航空发动机关键构件内窥涡流集成化原位无损检测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
原位无损检测避免了装备和结构的拆卸、分解和安装,大大节省了检测时间和费用,集成化既减小了设备的体积更重要的是可充分发挥多种检测方法的优势,提高检测的准确率,它们都是通用测试领域重要的发展方向,开展相关研究对提高我军航空装备的保障能力具有十分重要的意义。
     本文立足于某型航空发动机九级篦齿盘和发动机叶片原位无损检测的工程实际需求,提出内窥和涡流检测集成化的思想,围绕集成化无损检测系统设计、内窥涡流集成化检测传感器设计、航空发动机九级篦齿盘和叶片的内窥涡流集成化原位无损检测、内窥涡流集成化检测的信息融合等问题开展了研究。主要研究内容与结论如下:
     (1)将嵌入式系统技术引入到无损检测中,研制了嵌入式内窥涡流集成化无损检测系统。设计了基于CMOS图像传感器的电子内窥镜,研究了内窥检测图像的增强处理方法,提高了内窥图像质量;研究了宽频高精度功率信号产生和涡流微弱检测信号的正交锁相放大处理等问题,完成了涡流检测硬件设计;采用模块化设计思想,设计了实时嵌入式检测软件。检测系统功能全面,智能化程度高,符合集成化发展的方向,与传统的无损检测仪器相比,具有体积小、重量轻、操作和携带方便等特点,可以满足航空发动机原位无损检测的需要。
     (2)针对现有的涡流检测传感器从结构和性能上无法满足某新型航空发动机关键构件九级篦齿盘原位无损检测要求的现状,提出了一种特殊结构的涡流传感器。该传感器激励线圈和检测线圈在空间上正交,利用有限元数值仿真方法对其参数进行了优化设计,其对九级篦齿盘裂纹缺陷检测灵敏度高、提离效应小,而且可以定量评估裂纹缺陷的深度;同时将该涡流传感器和电子内窥镜探头结合,设计了一种用于篦齿盘原位无损检测的内窥涡流集成化传感器。实验结果表明:内窥涡流集成化技术实现了对篦齿盘裂纹缺陷的原位无损检测,缺陷检测准确率和可靠性高。
     (3)针对目前航空发动机关键部件叶片的内窥检测结果需要人工判断和检测效率低等缺点,提出了一种发动机叶片内窥检测的缺陷自动识别算法。该算法采用数字图像处理技术提取叶片缺陷的形状特征和纹理特征作为分类识别的依据,设计了一种基于支持向量机的分类器实现对叶片内窥检测缺陷自动分类识别。实验结果表明:该算法对于叶片缺陷的识别正确率达到了85%。
     (4)从提高航空发动机叶片裂纹缺陷的内窥检测效果出发,基于前面的集成化思想,首先利用有限元数值仿真方法设计了一种提离效应很小的类匀强涡流传感器,该涡流传感器可以对叶片裂纹缺陷长度和深度进行定量评估,然后将其与电子内窥镜探头有机结合在一起,设计了一种航空发动机叶片检测专用的内窥涡流集成化传感器。实验结果表明:内窥涡流集成化技术实现了对航空发动机叶片缺陷的原位无损检测,检测结果的准确率和可靠性高。
     (5)基于D-S证据理论提出了一种用于航空发动机叶片内窥涡流集成化检测的信息融合算法。建立了内窥涡流集成化检测信息融合模型,构造了可信度分配函数,制定了决策规则,实现了内窥和涡流检测信息层的集成,提高了无损检测系统缺陷识别准确性。
     本文的研究成果已应用到航空发动机的日常维护和定期检测中,有效地减少了维护人员的工作量,缩短了现场检修时间,提高了检测效率。
In-situ nondestructive testing avoids disassembling and assembling equipment or structures, so it saves plentiful time and cost. By integration both the volume of equipment is reduced and advantages of many methods are full used, so the defects detection precision is improved. In-situ nondestructive testing and integration are all important research directions in general measuring field. It has very important significance to exploit related research for building up maintenance support of our legionary aero equipments.
     This paper is based on the engineering practical requirement of the ninth level labyrinth disc and aeroengine blade in-situ nondestructive testing, and the thought of borescope inspection and eddy current testing integrated is proposed. The comprehensive research including nondestrctive testing system design, borescope and eddy current integrative sensor, ninth level labyrinth disc and aeroengine blade in-situ testing, integrative testing informationi fusion are presented. The primary results and conclusions are listed hereafter.
     (1) The embedded system technique is introduced to nondesturctive testing field. The embedded borescope and eddy current integrative nondestructive testing system is developed. The electronic borescope based on CMOS image sensor is designed. The borescope inspection image enhancement processing methods is researched. And the image quality is enhanced. The research of the power signal generator with broad bandwidth and accurate frequency, the orthogonal lock-in amplifier for eddy current testing weak signal, and and otherwise, is done. The hardware design of eddy current testing is achieved. The real time embedded inspection software is exploited using modularization design thought. The testing system is powerful, intelligent and accorded with integration development request. Compared with the traditional nondestructive testing instrument, it has excellent characteristics of small bulk, light weight, convenience for manipulation, portable design, etc. So it meets the requirements of in situ nondestructive testing for aeroengine.
     (2) This paper aims at the problem that the structure and performance of the existing eddy current sensors can’t satisfy the requirement of in-situ nondestructive testing for the ninth level labyrinth disc of an aeroengine, and an especial structural eddy current sensor is proposed. Its excitation coil and pickup coil are orthogonal in space. The parameters of the eddy current sensor are optimized using finite element simulation method. The eddy current sensor is very sensitive and has little lift-off effect to detect defects of the the ninth level labyrinth disc, and the cracks depth can be evaluated quantitatively. The eddy current sensor is combined with electronic borescope probe. A borescope and eddy current integrative sensor for the ninth level labyrinth disc in-situ testing is designed. The experiment results show borescope and eddy current integrative testing can in-situ detect cracks of the the ninth level labyrinth disc, and the defects detection precision and reliability are very high.
     (3) At present, the borescope inspection results are estimated artificially not automatically and the inspection efficiency is low. So an approach is propsed for aeroengine blades damage automatic estimation. The shape and texture characteristics of blades damage are extracted using digital image processing. A classifier based on support vector machine is designed for damage automatic estimation. The experiment results show the correct recognition ratio reaches 85%.
     (4) In order to improve the borescope inspection effect for cracks of aeroengine blades, based on integration thought, firstly a uniform eddy current sensor is designed using finite element emulational method, which has little lift-off effect, and can evaluate the crack length and depth quantitatively. Then, the uniform eddy current sensor is combined with electronic borescope properly, and a borescope and eddy current integrative sensor is designed for aeroengine baldes. The experiment results show the integrative sensor can in-situ detect defects of blades, and and the defects detection precision and reliability are high.
     (5) A method of borescope and eddy current integrative testing information fusion is proposed using D-S theory of evidence for aeroengine blades. The model of information fusion is established. Th belief assignment function is constructed. The decision-making rule is constituted. The integration of borescope and eddy current testing in information layer is carried out. It improves the correct flaw detection ratio of nondestrctive testing system.
     The main research results of this paper have been used in aeroengine for daily maintenance and periodic inspection, which reduces maintenance man's workload availably and inspection time in field and the inspection efficiency is improved.
引文
[1]裴广达.孔探与现代航空发动机维护[J].航空工程与维修,2000(4):27~28.
    [2]于辉,左洪福,黄传奇.先进内窥技术与发动机故障检测[J].航空工程与维修,2002(2):20~22.
    [3]关玉璞,陈伟,高德平.航空发动机叶片外物损伤研究现状[J].航空学报,2007,28(4):851~857.
    [4]杨春生,梦昭荣.世界航空安全与事故分析[M].北京:中国民航出版社,1997:1~30.
    [5]吴振锋,左洪福,刘正勋.航空发动机磨损故障诊断技术现状与发展[C].第四届全国交通运输领域青年学者会议论文集,南京,2001.10:605~610.
    [6]宋兆泓.航空发动机可靠性与故障抑制工程[M].北京:北京航空航天大学出版社,2002:50~55.
    [7]李家伟,陈积懋.无损检测手册[M].北京:机械工业出版社,2002:1~13.
    [8]任吉林,林俊明,高春法.电磁检测[M].北京:机械工业出版社,2000:45~68.
    [9] Paul E, Mix P E. Introduction to Nondestructive Testing---A training guide. Wiley Interscience, 2005:1~14.
    [10]徐可北,周俊华.涡流检测[M].北京:机械工业出版社,2004:1~23.
    [11]《国防科技工业无损检测人员资格鉴定与认证培训教材》编审委员会.无损检测综合知识[M].北京:机械工业出版社,2004:1~14.
    [12]耿荣生,郑勇.航空无损检测技术发展动态及面临的挑战[J].无损检测,2002,24(1):1~5.
    [13]郭海鸥.俄罗斯航空修理厂无损检测状况一瞥[J].无损检测,2003,25(11):581~584.
    [14] Dwivedia S N, Sharanb A. Development of Knowledge-based Engineering Module for Diagnosis of Defects in Casting and Interpretation of Defects by Nondestructive Testing[J]. Journal of Materials Processing Technology, 2003, 141: 155~162.
    [15] Tavrin Y, Siege M, Hinken J. Standard Method for Detection of Magnetic Defects in Aircraft Engine Discs using a HTS SQUID Gradiometer[J]. IEEE Transactions on Applied Superconductivity, 1999, 9(2): 3809~3812.
    [16] Larsen W E, Cooksy K D, Zuk J. Managing Aviation Safety Through Inspection and Information Technology[J]. IEEE Industry Application Magazine, May/June 2001: 40~45.
    [17] Leethy M, Olding R. Advanced Nondestructive Evaluation (NDE) for Retirement for Cause/Engine Structural Integrity Program (RFC/RNSIP) [R]. AFRL-ML-WP-TR-2000-4144, Wright-Patterson AFB: Materials & Manufacturing Directorate Air Force Research Laboratory, 2000: 1~4.
    [18] Burkel R H, Chiou C P, Keyes T K, et al. A Methodology for the Assessment of the Capability of Inspection System for Detection of Subsurface Flaw in Aircraft Turbine Engine Components[R]. DOT/FAA/AR-01/96, Washington: U.S. Department of Transportation Federal Aviation Administration Office of Aviation Research, 2002: 1~6.
    [19] Krupa R, Tillinghast R, Root T. Nondestructive Evaluation (NDE) Technology Initiatives Delivery Order 0021: Application of an Electrochemical Fatigure Sensor (EFS) Bore scope System for Military Turbine Engine Assessment[R]. AFRL-ML-WP-TR-2003-4022, Wright-Patterson AFB: Materials and Manufacturing Directorate Air Force Research Laboratory, 2002: 1~22.
    [20] Brasche L, Mellors T, Patton T, et al. High-Speed Bolthole Eddy-Current Scanning for In-Service Inspection of Engine Disks[R]. DOT/FAA/AR-05/34, Washington: U.S. Department of Transportation Federal Aviation Administration Office of Aviation Research, 2005: 1~14.
    [21]杨明安.无损检测技术发展在航空装备修理中的应用[J].无损探伤,2002(4):6~9.
    [22]于辉,左洪福,黄传奇.立体视觉在航空发动机无损检测中的应用[J].无损检测,2003,25(5):229~233.
    [23]程云勇,张定华,毛海鹏等.一种基于工业CT的航空发动机涡轮叶片生产检测系统关键技术研究[J].制造技术与机床,2004(1):27~29.
    [24]许占显,林为干.飞机发动机叶片裂纹的交变磁场非接触原位探测[J].无损检测,2005,27(12):637~639.
    [25]孙金立,肖兴明,杨修德.某型航空发动机燃烧室外套超声检测换能器的设计[J].无损检测,2004,26(6):292~293.
    [26]袁英民,崔海涛,温卫东.航空发动机叶片超声检测信号的小波分析方法[J].燃气涡轮试验与研究,2003,16(2):46~49.
    [27]吴思源,周晓军,李雄兵等.变厚度航空锻件超声C扫描技术研究[J].传感技术学报,2006,19(4):1052~1055.
    [28]郭海鸥.飞机某型发动机荧光渗透检验假缺陷显示分析及排出[J].无损探伤,2006,30(4):63~64.
    [29]周正干,杜圆媛.航空发动机叶片X射线数字图像分析的一种新方法[J].中国机械工程,2006,17(21):2270~2273.
    [30]耿荣生.利用模态声发射技术检测飞机主构件的日历损伤[J].机械工程学报,2003,39(9):128~132.
    [31]邵锦文,张振家,冯国泰.发动机转子叶片断裂故障的解决方法[J].航天制造技术,2002(6):21~24.
    [32]许占显,侯日立.飞机损伤原位检测[M].北京:海潮出版社,1999:1~2.
    [33]许占显,李佩春.航空原位检测技术[J].航空科学与技术,2001(1):33~35.
    [34]许占显.原位检测技术及其应用[J].建设机械技术与管理,2002(1):17~19.
    [35]许占显,李佩春.原位检测技术[J].无损检测,2002:24(5):203~204,228.
    [36] Samsonov P. Remote Visual Inspection for NDE in Power Plants[J]. Materials Evaluation, June l993:662~663.
    [37]《国防科技工业无损检测人员资格鉴定与认证培训教材》编审委员会.目视检测[M].北京:机械工业出版社,2006:1~3,32~38.
    [38] Anon. Video Borescoping Helps Keep Gas Turbines Healthy[J]. Turbomachinery International.S eptember/October 1998:46~48.
    [39] William J L, George S. Crampton and the Origins of Industrial Endoscopy[J]. Materials Evaluation, 1988(46): 1639~1642.
    [40]袁启明.内窥镜的现状及发展趋势一——纤维内窥镜[J].中国医疗器械信息,1997(4):15~17.
    [41]袁启明.医用内窥镜的新进展[J].中国医疗机械信息,2000(3):17~20.
    [42]袁启明.内窥镜的现状及发展趋势二——电子内窥镜[J].中国医疗器械信息,1997(5):34~36.
    [43]张平,李隽,吴俊等.视频内窥图象采集与处理[J].应用光学,1995(4):37~39.
    [44] Everest VIT INC.VideoProbe XL ProTM系列产品介绍.2000.
    [45] OLYMPUS INDUSTRIAL.Industrial Endoscopy System Guide.Version2, 1999.
    [46] Kaplan H. A Borescope That Behaves Like the Human Eye[J]. Photonics Spectra. September 1994:46-47.
    [47]伍颂,赵建华,黄振佳.可测量视频内窥镜在无损检测中的应用[J].宇航材料工艺,2000(3):57~60.
    [48] Ross J. Anglo Japanese Collaboration in the Design of Medical and Industrial Endoscopic Equipment[J].The Institution of Electrical Engineers,1998:5/3~5/2.
    [49]姜萍萍,颜国正,丁国清等.一种便携式工业视频内窥镜的开发[J].光学精密工程,2002,10(4):407~410.
    [50]于辉,左洪福,陈果等.一种新型工业内窥系统的设计与实现[J].仪器仪表学报,2002,(23)6:556~560.
    [51]江洁,郁道银,张汉奇.一种微型全帧面阵CCD及其驱动控制[J].传感器技术,1999,18(5):47~49.
    [52]江洁,郁道银,王金刚.基于FPGA的电子内窥镜CCD彩色图像采集于显示系统[J].仪器仪表学报,2000,21(1):50~57.
    [53]江洁,郁道银,张汉奇.医用电子内窥镜图像采集与视频显示系统的设计与实现[J].中国生物医学工程学报,2001,20(3):281~285.
    [54]宋玲玲,谢洪波,陈晓冬等.基于FPGA的MEE畸变实时校正系统设计[J].仪器仪表学报(增刊),2003(4):371~372,413.
    [55]刘琳波,宋玲玲,谢洪波等.医用电子内窥镜视频驱动亮度控制系统的研制[J].传感技术学报,2003(2):216~219.
    [56]安全.工业内窥镜在无损检测中的应用[J].无损探伤,2001(4),33~34.
    [57] Atherton D L, Czura W, Schmidt T R. Finite Element Calculations for Shields in Remote Field Eddy Current Tools[J]. Materials Evaluation, 1989, 47(10): 1084-1088.
    [58] Ida N, Xu B Q. An Analytic Approach to Characterization of the Remote Field Effet[J]. Review of progress in QNDE.1991, 10A:309~316.
    [59] Atherton D L, Frey P, Guo X. Remote Field Slit Responses[J]. British Journal of NDT, 1994, 36(1):4~7.
    [60] Schimidt T R, Atherton DL. Understanding Remote Field Logs(part2)[J]. Materials evaluation, 1998,12:1356~1362.
    [61] Sharma S, Sun Y, Upda L. Finite Element Modeling for Simulating Remote Field Flaw Detection in Aircraft Frame[J]. IEEE Transactions on Magnetic, 1999, 35(3):1750~1753.
    [62] Yi J K, David L A. RFEC Inspection for Coaxial CANDU Fuel Channel Tubes.SMIRT-15, Korea, 1999:391~398.
    [63]徐小杰.铁磁性管道中轴向裂纹的远场涡流检测技术研究[D].长沙:国防科技大学,2008:1~11.
    [64] E2097-00, Standard Practice for In Situ Examination of Ferromagnetic Heat Exchanger Tubes Using Remote Field Testing[S]. Annual Book of ASTM Standards, 2000.
    [65] Mackintosh D, Cagle L, Russell D. A New ASTM Standard for Remote Field Testing[J]. Materials evaluation, 2000, 10:1213~1215.
    [66] Libby H L. Introducion to Electromagnetic Nondestructive Test Methods [M], NewYork: Johc Wiley&Sons Inc, 1971:1~34.
    [67] Bartels K A, Fisher J L. Multifrequency eddy current image Processingtechniques for nondestructive evaluation Image Processing[C]. Proceedings International Conference,on Vol.l,Oct.1995:486~489.
    [68] Barend van den Bos, Stefan Sahlen, Joakim Andersson .Automatic Scanning with Multi-frequency Eddy Current on Multi-layered Structures[J]. Aircraft Engineering and Aerospace Technology, 2003,75(5): 491~496.
    [69] Crowther P. Non-destructive Evaluation of Coatings for Land-based Gas Turbines Using a Multi-frequency Eddy Current Technique[J]. Insight: Non-Destructive Testing and Condition Monitoring, 2004,46(9): 547~549.
    [70] Liu Z, Forsyth D S, Safizadeh M S,et al. Quantitative Interpretation of Multi-frequency Eddy Current Data by Using Data Fusion Approaches[C]. Proceedings of SPIE the International Society for Optical Engineering, 2003,5046:39~47.
    [71] Sundararaghavan V, Balasubramaniam K, Babu N R,et al. A Multi-frequency Eddy Current Inversion Method for Characterizing Conductivity Gradients on Water Jet Peened Components[J]. NDT & E International, 2005,38(7):541~547.
    [72] Vandenbos B, Sahlen S, Andersson J. Automatic Scanning with Multi-frequency Eddy Current on Multi-layered Structures[J]. Aircraft Engineering and Aerospace Technology, 2003,75(5): 491~496.
    [73] Sophian A, Tian G Y, Taylor D, et al. Design of a Pulsed Eddy Current Sensor for Detection of Defects in Aircraft Lap-joints[J]. Sensors and Actuators A, 2002:92~98.
    [74] Sophian A, Tian G Y, Taylor J, et al. A Feature Extraction Technique Based on Principal Component Analysis for Pulsed Eddy Current NDT[J]. NDT&E International, 2003,36 (1): 37~41.
    [75] Giguere S, Lepine B A, Dubois J M S. Pulsed Eddy Current Technology: Characterizing Material Loss with Gap and Lift off Variations[J]. Res Nondestr Eval, 2001,(13):119~129.
    [76] Lepine B A, Giguere J S R, Forsyth D S, et al. Applying Pulsed Eddy Current NDI to the Aircraft Hidden Corrosion Problem[J]. Review of Progress in QNDE, 2000,(11):449~456.
    [77] Yang H C, Tai C C. Pulsed Eddy Current Measurement of a Conducting Coating on a Magnetic Metal plate[J]. Meas.Sci.Technol, 2002,(13):1259~1265.
    [78]徐平.多层金属结构中腐蚀缺陷的脉冲涡流检测技术研究[D].长沙:国防科技大学,2005:1~8.
    [79]杨宾峰.脉冲涡流无损检测若干关键技术研究[D].长沙:国防科技大学,2006:1~12.
    [80] Laenen C. Additional applications with the Alternating Current Field Mesurement (ACFM) Technique[J]. Insight: Non-Destructive Testing and ConditionMonitoring, 1998, 40(12):860~863.
    [81] Rains A. Cost Benefit Applications Using the Alternative Current Field Measurement Inspection Technique[J]. Insight: Non-Destructive Testing and Condition Monitoring, 2002, 44(1):25~30.
    [82] David A T. Quantitative In-Service Inspection using the Alternative current Field Measurement (ACFM) Method[J]. Insight: Non-Destructive Testing and Condition Monitoring, 2005, 47(6):354~357.
    [83] Francisco C R,Marques, Marcus V M M. Experiences in the Use of ACFM for Offshore Platform Inspection in Brazil[C]. The 15th WCNDT, ROMA,2000.
    [84] Alan R. The Development of Alternative Current Field Measurement(ACFM) Technology as a Technique for Detection of Surface Breaking Defects in Conducting Materials and Its Use in Commercial and Industrial Applications[C].The 15th WCNDT, Roma, 2000.
    [85]赵海涛.基于交变磁场测量技术的金属表面缺陷检测系统的研究与实现[D].长沙:国防科技大学,2004:1~6.
    [86]康中尉.基于场量测量和频率扫描技术的电磁无损检测技术研究[D].长沙:国防科技大学,2005:1~9.
    [87] Gerald L F, David K T, Richard L, et al. Novel Eddy Current Field Modulation of Magneto-optic Garnet Films for Real-time Imaging of Fatigue Crack and Hidden Corrosion[J]. Nondestructive Inspection of Aging Aircraft, 1993:210~222.
    [88] Fitzpatrick G L, Thome D K, Skaugse R L, et al. Nondestructive Inspection of Tagged Composites Using Real-time Magneto-optic Imaging[C], SPIE Vol.2944: 217~230.
    [89] Fitzpatrick G L, Thome D K, Skaugse R L, et al. Detection of Cracks under Cladding Using Magneto-optic Imaging and Rotating In-plane Magnetization[C]. SPIE Vol.2947:106~116.
    [90]任吉林,吴彦,邬冠华.磁光成像技术在航空构件涡流检测中的应用[J].仪表技术与传感器,2001(12):36~38.
    [91]王雅萍,朱目成.磁光涡流成像无损检测技术的研究[J].激光与红外,2005,(7):515~517.
    [92] Uesaka M, Nakanishi T, Miya K, et al. Micro Eddy Current Testing by Mirco Magnetic Sensor Array[J]. IEEE Trans Mag, 1995, 31(1): 870~876.
    [93] Mcnab A, Thomson J.Eddy Current Array Instrument for Application on Ferfitic Welds[J]. NDT&E Intemational, l995, 28(2): 103~112.
    [94] Uesaka M, Hakuta K, Miya K, et al. Eddy-Current Testing by Flexible Microloop Magnetic Sensor Array[J]. IEEE Trans Mag, 1998, 34(4): 2287~2297.
    [95] Siegel J D. Array Coil Probes Versus Single Rotating Coil Probes for theInspection of Steam Generator Tubes[J]. Insight: Non-Destructive Testing and Condition Monitoring, l999, 41(9): 592~595.
    [96] Huang H Y, Sakurai N, Takagi T, et a1. Design of an Eddy-current Array Probe for Crack Sizing in Steam Generator Tubes[J]. NDT & E International, 2003, 36(7): 515~522.
    [97]陈祥林,丁天怀,黄毅平.新型接近式柔性电涡流阵列传感器系统[J].机械工程学报,2006,42(8):150~153.
    [98]倪光正,杨仕友,钱秀英等.工程电磁场数值计算[M].北京:机械工业出版社,2004:1~17.
    [99] Renhart W Magpie C A. The Treatment of Cracks in NDT Problems Using FEM[J]. IEEE Trans Mag. 1990, 26(2): 873~876.
    [100] Ishibashi K. Eddy Current Analysis by Boundary Element Method Utilizing Impedance Boundary Condition[J]. IEEE Trans Mag, 1993, 32(2): 1512~1515.
    [101] Bossavit. A, Verite J C et al. A Mixed FEM-BIEM Method to Salve 3-D Eddy Current Problem[J]. IEEE Trans Mag, 1982, MAG-18(2): 431~435.
    [102]段耀勇.棱边有限元理论及其在涡流场中的应用[D].西安:西安交通大学,1998:1~6,71~77.
    [103]唐磊.涡流无损检测中体积分方程法及缺陷智能重构系统的研究[D].西安:西安交通大学,1997:7~19.
    [104]雷银照.关于电磁场数值分析的若干认识[J].电工技术学报,1997,12(6):32~34.
    [105]孙晓云,陈德智,刘东辉等.小波变换在涡流无损检测中的应用[J].电工电能新技术,2000,(3):60~64.
    [106]杨锦春.小波分析法在工程电磁场数值计算中的应用[D].武汉:华中理工大学,1998:1~14.
    [107]陈德智.涡流无损检测中数值模拟与信号处理的研究[D].西安:西安交通大学,1998:1~13.
    [108]吴清,沈雪芹等.小波神经网络在电磁场优化问题中的应用[J].中国电机工程学报,1996,16(2):83~86.
    [109]郑勤红.电磁场分析中的多极理论及其应用研究[D].西安:西安交通大学,1996:21~33,59~82.
    [110]闰照文.新型等效源法及其在电磁场分析中的应用研究[D].西安:西安交通大学,1999:28~47.
    [111]唐磊,盛剑霓.电磁无损评估的进展[J].无损检测,1999,21(7):306~307.
    [112] Nortor S J, Bowler J R.Theory of Eddy Current Inversion[J]. J.Appl.Phys, 1993, 73(2): 501~512.
    [113] Robert D S. Eddy Current Testing, Today and Tomorrow[J]. Materials Evaluation, 1994, 52(1): 28~32.
    [114] Jarmulak J. A Method of Representing and Comparing Eddy Current Lissajous Patterns[J]. Review of Progress in Quantitative Nondestructive Evaluation, 1997, 16: 302~308.
    [115]幸玲玲,王东进.涡流检测中的组合神经网络模型[J].电子学报,2002,30(5):734~737.
    [116]宋君烈,邵克勇,迟德选等.小波分析在板形缺陷识别中的应用[J].控制和决策,2002,17(1):69~72.
    [117]任吉林,吴礼,平李林.涡流检测[M].北京国防工业出版社,1985:1~44.
    [118]《国防科技工业无损检测人员资格鉴定与认证培训教材》编审委员会.涡流检测[M].北京:机械工业出版社,2004:25~44.
    [119]唐继红,吴晓军.双频涡流检测传感器的设计与制作[J].无损检测,1998,20(1):304~307.
    [120]袁改焕,李恒羽,白新德等.高性能涡流检测传感器的研制[J].无损检测,2006,28(9):453~455.
    [121] Cheng W Y, Miya K, Chen Z M. Reconstruction of Cracks with Multiple Eddy Current Coils Using a Database Approach[J]. Journal of Nondestructive Evaluation, 1999, 18(4): 149~160.
    [122] Hoshikawa H, Koyama K, Karasawa H. A Novel Surface Eddy Current Probe with Phase Information on Surface Flaw Depth[C]. 15th WCNDT,Roma,2000.
    [123] Washabaugh A, Zilberstein V, Schlicker D, et al. Shaped-Field Eddy-Current Sensors and Arrays. Smart Nondestructive Evaluation for Health Monitoring of Structural and Biological Systems[C]. Proceedings of SPIE, 2002, Vol.4702: 63~75.
    [124] Hoshikawa H, Koyama K, Maeda M. A New Eddy Current Surface Probe for Short Flaws with Minimal Lift-off Noise[J]. Review of Quantitative Nondestructive Evaluation Vol.22, 2003 American Institute of Physics.
    [125]陈亮,阙沛文,李亮等.巨磁阻传感器在涡流检测中的应用[J].无损检测,2005,27(8):399~401.
    [126]邢丽冬,于盛林,曲民兴.三维远场涡流探头的设计与应用研究[J].中国机械工程,2007,18(4):423~426.
    [127]徐君,姚恩涛,周克印等.InSb磁敏电阻脉冲涡流传感器的研究[J].仪器仪表学报,2007,28(5):865~867.
    [128]佟威.涡流检测探头的有限元分析及优化设计[D].沈阳:沈阳工业大学,1999:43~63.
    [129] Liu Z, Forsyth D S, Lepine B A, et al. Quantifying Aircraft Hidden Corrosion by Using Multi-modal NDI Techniques[J]. Review of Quantitative Nondestructive Evaluation Vol.23, 2004 American Institute of Physics: 1355~1362.
    [130] Zagrebelny V, Troitsky V, Voronina Y. Combined Use of Visual-optical and Eddy Current Methods on Non-destructive Testing in Valuation of the Defects in Structural Elements[C]. 16th World Conference on Nondestructive Testing, Aug.30-Sep.4 october 2004 - Montreal, Canada.
    [131] Gupta K, Ghasr M T, Kharkovsky S,et al. Fusion of Microwave and Eddy Current Data for a Multi-modal Approach in Evaluating Corrosion under Paint and in Lap Joints[J]. Review of Quantitative Nondestructive Evaluation Vol.26, 2007 American Institute of Physics: 611~618.
    [132]范智勇.超声-涡流一体化NDE成象系统的研究[D].北京:北方交通大学,1998:1~10.
    [133] http://www.eddysun-ndt.com爱德森(厦门)电子有限公司.
    [134]帅家盛.全新的涡流检测仪器[J].航空制造技术,2004,(9):36~39.
    [135] Edwards R S, Sophian A, Dixon S, et al. EMAT and Eddy Current Dual Probe for Detecting Surface and Near-surface Defects[J]. Review of Quantitative Nondestructive Evaluation Vol.25, 2006 American Institute of Physics: 1515~1522.
    [136] Liu Z, Tsukada K, Hanasaki K. One-dimensional Eddy Current Multi-frequency Data Fusion: a Multi-resolution Analysis Approach[J]. Insight, 1998, 40(4): 286~289.
    [137] Chioclea S, Dickstein P. Principle of Data Fusion in Multi-sensor Systems for Nondestructive Testing[J]. Review of Quantitative Nondestructive Evaluation 2000 American Institute of Physics: 805~807.
    [138] FRANCOIS N. A New Advanced Multitechnique Data Fusion Algorithm for NDT[C]. 15th World Conference on Nondestructive Testing, Roma,2000
    [139] Liu Z, Safizadeh M S, Forsyth D S, et al. Data Fusion Method for the Optimal Mixing of Multi-frequency Eddy Current Signals[J]. Review of Quantitative Nondestructive Evaluation Vol.22, 2003 American Institute of Physics: 577~584.
    [140] Edwards R S, Sophian A, Dixon S,et al. Data Fusion for Combining Techniques to Detect and Size Surface and Near-surface Defects[J]. Review of Quantitative Nondestructive Evaluation Vol.26, 2007 American Institute of Physics: 619~626.
    [141]许军,罗飞路,张耀辉.多传感器信息融合技术在无损检测中的应用研究[J].无损检测,2000:22(8):342~344.
    [142]金建华,康宜华.多传感器信息的决策融合法及其在电磁检测中的应用[J].无损检测,2003:25(11):585~588.
    [143]刘莉,任文举.模糊信息融合在无损检测技术中的应用研究[J].机械工程与自动化,2006(3):73~74,77.
    [144] Scott G W, Burkhardt G L, Raganathan B N. Electric Current Perturbation Method for Inspection of Aluminum Welds[C]. in Proc. Rev. Prog. Quant. Nondestruct. Eval Vol.5B, 12th AAnnu. Review, Williamsburg, VA, Jun. 1985, pp. 1713~1721.
    [145] Burkhardt G L, Beissner R E. Electric Current Perturbation NDE. in ASM Handbook[M]. Vol.17, OH: ASM, 1992:275~292.
    [146] Lim H, Park J. Modified Electric Current Perturbation (ECP) Characterization for a Circular Aperture[J]. IEEE transaction on instrumentation and measurement. 2006, 55(1):212~218.
    [147]幸玲玲,黄伟,盛剑霓.金属材料中缺陷扰动涡流场的快速重构[J].西安交通大学学报,2000,34(2):11~15.
    [148]孙晓云,陈德智,盛剑霓.通过扰动磁场识别缺陷[J].无损检测,2001,23(2):47~50.
    [149]金建铭.电磁场有限元方法[M].西安:西安电子科技大学出版社,1998:1~13.
    [150]曲民兴,司家屯.电磁无损检测与数值计算:第一讲电磁无损检测的一般问题[J].无损检测,1994,16(4):109~110,117.
    [151]张惠娟.运动电磁系统涡流场有限元研究[D].天津:河北工业大学,2000:1~5.
    [152]谢德馨等编著.三维涡流场的有限元分析[M].北京:机械工业出版社,2007:17~29.
    [153]《美国无损检测手册》译审委员会译.美国无损检测手册:电磁卷[M].上海:上海世界图书出版社,1999:78~105.
    [154] Berger A著,吕骏译.嵌入式系统设计[M].北京:电子工业出版社,2002:1~16.
    [155]沈绪榜,王守智.嵌入式系统的发展[J].微机发展,2003(2):1~2.
    [156]徐鸣,沈希,钱陆均.嵌入式计算机系统技术[J].工业仪表与自动化装置,2005,2:6~8,21.
    [157]徐文明.嵌入式系统结构特点[J].电测与仪表,2004,8:48~50.
    [158] Wang R, Yang S Y. The Design of a Rapid Prototype Platform for ARM Based Embedded System[J]. IEEE Transactions on Consumer Electronics, 2004, 50(2): 746~750.
    [159] Wang G P, Lei X, Zhu M J. Multi-function Intelligent Instrument of Vehicle Detection Based on Embedded System[C]. Proceedings of the 6th World Congress on Intelligent Control and Automation, 2006, 5149~5152.
    [160] Yang Z Z, Liu J, Eric C, et al. An Embedded System for Speech Recognition and Compression[C]. Proceedings ofISCIT2005, 2005, 287~290.
    [161]芮华,徐大专.一种新型数字化超声波自动探伤系统的研制[J].仪器仪表学报,2005,26(9):957~960.
    [162]和志强,曾文献,薛世建.400M SPS嵌入式虚拟数字存储示波器[J].仪器仪表学报,2005,26(9):949~952.
    [163]熊超,田小芳,陆起涌.嵌入式机器视觉系统设计[J].仪器仪表学报,2005,26(S8):368~370.
    [164]陈文智等.嵌入式系统开发原理与实践[M].北京:清华大学出版社,2005:1~10.
    [165]周根林.嵌入式系统原理与应用[M].南京:南京大学出版社,2006:1~9.
    [166] Samsung Electronic. S3C2440A 32-Bit CMOS Microcontroller User's Manual, Revision 1. 2004.
    [167]陈榕庭.CMOS图像传感器封装与测试技术[M].北京:电子工业出版社,2006:1~28.
    [168] Eric R F. Ultra Low Power Image System Using CMOS Image Sensor Technology[C]. Proc. SPIE 2267, 1994, 107~111.
    [169] OmmVision, OV7670/OV7171 COMS VGA (640×480) Camera Chip with OmniPixel Technology, Version 1.1. October 6, 2005.
    [170]林家明.面阵CCD摄像机光学镜头参数及其相互关系[J].光学技术,2000,26(2):183~185.
    [171]杨明,白桦,王秋良等.面阵CCD摄像头光学镜头参数及选用[J].光电子技术与信息,2005,18(3):27~30.
    [172]安连生,李林,李全臣.应用光学(第三版)[M].北京:北京理工大学出版社,2002:14~35.
    [173]刘钧,高明.光学设计[M].西安:西安电子科技大学出版社,2006:161~181.
    [174]路汉民.均匀照明系统的设计[J].光学仪器,1990,12(4),32~39.
    [175]张万生,梁春广.可见光LED的进展[J].半导体情报,1997,34(3),1~9.
    [176]张万生,梁春广.可见光LED的进展:超高亮度LED及应用(二)[J].半导体情报,1997,34(4),9~17.
    [177] Katsuya k, Tsunemasa T. Imaging Camera System of OYGBR-phosphor-based white LED Lighting[C]. Proc. SPIE 5739, 2005, 25~32.
    [178] Yimin G, Nadarajah N, Jean P F. White LED Performance[C]. Proc. SPIE 5530, 2004,119~111.
    [179]单艳华.基于CCD的轴类零件尺寸测量的研究[D].北京:北京科技大学,2006:19~21.
    [180]邓重一.基于DDS技术的频率合成源设计[J].仪表技术与传感器,2005,(10):37~40.
    [181] Cao X H, Luo F L, Bai F T, et al. A DDS Waveform Generator for Electromagnetic Non-Destructive Testing[J]. Key Engineering Materials, 2005, 296: 661~666.
    [182] Analog Device, Inc. CMOS 300 MSPS Quadrature Complete DDS AD9854, Version B, 2006.
    [183]高晋占.微弱信号检测[M].北京:清华大学出版社,2004:154~198.
    [184]王华.Matlab在电信工程中的应用[M].北京:中国水利水电出版社,2001:585~612.
    [185] Jiang M. A Design of Embedded Terminal Unit Based on ARM and Windows CE[C]. ICEMI '07. 8th International Conference on Electronic Measurement and Instruments, 2007, 2: 336 ~340.
    [186] Xiao S H, Di L, Lai Y Z, et al. An Open Architecture Numerical Control System Based on Windows CE[C]. ICCA 2007. IEEE International Conference on Control and Automation, 2007, 1237~1240.
    [187] Microsoft Corporation, Windows CE.NET 4.2 Documentation, 2003.
    [188]刘宇.嵌入式系统Windows CE.NET的系统分析[J].微型机与应用,2005,2:10~12.
    [189] Samsu L, Sunghwan C, Hyunsok C, et al. A Development of PowerButton Device Driver Based on Windows CE Device Driver. Information System and Signal Processing[C]. Proc. SPIE 6041, 2005, 6041P1-6041P6.
    [190] (美)William K P著,邓鲁华,张延恒等译.数字图像处理[M].北京:机械工业出版社,2005:158~187.
    [191]崔福绵,付肃真.某型发动机九级篦齿盘均压孔裂纹及断裂分析[C].中国航空学会失效分析分会.全国第五届航空航天装备失效分析会议论文集,北京:国防工业出版社,2006:156~160.
    [192] Provon J. W.主编.航空航天工业部AFFD系统工程办公室译.概率断裂力学和可靠性[M].北京:航空工业出版社,1989:34~92.
    [193]郑世才.无损检测技术的可靠性[J].无损检测,1995,17(8):214~230.
    [194]程志虎,王怡之,陈伯真.无损检测广义可靠性及其研究方法[J].无损检测,1999,21(3):99~106.
    [195] Silk M G. Flaw Size Distributions in Pressure Vessels and Flaw Detection Probability in NDT[J]. British Journal of NDT, 1991, 33(10):491~494.
    [196] Dimitrijevice V. Reliability and Risk in Pressure Vessels and Piping[J]. ASME Pres Ves and Piping 1993, 251:75~80.
    [197] Trepal N, Liu J M, G.Lipetzky K, et al. A Model-Based Probability of Detection Approach to Refinement of Eddy Current Inspection of Condenser Tubes[J]. Review of Quantitative Nondestructive Evaluation Vol.27, 2008,360~367.
    [198]中国航空科学技术研究院编著.飞机结构可靠性分析与设计指南——裂纹检出概率曲线[M].西北工业大学出版社,1995:1~17.
    [199]刘秀丽,左富纯.无损检测技术检出概率统计分析方法[J].无损检测,1996,18(1):9~11.
    [200]傅惠民,钱若力.无损检测可靠性与寿命控制方法[J].航空动力学报,1994,19(3),227~232.
    [201]刘登第,傅惠民.飞机结构缺陷漏检概率评估与控制技术[J].航空学报,2000,21(3),251~253.
    [202]李振兴.老龄飞机结构无损检测可靠性研究[D].天津:中国民航大学,2007:24~38.
    [203] Nakastuji T, Kuramochi M, Fujimori T, et a1. Reliability of Manual Ultrasonic Examination of Welds in Steel Building Construction.Part 2. Defect Detection Probability[J]. Journal of Nondestructive Inspection, 1981, 30(4):257~263.
    [204] Urabe N, Yoshitake A. Reliability Analysis in Welded Structures-case Study for Brittle Fracture of High Pressure Gas Storage Tank[J]. High Pressure Technology, 1981, 19(2):87~97.
    [205] Goranson U G, Rogers J T. Elements of Damage Tolerance Verification[C]. Proceedings of the 12th Symposium of the International Committee on Aeronautical Fatigue.Toulouse, France: ICAF, 1983, 1~20.
    [206] Ichikawa M. A Theoretical Study of Defect Detection Probability of Nondestructive Inspection[J]. Reliability Engineering. 1985, 10(3):175~182.
    [207]肖鹏,白存儒.logistic模型在裂纹检测概率曲线拟合中的应用[J].华东交通大学学报,2005,22(5):158~161.
    [208]邵锦文,张振家,冯国泰等.发动机转子叶片断裂故障的解决方法[J].航天制造技术,2002,6:21~24.
    [209]郭海鸥.飞机某型发动机高压压气机转子叶片的超声波检测[J].无损检测,2004,26(7):367~369.
    [210]郭海鸥.飞机某型发动机压缩机一级叶片裂纹检测研究[J].无损探伤,2004,5:45~46.
    [211]徐志刚,张栋.航空发动机第三级压气机叶片断裂分析[J].电子显微镜,2004,23(4):491~491.
    [212]孙护国,霍武军.航空发动机涡轮叶片的检测技术[J].航空发动机,2002,1:23~25.
    [213]关玉璞,陈伟,高德平.航空发动机叶片外物损伤研究现状[J].航空学报,2007,28(4):851~857.
    [214]袁英民,孙金立,万钧等.某航空发动机压气机叶片超声检测信号处理[J].无损检测,2004,26(7):332~335.
    [215]周正干,赵胜,安振刚.航空发动机叶片实时成像自动检测技术研究[J].机械工程学报,2005,41(4):180~184.
    [216]李岩,孟娇茹.基于图像识别的发动机内窥涡流智能检测系统研究[J].中国民航学院学报,2005,23(4):15~19.
    [217]罗云林,徐文君.基于支持向量机的航空发动机内窥损伤识别[C].2006年中国控制与决策学术年会论文集,245~248.
    [218]丁鹏,李长有,马齐爽等.基于小波的航空发动机叶片孔探损伤检测[J].北京航空航天大学学报,2006,32(12):1435~1438.
    [219] Buxton B F, Abdallahi H, Fernandez-Reyes D, et al. Development of an Extension of the Otsu Algorithm for Multidimensional Image Segmentation of Thin-Film Blood Slides[C]. Proceedings of the International Conference on Computing: Theory and Applications, March 2007, 552~562.
    [220]肖超云,朱伟兴.基于Otsu准则及图像熵的阈值分割算法[J].计算机工程,2007,33(14):188~189,209.
    [221] Rezai-Rad G., Aghababaie M. Comparison of SUSAN and Sobel Edge Detection in MRI Images for Feature Extraction[J]. Information and Communication Technologies, April 2006, 1103~1107.
    [222] Jiang X, Shu H, Toumoulin C, et al. Surface Reconstruction of Complex Contour Lines By Means of Chain code Matching Technique[C]. Proceedings of the 25th Annual International Conference of the IEEE EMBS Cancun, September 2003, Vol.1: 521~524.
    [223]彭光雄,李京,何宇华等.利用纹理分析方法提取CBERS02星CCD图像土地覆盖信息[J].遥感技术与应用,2007,22(1):8~13.
    [224] Dash P K., Samantaray S R, Panda G. Fault Classification and Section Identification of an Advanced Series-Compensated Transmission Line Using Support Vector Machine[J]. IEEE Transactions on Power Delivery, 2007, 22(1), 67~73.
    [225]何江平,文俊浩,邓恬洁等.基于支持向量机的图像识别[J].重庆大学学报(自然科学版),2006,29(1):57~60.
    [226]曹雄恒.矩形线圈激励无损检测技术研究[D].长沙:国防科技大学,2002:20~23.
    [227]胡媛媛.“类匀强”场及其扰动的仿真分析[D].长沙:国防科技大学,2002:20~28,45~62.
    [228] Hoshikawa H, Koyama K. Eddy Current Testing by Uniform Eddy Current Probe[C]. Proceedings of 4th Far East Conference on NDT, 1997, 43-52.
    [229] Hoshikawa H, Koyama K, Mitsuhashi S. Eddy Current and Magnetic Testing of Magnetic Material by Uniform Eddy Current Probe[J]. Review of Quantitative Nondestructive Evaluation Vol.24, 2005, 494~501.
    [230] Hoshikawa H, Koyama K, Kawate Y. Electromagnetic surface testing of weld over painting by uniform eddy current probe[J]. Review of Quantitative Nondestructive Evaluation Vol.26, 2007, 1103~1110.
    [231] Hoshikawa H, Koyama K. A New Eddy Current Probe using Uniform Rotating Eddy Current[J]. Materials Evaluation, 1998, 56(1):85~89.
    [232] Hoshikawa H, Koyama K, Naruse Y. Detecting Weld Zone over Anticorrosion Painting by Rotating Uniform Eddy Current Probe[J]. Review of Quantitative Nondestructive Evaluation Vol.24, 2005, 502~508.
    [233]杨露菁,余华.多源信息融合理论与应用[M].北京:北京邮电大学出版社,2005:1~24.
    [234]何友,王国宏等.多传感器信息融合及应用[M].北京:电子工业出版社,2007:1~12.
    [235]徐从富.面向数据融合的D-S方法综述[J].电子学报,2001,29(3):393~396.
    [236] Bogler P. Shafer-Dempster Reasoning with Application to Multisensor Target Identification Systems[J]. IEEE Trans. On Systems, Man and Cybernetics, 1987.17(6):968~977.
    [237] Hong L, Lynch A. Recursive Temporal-Spatial Information Fusion with Application to Target Identification[J]. IEEE Trans. On Aerospace and Electronic Systems,1993, 29(2):435~445.
    [238]孙洁娣,温江涛,靳世久.基于D-S证据理论的管道安全检测数据融合技术的研究[J].传感技术学报,2007,20(2):404~407.
    [239] Liu Z, Fahr A, Mrad N. Application of Dempster-Shafer Theory for Fusion Lap Joints Inspection Data[C]. Nondestructive Evaluation and Health Monitoring of Aerospace Materials, Composites, and Civil Infrastructure V, Proc. of SPIE Vol.6176, 2006, 61761J-1~61761J-9.
    [240] Bruma A, Iftimie N, Steigmann R, et al. Eddy Current and Ultrasound Data Fusion Using Dempster-Shafer Theory[C]. IVth NDT in Progress, 2007, 33~42.
    [241] Chen Y D, Du R. Fault Features of Large Rotating Machinery and Diagnosis Using Sensor Fusion[J]. Journal of Sound and Vibration, 1995, 188(2): 227~242.
    [242] Zhu H W, Basir O. A Scheme for Constructing Evidence Structures in Dempster-Shafer Evidence Theory for Data Fusion[C]. IEEE International Sgmposium on Computatiunal Inlelligencr in Knbnlics and Automation, 2003: 960~965.