Zhang CL, et al. Gliosis and brain remodeling after treatment of stroke in rats with marrow stromal cells[J].Glia,2005,49(3):407-417
    [39]Shen LH, Li Y, Chen J, et al. Therapeutic benefit of bone marrow stromal cells administered 1 month after stroke[J].J Cereb Blood Flow Metab,2007,27(1):6-13
    [40]梁庆成,冯念苹.骨髓间充质干细胞治疗脑缺血的研究现状与存在的问题[J].国际脑血管病杂志,2006,14(7):543-546
    [41]Weissleder R. Molecular imaging:exploring the next frontier[J].Radiology,1999, 212(3):609-614
    [42]Mahmood U, Weissleder R. Some tools for molecular imaging[J].Acad Radiol,2002, 9(6):629-631
    [43]Arbab AS, Yocum GT, Kalish H, et al. Efficient magnetic cell labeling with protamine sulfate complexed to ferumoxides for cellular MRI[J].Blood,2004,104(4):1217-1223
    [44]Stroh A, Faber C, Neuberger T, et al. In vivo detection limits of magnetically labeled embryonic stem cells in the rat brain using high-field(17.6 T) magnetic resonance imaging[J].Neuroimage,2005,24(3):635-645
    [45]ShapiroEM, Skrtic S, Sharer K, et al. MRI detection of single particles for cellular imaging[J].Proc Natl Acad Sci,2004,101(30):10901-10906
    [46]Rice HE, Hsu EW, Sheng H, et al. Superparamagnetic iron oxide labeling and transplantation of adipose-derived stem cells in middle cerebral artery occlusion-injured mice[J].AJR,2007,188(4):1101-1108
    [47]Peldschus K, Kaul M, Lange C, et al. Magnetic resonance imaging of single SPIO labeled mesenchymal stem cells at 3 Tesla[J].Rofo,2007,179(5):473-479
    [48]Ittrich H, Lange C, Dahnke H, et al. Labeling of mesenchymal stem cells with different superparamagnetic particles of iron oxide and detectability with MRI at 3T[J].Rofo, 2005,177(8):1151-1163
    [49]Yano S, Kuroda S, Shichinohe H, et al. Do bone marrow stromal cells proliferate after transplantation into mice cerebral infarct?--a double labeling study[J].Brain Res,2005, 1065(1-2):60-67
    [50]Walczak P, Kedziorek DA, Gilad AA, et al. Applicability and limitations of MR tracking of neural stem cells with asymmetric cell division and rapid turnover:the case of the shiverer dysmyelinated mouse brain[J].Magn Reson Med,2007,58(2):261-269
    [51]Magnitsky S, Watson DJ, Walton RM, et al. In vivo and ex vivo MRI detection of localized and disseminated neural stem cell grafts in the mouse brain[J].Neuroimage, 2005,26(3):744-754
    [52]Jendelova P, Herynek V, DeCroos J, et al. Imaging the fate of implanted bone marrow stromal cells labeled with superparamagnetic nanoparticles[J].Magn Reson Med,2003, 50(4):767-776
    [53]Bulte JW, Duncan ID, Frank JA. In vivo magnetic resonance tracking of magnetically labeled cells after transplantation[J].J Cereb Blood Flow Metab,2002,22(8):899-907
    [54]薛静,高培毅,李晋,等.脑梗死大鼠脑内移植超顺磁性氧化铁颗粒标记神经干细胞后的MR示踪研究[J].中华放射学杂志,2006,40(2):122-126
    [55]Lepore AC, Walczak P, Rao MS, et al. MR imaging of lineage-restricted neural precursors following transplantation into the adult spinal cord[J].Exp Neurol,2006, 201(1):49-59
    [56]Bowen CV, Zhang X, Saab G, et al. Application of the static dephasing regime theory to superparamagnetic iron-oxide loaded cells[J].Magn Reson Med,2002,48(1):52-61
    [57]Rausch M, Sauter A, Frohlich J, et al. Dynamic patterns of USPIO enhancement can be observed in macrophages after ischemic brain damage[J].Magn Reson Med,2001,46(5): 1018-1022
    [58]Shyu WC, Chen CP, Lin SZ, et al. Efficient tracking of non-iron-labeled mesenchymal stem cells with serial MRI in chronic stroke rats[J]. Stroke,2007,38(2):367-374
    [59]Arbab AS, Bashaw LA, Miller BR, et al. Intracytoplasmic tagging of cells with ferumoxides and transfection agent for cellular magnetic resonance imaging after cell transplantation:methods and techniques[J].Transplantation,2003,76(7):1123-1130
    [60]Lee J, Kuroda S, Shichinche H, et al. Migration and differentiation of nuclear fluorescence-labeled bone marrow stromal cells after transplantation into cerebral infarct and spinal cord injury in mice[J].Neuropathology,2003,23(3):169-180
    [61]Modo M, Mellodew K, Cash D, et al. Mapping transplanted stem cell migration after a stroke:a serial, in vivo magnetic resonance imaging study[J].Neuroimage,2004,21(1): 311-317
    [62]Zhu WZ, Li X, Qi JP, et al. Experimental study of cell migration and functional differentiation of transplanted neural stem cells co-labeled with superparamagnetic iron oxide and BrdU in an ischemic rat model[J].Biomed Environ Sci,2008,21(5):420-424
    [63]Jendelova P, Herynek V,Urdzikova L, et al. Magnetic resonance tracking of transplanted bone marrow and embryonic stem cells labeled by iron oxide nanoparticles in rat brain and spinal cord[J].J Neurosci Res,2004,76(2):232-243