C_3、C_4不同作物光合生理特性比较的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究利用C_3植物、C_4植物、旱稻与稗草等的杂交后代的材料,进行光合速率的测定,进一步分析植株在光能吸收传递、气孔调节、羧化反应等生理特性,研究高光效的生理机制。主要结果如下:
     1.对C_3、C_4植物的光合速率进行了系统的比较,明确C_4植物在光合速率的优势。各个时期C_4植物的光合速率的平均值均高于C_3植物,各个时期C_4植物表现出的光合速率的优势随着植株的衰老而降低,在生长旺盛期,C_4植物的光合速率的优势达到30%以上。C_3、C_4植物都是一个分类群体,其光合速率的表现也存在很大的差异,如长芒稗等就表现绝对高的光合速率,而同样条件下水稗(C_4植物)的光合速率的优势不明显。环境胁迫影响植物的光合作用,从而影响到光合速率的表达。
     2.PEPCase是C_4植物固定CO_2的关键酶,RuBPCase是植物同化CO_2的关键酶。C_4植物中的PEPCase活性和RuBPCase活性显著高于C_3植物,并且C_4植物中PEPCase/RuBPCase显著高于C_3植物。C_4植物固定、同化CO_2能力强,其中以长芒稗、高粱为最优。
     3.气孔特性调节光合作用效率,气孔特性的改善对光合作用的提高有至关重要的影响。C_4植物长芒稗、玉米等气孔较大,但单位面积气孔数少,水稻及其杂交后代的气孔器大小显著小于C_4植物,而YGFL的气孔器大小略大于其母本。杂交后代的气孔密度有超亲特性,不同程度的高于各亲本。
     选择光合性能优势突出的C_4植物材料(如长芒稗、高粱等),用于转基因或传统育种来改良我国旱稻或水稻,有效改善旱稻或水稻的光合生理特性,提高光合速率。
Terrestrial plants are classified into three major photosynthetic types, namely, C3, C4 and Crassulacean acid metabolism (CAM) plants, according to the mechanism of their photosynthetic carbon assimilation. C4 plants have CO2 concentrating mechanism and higher photosynthetic efficiency than C3 plants, especially under high light intensity, high temperature, high oxygen partial pressure and drought conditions. Since the discovery of the C4 pathway, it has been postulated that the transfer of C4 traits to C3 plants should improve the photosynthetic performance of C3 plants. Initially, conventional hybridization between C3 and C4 plants was carried out. This approach was available only in several plant genera and most C3-C4 hybrids were infertile. Another approach that has been adopted in the last ten years involves the use of recombinant DNA technology.
    Our objective was to provide the mechanism of high photosynthetic efficiency of C4 plants. We studied on net photosynthesis, key enzyme activities, stomata conductance and chlorophyll fluorescence parameters in C3 plants, C4 plants and rice-Echinochloa rusgalli hybrids. The major results were as follows:
    1.Compared with C3 plants, C4 plants have higher photosynthetic rate. In different periods, photosynthetic rate is higher than C3 plants and the advantage decreases with the plants maturing. In rapid growing period C4 plants' advantage of photosynthesis is over 30%. C4 plants are a family, so their photosynthetic rate is different such as Echinochloa rusgalli has highest photosynthetic rate than any other plants. But some C4 plants even tower than some C3 plants in the same environmental condition. And as the environment is changed, the photosynthesis are also changed.
    2.Phosphoewo/pyruvate carboxylase (PEPC) is the key enzyme of photosynthetic carbon assimilation in C4 plants and C3 plants also have PEPC. But PEPC activity is lower in C3 plant. C4 plants concentrate CO2 around Rubisco through the use of dual carboxylation pathways, first by CO2 fixation with PEPCase and secondarily by Rubisco. Because C4 plants, such as maize, are capable of concentrating CO2 at the Rubisco active site, they have many desirable agronomic traits. And the RuBPCase activity in C4 plants is higher than in C3 plants because of
    
    
    
    concentrating CO2 at the site. The value of PEPCase/RuBPCase dedicates the C4 photosynthetic capacity and is higher in C4 plants than in C3 plants.
    3. Stomata characteristic is very important to improve photosynthetic capacity. The stomata of C4 plants such as Echinochloa rusgalli, maize, are larger than C3 plants such as rice and stomata density of C4 plants is less than C3 plants. Stomata of rice and its progenies of hybrids are smaller than C4 plants, but the stomata of progenies of hybrids (YFGL) are less larger than their mother. Stomata density of progenies of hybrids (YFGL) is higher than their parents, so it is possible to select plants of high photosynthetic capacity in progenies of YFGL. Using conventional hybridization or transgenic technology to improve photosynthetic capacity of
    rice in our country, it is important to choose correct C4 plants which have high photosynthetic capacity
    and water use efficiency such as Echinochloa rusgalli and sorghum.
引文
1.蔡得田,袁隆平,卢兴桂.二十一世纪水稻育种新战略Ⅱ.利用远缘杂交和多倍体双重优势超级稻育种,作物学报,2001,21(1):105~116
    2.蔡维娟,冯红鹰,屠增平.叶片含氮量/叶绿素含量与光合速率及其光强度的关系.广东农业科学,1988,4:10~12
    3.陈温福,程红卫,刘丽霞,等.稻叶气孔性状研究新方法.作物学报,2000,26(5):623~626
    4.程旺大等.水稻叶片衰老与超氧化物歧化酶(SOD).福建稻麦科技,18(4):39~41
    5.戴新宾等.土壤干旱对水稻叶片光合速率核碳酸酐酶活性的影响.植物生理学报,2000,26(2):133~136
    6.邓楠.制定《农业科技发展纲要》,推动农业科技革命[J].中国农业科技导报,1999,(2):3~8
    7.丁颖.中国栽培稻的起源与演变[J].农业学报,1957,8(3):243~260
    8.董永华,史吉平等.ABA和6-BA对水分胁迫下玉米幼苗碳素同化关键酶的影响.植物营养和肥料学报,1997,3(2):182~188
    9.董永华等.干旱对玉米幼苗PEP羧化酶活性的影响.玉米科学,1995,3(2):54~57
    10.冯金朝等.C_3和C_4植物的水分利用效率.西北植物学报,1997,17(6):27~30
    11.高吉寅,胡荣海.水稻等品种苗期抗旱生理指标的探讨[J].中国农业科学,1984,4:41~45
    12.高亮之.中国水稻生长季节与稻作制度的气候研究[J].农业气象,1983,4(1):50~55
    13.郭敏亮等.用酸度计测定植物碳酸酐酶活性.植物生理学通讯,1988,6:59~61
    14.郭书奎,赵可夫.NaCl胁迫抑制玉米幼苗光合作用的可能机理.植物生理学报,2001,27(6):461~466
    15.季本华,焦德茂.光抑制条件下不同水稻品种叶片的PⅡ光化学效率和CO_2交换特性的差异.中国水稻科学,1998,12(2):109~114
    16.蒋德安,陆庆,翁晓燕.水稻剑叶衰老期Rubisco羧化酶对Rubisco活力和光合速率的调节.浙江大学学报(农业与生命科学版),2000,26(2):119~124
    17.蒋德安,陆庆,翁晓燕等.水稻光合关键酶类在光合日变化中的作用.作物学报,2001,27(3):301~307
    18.蒋高明.当前植物生理生态学研究的几个热点问题.植物生态学报,2001,25(5):514~519
    19.焦德茂,季本华.光氧化条件下两个水稻品种光合电子传递和光合酶活性的变化.作物学报,1996,22(1):43~49
    20.焦德茂,匡廷云等.转PEPC基因水稻具有初级CO_2浓缩机制的生理特点.2003,33(1):33~39
    21.焦德茂,李霞,黄雪清,等.转PEPC基因水稻的光合CO_2同化和叶绿素荧光特性.科学通报,2001,46(5):414~418
    22.焦德茂.水稻光合生理特性的遗传改进与高产育种途径.水稻文摘,1993,12(4):1~4
    23.焦德茂.运用光合机理揭示生理育种途径.北京:中国农业出版社,2002,2~4
    24.焦德茂等.Flavefia属C_4种和C_3-C_4中间型种杂交一代的CO_2交换特性.植物生理学通报,1997,
    
    17(3):225~231
    25.金继运,何萍.氮钾营养对春玉米后期碳氮代谢与粒重形成的影响.中国农业科学,1999,32(4):55~62
    26.李斌,陈冬兰,施教耐.高粱NADP苹果酸脱氢酶的醇化及其分子特征.植物生理学报,1987,13(2):113~121
    27.李卫华,郝乃斌,戈巧英,等.C_3植物中C_4途径的研究进展.植物学通报,1999,16(2):97~106
    28.李霞,焦德茂,戴传超,等.转育PEPC基因的杂交水稻的光合生理特性.作物学报,2001,27(2):137~1143
    29.林世青等.叶绿素荧光动力学在植物抗性生理学、生态学和农业现代化中的应用.植物学通报,1992,9(1):1~16
    30.林植芳,彭长连,林桂株.活性氧对苋菜磷酸烯醇式丙酮酸羧化酶活性的影响.植物生理学报,2000,26(1):27~32
    31.林植芳,彭长连,林桂珠.C3、C4植物叶片叶绿素荧光猝灭日变化和对光氧化作用的响应.作物学报,1 999,25(3):284~290
    32.林植芳,彭长连,林桂珠.C_3、C_4植物叶绿素荧光猝灭日变化和对光氧化作用的响应.作物学报,1999,25:284~290
    33.刘彦卓等.高产水稻光合速率德变化.热带亚热带植物学报,1999,增刊Ⅱ:49~53
    34.刘拥海等.水稻叶片中过氧化氢与核酮糖-1,5-二磷酸羧化酶/加氧酶降解的关系.植物生理学报,2000,26(6):481~486
    35.罗红艺.C_3植物、C_4植物和CAM植物的比较.高等函授学报(自然科学版),2001,14(5):35~38
    36.潘晓华,王永锐.水稻库/源比对叶片光合作用、同化物运输和分配及叶片衰老的影响.1998。24(6):821~827
    37.彭长连,林植芳,林桂珠.C_3和C_4植物叶片对光氧化响应的日变化.热带亚热带植物学报,1998,6(3):23:3~238
    38.邱国雄.植物光合作用的效率.见:余叔文主编,植物生理学与分子生物学.北京:科学出版社,1992:236~243
    39.滕胜,钱前,黄大年.C_4光合途径的分子生物学和基因工程研究进展.农业生物技术学报,2001,9(2):198~201
    40.屠增平,陈冠华,郭培森等.水稻高光效育种Ⅰ.水稻单叶净光合率的遗传.广东农业科学。1984,(4):8~13
    41.屠增平,林秀:珍,蔡惟涓,等.水稻高光效育种的再探索.植物学报,1995,37(8):641~651
    42.王德正,迟伟,王守海,等.转C_4光合基因水稻特征特性及其在两系杂交稻育种中的应用.作物学报,2064,30(3):248~252
    43.王和勇等.植物遗传标记的发展及应用.仲凯农业技术学院学报,2000,13(4):58~64
    44.王可玢,许春辉,赵福洪,等.水分胁迫对小麦旗叶某些体内叶绿素a荧光参数的影响.生物生理学报。1997,13(2):273~278
    45.王仁雷等.杂交稻及其三系生育过程中RuBP羧化酶及有关光合酶的变化.作物学报,1996,
    
    22(1):6~12
    46.王永锐主编.水稻生理育种.北京:科学技术文献出版社,1995,23~69
    47.王增远,徐雨昌,李震等.水稻品种对稻田甲烷排放的影响[J].作物学报,1999,25(4):441~446
    48.魏锦城等.水稻叶片生育过程中Rubisco活性与光合、光呼吸的关系.植物生理学报,1994,20(3):285~292
    49.翁晓燕等.影响水稻叶片光合日变化因素的分析.中国水稻科学,1998,12(2):105-108
    50.许晓明,陆巍,张荣铣,等.超高产水稻协优9308的高效光合功能.南京师大学报(自然科学版),2004,27(1):78~81
    51.阳成伟,彭长连,段俊,等.超高产杂交稻剑叶衰老过程中PⅡ功能的变化.热带亚热带植物学报,2004,12(2):147~152
    52.阳成伟,彭长连等.水稻剑叶生长过程中光合电子流传递分配及其与光合作用的关系.植物学通报,2002,19(3):322~327
    53.杨甲定.引种到青藏高原大田的玉米叶片中磷酸烯醇式丙酮酸羧化酶活性的日变化.作物学报,2003,29(3):349~352
    54.杨建昌,王志琴,朱庆森.水稻品种的抗旱性及其生理特性的研究[J].中国农业科学,1995,28(5):65~72
    55.姚铭辉等.叶绿素荧光与作物生理反应.科学农业,2002,50(2):31~41
    56.殷毓芬等.冬小麦不同品种叶片光合速率与气孔导度等性状之间关系的研究.作物学报,1995,21(5):561~566
    57.余叔文,汤章成.植物生理与分子生物学。北京:科学出版社,1998,262~267
    58.余彦波,赖世登,李继由等.提高作物产量的新途径——高光效育种.遗传与育种,1975,2:7~9
    59.曾青等.开放式空气CO_2浓度增高条件下C3作物(水稻)与C4杂草(稗草)的竞争关系.应用生态学报,2002,13(10):1231~1234
    60.张方等.高粱C4型磷酸烯醇式丙酮酸羧化酶基因的分子克隆及其转基因水稻的培育.科学通报,2003,48(24):1542~1546
    61.张守仁.叶绿素荧光动力学参数的意义及讨论.植物学通报,1999,16(4):444~448
    62.赵会杰,邹琦,于振文.叶绿素荧光分析技术及其在植物光合机理研究中的应用.河南农业大学学报,2000,34(3):248~251
    63.赵明,李少昆.不同田间环境下玉米叶片气孔阻抗及其与光合和蒸腾的关系.应用生态学报,1997,8:480~85
    64.赵秀琴,赵咀,肖俊涛,等.栽野稻远缘杂交高光效后代及其亲本叶片的气孔特性.作物学报.2003,29(2):216~221
    65.周卫,汪洪,林葆.镉胁迫下钙对镉在玉米细胞中分布及对叶绿体结构与酶活性的影响.植物营养与肥料学报,1999,5(4):335~340
    66.周佩珍.光合作用与育种.农业科技通讯,1980,(1):9~10
    67.朱德峰等.水稻叶面积测定方法探讨.上海农业学报,1996,12(3):82~85
    
    
    68.邹琦.植物生理学实验指导.北京:中国农业出版社,2000,34~37
    69. A. Fravolini et al. Carbon isotope discrimination and bundle sheath leakiness in three C4 subtypes grown under variable nitrogen, water and atmospheric CO_2 supply. Journal of Experimental Botany, 2002, 53(378): 2261~2269
    70. Amane Makino et al. Photosynthesis, plant growth and N allocation in transgenie rice plants with decreased Rubisco under CO_2enrichment. Journal of Experimental Botany, 2000, 51:383~389
    71. Aoyaki K, Bassham J A. Appearance and accumulation of C_4 carbon pathway enzymes in developing wheat leaves. Plant Physio, 1986, 80:334~340
    72. Austin R B. Genetic constrains on photosynthesis and yield in wheat. Advanced Photosynthesis Research, 1984, Ⅳ: 103~110
    73. Badger M R, Price G D. CO_2 concentration mechanisms in cyanobacteria: molecular components, their diversity and evolution. Journal of Experimental Botany, 2003, 54(383): 609~611
    74. Bhaskarrao Chinthapalli et al. Dramatic difference in the response of phosphoenolpyruvate carboxylase to temperature in leaves of C3 and C4 plants. Journal of Experimental Botany, 54(383): 707~714
    75. Bowes G, Salvucci M E. Plasticity in the photosynthetic carbon metabolism of submerged aquatic macrophytes. Aquatic Botony 1989, 34:233-266
    76. Brown R H, Bassett C L, Cameron R G, et al. Photosynthesis of Fl hybrids between C_4 and C_3-C_4 species of Flaveria. Plant physiology, 1986, 82:211~217
    77. Brown R H, Bouton J H. Physiology and genetics of interspecific hybrids between phtotosynthetic types. Annual Review of Plant Physiology and Plant Molecular Biology, 1993, 44:435~456
    78. Casati P, Lara M, Andreo C. Introduction of a C_4-like mechanism of CO_2 fixation in Egeria densa, a submerged aquatic species. Plant Physiology, 2000, 123:1611~1622
    79. Chandva B R, Pathan M, Blum A, et al. Comparison of measurement methods of osmotic adjustment in rice cultivars [J]. Crop Science, 1999, 39:150~158
    80. Charles C Mann. Genetic engineers aim to soup up crop photosynthesis. Science, 1999, 283:314~316
    81. Chollet R, Vidal J, Marion H, et al. Phosphoenolpyruvate carboxylase: A ubiquitous, highly regulated enzyme in plants. Annu. Rev. Plant Physiology. Plant Molecular Biology, 1996, 47: 273~298
    82. Colin L. D. Jenkins et al. Mechanism of C_4 photosynthesis-A model describing th inorganic carbon pool in bundle sheath cells. Plant Physiology, 1989, 91:1372~1381
    83. Dai Z, Ku M S B, Edwards G E. C_4 photosynthesis: the CO_2 concentrating mechanism and photorespiration. Plant Physio, 1993,103:89~90
    84. Demao Jiao, Xueqing Huang, Xia li, et al. Photosynthetic charteristics and tolerance to photo-oxidation of transgenic rice expressing C_4 photosynthesis enzymes. Plant Physio, 2002, 72: 85~93
    85. Dengler N G, Nelson T. Leaf structure and development in C_4 plants. C_4 Plant Biology. Academic
    
    Press, San Diego, 1999, 133-172
    86. Dung L-Y, Masuda T, Kawamura T, et al. Cloning, expression and characterization of a root-form phosphoenolpyruvate carboxylase from Zay mays: comparison with the C4-form enzyme. Plant Cell Physiology, 1998, 39:865~873
    87. Edwards G. Turning up crop photosynthesis. Nature Biotechnology, 2000, 1: 22~23
    88. Gehlin J, Panstruga R, Smets H, et al. Effects of altered phosphoenolpyruvate carboxylase activities on transgenic C_3 plant Solanum tubeerosum. Plant Mol Biol, 1996, 32:831~848
    89. Gerald E. Edwards et al. What does it take to be C4? Lessons from the evolution of C4 Photosynthesis. Plant Physiology, 2001, 125:46~49
    90. Gonzalez D H, lglesoas A A, Andeo C S. On the regulation of phosphoenolpyruvate carboxylase activity from maize leaves by L-malate: effect of pH. Journal of Plant Physioi, 1984, 116: 425~429
    91. Graham D. Farquhar et al. Models of photosynthesis. Plant Physiology, 2001, 125:42~45
    92. Hatch M D. C_4 photosynthesis: a unique blend of modified biochemistry, anatomy and ultra.structure. Biochimica Biophysica Acta, 1987, 895:81~106
    93. Hiroko Tsuchida et al. High level expression of C4-specific NADP-malic enzyme in leaves and impairment of photoautotrophic growth in a C3 plant, rice. Plant Cell Physiology, 2001, 42(2): 138~145
    94. Hiroshi Fukayama, Hiroko Ysuchida, Sakae Agarie, et al. Signficant accumulation of C4-speciflc pyruvate, orthophosphate dikinase in C3 plant, rice.
    95. Horton P. et al. C_4 photosynthesis in rice: some lessons from studies of C_3 photosynthesis in field-grown rice. 127~144
    96. Huang Xueqing, Jiao Demao, Chi Wei, Maurice S. B. Ku. Charteristics of CO_2 exchange and chlorophyll fluorescence of transgenic rice with C_4 genes. Acta Botaniea Siniea, 2002, 44(4): 405~412
    97. lmaizumi N., Uauda H., Nakamoto H. Changes in the rate of photosynthesis during grain filling and the enzymatic activities associated with the photosynthetic carbon metabolism in rice panicles. Plant and cell physiology, 1990, 36:835~843
    98. Jen Sheen. C4 gene expression. Annu. Rex Plant Physiology, Plant Molecular Biology, 1999, 50: 187~217
    99. Jenkins C. Effects of the phosphoenolpyruvate carboxylase inhibitor 3,3-dichoro-2-(dihydroxyphosphinoylmethyl) propenoate on photosynthesis. Plant Physiology, 1989, 89: 1231~1237
    100. Jiao Demao et al. The chacteristic of CO_2 assimilation of photosynthesis and chlorophyll fluorescence in transgenic PEPC rice. Chinese Science Bulletin, 2001, 46(13): 1080~1084
    101. Karen J. Bailey et al. Control of C_4 photosynthesis: effects of reduced activities of phosphoenolpyruvate carboxylase on CO_2 assimilation in Amaranthus edulis L., Journal of
    
    Experimental Botany, 2000, 51:339~346
    102. Kasuga M. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nature Biotechnology, 1999, 17:287~291
    103. Kogami H, Shone M, Koike T, et al. Molecular and physiological evalution of transgenic tobacco plants expressing a maize phosphoenolpyruvate carboxylase gene under the control of the cauliflower mosaic virus 35S promoter. Transgenic Research, 1994, 3:287~296
    104. Ku M S B, Cho D, Ranande U, et al. Photosynthtic performance of transgenic rice plants overexpression maize C_4 photosynthesis enzymes. In: Sheehy J, Mitchell P L and Hardy (eds) Redesigning Rice Photosynthesis to Increase Yield, 2000: 193-204. Elsevier/IRRI, Amssterdam/Oxford
    105. Ku M S B, Kano-Murakami Y, Matsuoka M. Evolution and expression of C_4 photosynthesis genes. Plant Physiology, 1996, 111:949~957
    106. Ku M S B, Sakae A, Mika N, et al. High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants. Nature Biotechnology, 1999, 17:76~80
    107. Ku M S. B. et al. Evolution and expression of C4 photosynthesis genes. Plant Physiology, 1996, 111: 949~957
    108. Langdale J A, Nelson T. Spatial regulation of photosynthetic development in C_4 plants. Trends Genet 1991, 7:191-196
    109. Leegood R. C., Lea P. J., Adcock M.D., et al. The regulation and control of photorespiration. Journal of experimental botany, 1995, 46(special issue): 1397~1414
    110. Lilley J M, Ludlow M, McCouch S, et al. Locating QTL for osmotic adjustment and dehydration tolerance in rice [J]. Journal of Experimental Botany, 1996, 47: 1427~1436
    111. M. Jeanneau et al. Manipulating PEPC levels in plants. Journal of Experimental Botany, 2002, 53(376): 1837~1845
    112. Magnin N C, Cooley C A, Reiskind J B, et al. Regulation and localization of key enzymes during the introduction of Kranz-less, C_4-type photosynthesis in Hydrilla Nerticillata. Plant Physio, 1997, 115:1681~1689
    113. Matsuoka M, Fukayama H, Tsuchida H, et al. How to express some C_4 photosynthesis genes at high levels in rice. In: Sheehy J, Mitchell P L and Hardy (eds) Redesigning Rice Photosynthesis to Increase Yield, 2000:193-204. Elsevier/IRRI, Amssterdam/Oxford
    114. Matsuoka M., Fukayama H, Tsuchida H, et al.et al. How to express some C4 photosynthesis genes at high levels in rice. In: Sheehy J," Mitchell P L and Hardy (eds) Redesigning Rice Photosynthesis to Increase Yield, 2000:167~175. Elsevier/IRRI, Amssterdam/Oxford
    115. Matsuoka M. et al. Molecular engineering of C4 photosynthesis. Annu. Rev. Plant Physiology Plant Molecular Biology, 2001, 52:297~314
    116. Menz K M, Moss D M, Canneil R Q et al. Screening for photosynthetic efficiency. Crop Sci, 1969, 9:692~694
    
    
    117. Mitsue Miyao. Molecular evolution and genetic engineering of C_4 photosynthetic enzymes. Journal of Experimental Botany, 54(381): 179~189
    118. Nobyuki Imaizmi et al. Characterization of th gene for pyruvate, orthophosphate dikinase from rice, a C_3 plant, and a comparison of structure and expression between C_3 and C_4 genes for this protein. Plant Molecular Biology, 1997, 34:701~716
    119. Osamu Ueno. Environmental regulation of C_3 and C_4 differentiation in the amphibious sedge Eleocharis vivipara. Plant Physiology, 2001,127; 1524~1532
    120. Osmond C. B, Grace S. C. Perspectives on photoinhibition and photorespiration in the field: quintessential inefficiencies of the light and dark reactions of photosynthesis? Journal of experimental botany, 1996, 47(297): 1351~1362
    121. P. L. Mitchell et al. Performance of potential C_4 rice: overview from quantum yield to grain yield. Journal of Experimental Botany, 2002, 53(369): 573~579
    122. Peng Xinxiang et al. Protective role of oxalate against oxidative-stress-induced degration of ribulose-1,5-bisphosphate carboxylase/oxygenase(草酸对氧化胁迫下水稻叶片核酮糖-1,5-二磷酸羧化酶/加氧酶降解的保护作用).植物生理学报, 2000, 26(6): 497~500
    123. Rainer E. Hausler et al. Overexpression of C4-cycle enzymes in transgenic C3 plants: a biotechnological approach to improve C3-photosynthesis. Journal of Experimental Botany, 2002, 53(369): 591~607
    124. Richard C. Lecgood. C4 photosynthesis: principles of CO_2 concentration and prospects for its introduction into C3 plants. Journal of Experimental Botany, 2002, 53(369): 581~590
    125. Rikishi K, Oquro H, Samejima M, et al. C_4-like plants derived from a cross Atriplex rosea (C_4)×Atriplex Putula(C_3) × Atriplex rosea. Japan J Breed, 1988, 38:397~408
    126. Salvucci M. E.,. Anderson J.C. Factors affecting the activation state and the level of total activity of ribulose bisphosphate carboxylase in tobacco protoplasts. Plant Physiology, 1987, 85(1): 66~71
    127. Sheen J. C_4 gene expression. Annu Rev Plant Physiol Plant Molecular Biology, 1999, 50:187-217
    128. Shoichi Suzuki et al. Changes in photosynthetic carbon flow in transgenic rice plants that express C4 -type phosphoenolpyruvate carboxykinase from Urochloa panicoudes. Plant Physiology, 2000, 124:163~172
    129. Smith L G, Hake S. Initiation and determination of leaves. Plant Cell 1992, 4:1017-1027
    130. Srinath K. Rao, Noel C Magnin, Julia B Reiskind et al. Photosynthetic and other phosphoenolpyruvate carboxylase isoforms in the single-cell, facultive C_4 system of Hydrilla verticillata. Plant Physiology, 2002, 130:876~886
    131. Stenven J. Crafts-Brandner et al. Sensivity of photosynthesis in a C_4 plant, maize, to heat stress. Plant Pysiology, 2002, 129:1773~1780
    132. Tanabe M, lzui K, Toriyama K. Production and analysis of transgenic C_3-C_4 intermediate Mpricandia arveersis expressing a maize C_4 phosphoenolpyruvate carboxylase gene. Plant Biotechnology, 2000, 17(2): 93~98
    
    
    133. Turner N C. Further progress in crop water relations [J]. Advances in Agronomy, 1997, 58: 293~339
    134. Ueno Osamu. Environmental regulation of C_3 and C_4 differentiation in the amphibious sedge Eleocharis vivipara. Plant Physiology, 2001, 127(4): 1524~1532
    135. Vidal J, Chollet R. Regulatory phosphorylation of C_4 PEP carboxylase. Trends of plant science, 1997, 2(6): 230~237
    136. Westhoff P, Svensson P, Ernst K, et al. Molecular evolution of C_4 phosphoenolpyruvate carboxylase in the genus Flaveria. Australia Journal of Plant Physiol, 1997, 24:429-436
    137. Winter K, Smith J A C.Crassulacean acid metabolism: current status and perspectives. Crassulacean Acid Metabolism: Biochemistry, Ecophysiology and Evolution. Springer-Verlag, Berlin, 1996, 389-426
    138. Xiang Youbin et al. Protoplast culture and plant regeneration in wild Oryza species with promotion by nurse cell liquid and suitable proliferation media,(野生稻原生质体培养与植株再生).中国水稻科学, 1995, 9(3): 161~166
    139. Y. Huang et al. Climate change as the dominant control on glacial-interglacial variations in C_3 and C_4 plant abundance. Science, 2001, 293:1647~1651