T-DNA插入导致苗期短根的水稻突变体研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物根具有吸收水分和养分、固定植株和合成激素等作用。因为土壤中水分和养分常受到限制,所以根系在土壤中的空间分布如根的构型很大程度上决定了植物吸收水分和养分的能力。而根的长度是根型的主要参数,对于养分的吸收,耐旱和作物的产量都有重要的作用。要揭示控制根伸长的遗传和分子机理,利用根的突变体是一个有效的方法。本研究利用T-DNA插入的水稻突变体库,筛选到一个新颖的水稻短根突变体sr1,并进行了初步的研究。
     短根突变体sr1在苗期表现为初生根极短,根细,但在溶液培养约35天后,根能恢复到野生型一样的长度。组织切片发现突变体sr1短根表型是因为在根尖的分生区细胞数目减少和各种类型细胞的径向直径减小所造成。
     克隆到了控制短根的基因OsGLR1,OsGLR1基因与动物和拟南芥离子通道型谷氨酸受体基因同源,编码4个跨膜结构域M1、M2、M3和M4,2个配体结合结构结构域GlnH1和GlnH2。Sounthern印迹表明OsGLR1基因为单拷贝,它有6个外显子组成,位于第4染色体上。
     通过转基因互补能大部分恢复短根突变体sr1的根长,证实了OsGLR1基因控制根伸长的功能;短根突变体sr1的根尖分生区细胞内钙离子浓度比野生型显著低;蛋白免疫分析发现OsGLR1是一分子量约110kDa的膜整合蛋白;OsGLR1基因主要在侧根、根和叶的维管组织中表达;说明OsGLR1可能是一个钙转运的离子通道。
     在36/30℃高温培养7天时,短根突变体根要比在28/22℃下伸长快近2倍,在水稻培养液中能达到野生型根长的约90%,而野生型的根伸长在这二种温度培养时几乎一样,表现出高温抑制。说明短根突变体sr1对高温不敏感表现为耐高温特性,OsGLR1基因可能参与了温度调控根伸长的反应。
The plant roots are involved in the acquisition of water and nutrients, anchorage of plants, synthesis of plant hormones. Because the supplies of nutrition and water in soil are always limited, the spatial distribution of the root system, i.e., root architecture, largely determines the ability of a plant to exploit these resources. The root length is main parameter of root architecture with various important functions such as nutrient uptake, drought tolerance and yield. To uncover the mechanisms controlling root elongation, genetic analysis of mutants have been proved to be a useful approach. We isolated a novel short root mutant, sr1, from an T1 population of rice japonica variety Zhonghua No. 11generated by T-DNA mutagensis.
    The mutant srl shows greatly reduced primary root length and diameter at the seedling stage. Hydroponic cultivation revealed that root length of the mutant recovers to the level of the wild type at about 35 days. Histological observation of seminal root tips indicated that the short root phenotype was due to the reduced cell number and cell expansion.
    The gene, OsGLRl, controlling the short root phenotype was cloned after genetic analysis, and identified as a homolog ionotropic glutamate receptors (iGluRs) gene. Because it encodes all of signature domains of animal and Araidopsis iGluRs, including four transmember domains (Ml to M4) and the putative ligand-hinding domains(GlnHl and GlnH2). Southern blotting analysis indicates that itis a single copy gene in rice genome. OsGLRl gene is consisted of six exons and mapped on chromosome 4.
    Genetic complementation analysis proved the function of OsGLRl gene to elongate the root length. The level of Ca2+ in meristem of srl root tip decreased significantly compared with wild type. The promoter of OsGLRl gene was active in lateral root and vascular tissues in root and leaf. This suggests that OsGLRl may encode a function channel that unloads or allocatas Ca2+.
    When grown at 36/30, srl seedings exibit dramatic root elongation compared with seeding grown at 28/22, and attain the 90% root length of wild type in rice culture solution. So srl is insensitivity and tolerance to high temperature and OsGLRl may involed in controlling temperature-mediated root elongation.
引文
李扬汉.(1979)禾本科作物的形态与解剖.上海科学出版社,142-151
    Araki K, Meguro H, Kushiya E, Takayama C, Inoue Y and MISHINA M. (1993) Selective expression of the glutamate receptor channel delta 2 subunit in cerebellar Purkinje cells. Biochem. Biophys. Res Commun. 197: 1267-1276
    Arioli T, Peng L, Betzner A S, Burn J, Wittke W, Herth W, Camilleri C, Hofte H, Plazinski J, Birch R and Cork A. (1998) Molecular analysis of cellulose biosynthesis in Arabidopsis. Science. 279: 717-720
    Ashikawa I, Zheng W L, Mikami C, Kawasaki S, Kuroda S and Ichii M. (2000) Genetiz and physical. mapping of a gene responsible for root growth in rice, srt-3, plant & animal genome Ⅷ conference. Town & Country hotel, San Diego, CA, January 9-12,
    Benfey P N, Linstead P J, Robert K, Schiefelbein J W, Hauser M T and Aeschbacher R A. (1993) Root development in Arabidopsis four mutants with dramatically altered root morphogenesis. Development. 119: 57-70
    Bennett J A and Dingledine R. (1995) Topology profile for a glutamate receptor: three transmembrane domains and a channel-lining reentrant membrane loop. Neuron 14: 373-384
    Blackman P G and Davise W J. (1985) Root to shoot communication in maize plant of effects of soil drying. Journal of Experimental Batany. 36:39-48
    Blilou I, Frugier F, Folmer S, Serralbo O, Willemsen V, Wolkenfelt H, Eloy N B, Ferreira P C, Weisbeek P and Scheres B. (2002) The Arabidopsis HOBBIT gene encodes a CDC27 homolog that links the plant cell cycle to progression of cell differentiation. Gene Dev. 16:2566-2575
    Brenner E D, Martinez-Barboza N, Clark A P, Liang Q S, Stevenson D W and Coruzzi G M. (2000) Arabidopsis mutants resistant to S(+)-β-methyl-α, β-diaminopropionic acid, a cycad-derived glutamate receptor Agonist. Plant Physiol. 124: 1615-1624
    Cano-Delgado A, Metzlaff K and Bevan M W. (2000) The elil mutation reveals a link between cell expansion and secondary cell wall formation in Arabidopsis thaliana. Development. 127:3395-3405
    
    
    Cary, A J. Wennuan L and Howell S H. (1995) Cytokinin action is coupled to ethylene in its effect on the inhibition of root and hypocotyls elongation in Arabidopsis thaliana. Gene Dev. 9: 2131-2142
    Chen G Q, Cui C, Mayer M L and Gouaux E. (1999) Functional characterization of a potassium-selective prokaryotic glutamate receptor. Nature. 402: 817-821
    Chen S Y, Jin W Z, Wang M Y, Zhang F, Zhou J, Jia Q J, Wu Y R, Liu F Y and Wu P. (2003) Distribution and characterization of over 1000 T-DNA tags in rice genome. Plant J. 36: 105-113
    Cheng J C, Seeley K A and Sung Z R. (1995) RML1 and RML2, Arabidopsis genes required for cell proliferation at the root tip. Plant Physiol. 107: 365-376.
    Chiu J, DeSalle R, Lam H M, Meisel L and Coruzzi G. (1999) Molecular evolution of glutamate receptors: a primitive signaling mechanism that existed before plants and animals diverged. Mol Biol Evol. 16: 826-838
    Chiu J C, Brenner E D, DeSalle R, Nitabach M N, Holmes T C and Coruzzi G M. (2002) Phylogenetic and expression analysis of the glutamate-Receptor-like gene family in Arabidopsis thaliana. Mol. Biol. Evol. 19: 1066-1082
    Cramer, G. R. and Jones, R. L. (1996) Osmotic stress and abscisic acid reduce cytosolic calcium activities in roots of Arabidopsis thaliana. Plant Cell Environ. 19, 1291-1298
    Dennison K L and Spalding E P. (2000) Glutamate-gated calcium fluxes in Arabidopsis. Plant Physiol. 124: 1511-1514
    Desnos T, Orbovic V, Bellini C, Kronenberger J, Caboche M, Traas J and Hofte H. (1996) Procustel mutants identify two distinct genetic pathways controlling hypocotyl cell elongation, respectively, in dark- and light-grown Arabidopsis seedlings. Development. 122: 683-693.
    Di Laurenzio L, Wysocka-Diller J, Malarny J E, Pysh L, Helariutta Y, Freshour G, Hahn M G, Feldmann K A and Benfey P N. (1996) The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root. Cell. 86: 423-433
    Dingledine R, Borges K, Bowie D and Traynelis S E (1999) The glutamate receptor ion channels. Pharmacological Reviews, 50: 7-61
    
    
    Dubos C, Huggins D, Grant G H, Knight M R and Campbell M M. (2003) A role fot glycine in the gating of plant NMDA-like receptors. Plant J. 35: 800-810
    Fagard M, Desnos T, Desprez T, Goubet F, Refregier G, Mccann M, Rayon C, Vernhettes S and Hofte H. (2000) PROCUSTE1 encodes a cellulose synthase required for normal cell elongation specifically in roots and dark-grown hypocotyls of Arabidopsis. Plant Cell. 12: 2409-2424
    Foreman J, Demidchik V, Bothwell J H, Mylona P, Miedema H, Torres M A, Linstead P, Costa S, Brownlee C, Jones J D, Davies J M and Dolan L. (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature. 422:442-446
    Genevieve E, Martin F, Candida V, Danielle L and Helene B B. (1999) The sax1 dwarf mutant of Arabidopsis thaliana shows altered sensitivity of growth responses to abscisic acid, auxin, gibberellins and ethylene and is partially rescued by exogenous brassinosteroid. Plant J. 18: 303-314
    Giraudat J, Parcy F, Bertauche N, Gosti F, Leung J, Morris P C, Bouvier-Durand M and Vartanian N, (1994) Current advance in abscisic acid action and signaling. Plant Mol Biol. 26: 1557-1577
    Gray W, Ostin A, Sandberg G, Romano C P and Estelie M. (1998) High temperature promotes auxin-mediated hypocotyl elongation in Arabidopsis. PANS. 95: 7197-7202
    Gregor P, Mano I, Maoz L, Mckeown M and Teichberg VI. (1989) Molecular structure of the chick cerebellar kainate-binding subunit of a putative glutamate receptor. Nature. 342: 689-692
    Helariutta Y, Fukaki H, Wysocka-Diller J, Nakajima K, Jung J, Sena G, Hauser M T and Benfey P N. (2000) The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling. Cell. 101: 555-567
    Hetz W, Hochholdinger F, Schwall M and Feix G. (1996) Isolation and characterization of rtcs, a maize mutant deficient in the formation of nodal roots. Plant J. 10: 845-857
    Hiei Y, Ohta S, Komari T and Kumashiro T. (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 6: 271-282
    Hochholdinger F and Feix G. (1998) Early post-embryonic root formation is specifically affected in the maize mutant lrtl. Plant J. 16: 247-255
    
    
    Hong D L and Ichii M. (1994) Genetic analysis of short root in rice (Oryza sativa L.). Chinese J Rice Sci(中国水稻科学). 8: 200-204
    Ichii M. and Ishikawa M. (1997) Genetic analysis of newly induced short-root mutants in rice (Oryza sativa L.). Breeding Science. 47: 121-125
    Ichii M and Liang Z W. (1997) Morphological characteristics and its inheritance of a short-root mutant in rice. Breed Science. 47: 310
    Inukai Y, Miwa M, Nagato Y, Kitano H and Yamauchi A. (2001) RRL1, RRL2 and CRL2 loci regulating root elongation in rice. Breeding Science. 51: 231-239
    Kang J and Turano F J. (2003) The putative glutamate receptor 1.1 (AtGLR1.1) functions as a regulator of carbon and nitrogen metabolism in Arabidopsis thaliana. PNAS. 100: 6872-6877
    Kim S A, Kwak J M, Jae S K, Wang M H and Nam H G (2001) Overexpression of the AtGluR2 gene encoding an Arabidopsis homolog of mammalian gGlutamate receptors impairs calcium utilization and sensitivity to ionic stress in transgenic plants. Plant Cell Physiol. 42: 74-84
    Lacombe B, Becker D, Hedrich R, DeSalle R, HollmannM, Kwak J M, Schroeder J I, Novere N, Nam H G, Spalding E P, Tester M, Turano F J, Chiu J and Coruzzi G. (2001) The identity of plant glutamate receptors. Science. 292: 1486-1487
    Lain H M, Chiu J, Hsieh M H, Meisel L, Oliveira I C, Shin M and Coruzzi G. (1998) Glutamate-receptor genes in plants. Nature. 396:125-126.
    Lam H M, Peng S S Y and Coruzzi G M. (1994) Metabolic regulation of the gene encoding glutamine-dependent asparagine synthetase in Arabidopsis thaliana. Plant Physiol. 106: 1347-1357
    Leung J and Giraudat J, (1998) Abscisic acid signal transduction. Annu Rev Pant Physiol Plant Mol Biol. 49: 199-222
    Leyser H M O, Pickett, F B, Dharmasiri S and Estelle M. (1996) Mutations in the AXR3 gene of Arabidopsis result in altered auxin response including ectopic expression from the SAUR-AC1 promoter, Plant J. 18: 303-314.
    Liang Z W and Ichii M. (1996a) Genetic analysis of a short-root mutant LM 10 induced from rice (Oryza sativa L.) cultivar IR8. Breeding Science. 46: 373-377
    Liang Z W and Ichii M. (996b) Inheritance of a short-root mutant LMN 35 in rice (Oryza sativa L.). Breeding Science. 146(suppl 2):277
    
    
    Liu Y G, Mitsukawa N, Oosumi T, and Whittier R E (1995) Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J. 8: 457-463
    Lomeli H, Sprengel R, Lauried D J, Kohr G, Herb A, Seeburg P H and Wisden W. (1993) The rat delta-1 and delta-2 subunits extend the excitatory amino acid receptor family. FEBS Lett. 315:318-322
    Mayer S M, Gawlita E, Avissar Y J, Anderson V E and Beale S I. (1993) Intermolecular nitrogen transfer in the enzymic conversion of glutamate to δ-aminolevulinic acid by extracts of chlorella vulgaris. Plant Physiol. 101: 1029-1038
    Muday G K, Lomax T L and Rayle D L. (1995) Characterization of the growth and auxin physiology of roots of the tomato mutant, diageotropica. Planta. 195: 548-553
    Rose A B and Last R L. (1994) Molecular of amino acid, nucleotide, and vitamin biosynthesis. In: Meyerowitz EM and Sommerville CR (Editors), Arabidopsis. Cold Spring Harbor Laboratory Press, Plainview, 835-879
    Scheres B, Di Laurenzio L, Willemsen V, Hauser M-T, Janmaat K, Weisbeek P and Benfey P N. (1995) Mutations affecting the radial organisation of the Arabidopsis root display specific defects throughout the radial axis. Development. 121: 53-62.
    Scheres B and Wolkenfelt H. (1998) The Arabidopsis root as a model to study plant development. Plant Physiol Riochem. 36: 21-36
    Schiefelbein J W and Somerville C. (1990) Genetic control of root hair development in Arabidopsis thaliana. Plant Cell. 2: 235-243.
    Schiefelbein J W and Benfey P N. (1991)The development of plant roots: new approaches to underground problems. Plant Cell. 3: 1147-1154
    Seeburg H P. (1995) The molecular biology of mammalian glutamate receptor channels. TINS 16: 359-365
    Sivaguru M, Pike S, Gassmann W and Baskin T I. (2003) Aluminum rapidly depolymerizes cortical Microtubules and depolarizes the plasma membrane: evidence that these responses are mediated by a glutamate receptor. Plant Cell Physiol. 44(7): 667-675
    Stem-Bach Y, Bettler B, Hartiey M, Sheppard P O, Ohara P J and. Heinemann S E (1994) Agonist selectivity of glutamate receptors is specified by two domains structurally related to bacterial
    
    amino acid-binding proteins. Neuron 13:1345-1357
    Sutcliffe, M J, Wo Z G and Oswald R E. (1996) Three dimensional models of non-NMDA glutamate receptors. Biophys J. 70:1575-1589
    Turano F J, Muhitch M J,. Felker F C and McMahon M B. (2002) The putative glutamate receptor 3.2 from Arabidopsis thaliana (AtGLR3.2) is an integral membrane peptide that accumulates in rapidly growing tissues and persists in vascular-associated tissues. Plant Science. 163:43-51
    Turano F J, Panta G R, Allard M W and Berkum P. (2001) The putative glutamate receptors from plants are related to two superfamilies of animal neurotransmitter receptors via distinct evolutionary mechanisms. Mol Biol Evol. 18: 1417-1420
    Urquhart A A and Joy K W. (1981) Use of phloem exudate technique in the study of amino acid transport in pea plants. Plant Physiology, 68: 750-754
    Vemoux T, Wilson R C, Seeley K A, Reichheld J P, Muroy S, Brown S, Maughan S C, Cobbett C S, Montagu M V, Lnze D, May M J and Sung Z R. (2000) The root meristemless1/cadmium sensitive2 gene defines a glutathione-dependent pathway involved in initiation and maintenance of cell division during postembryonic root development. Plant Cell. 12: 97-109
    Vincentz M, Moureaux T, Leydecker MT, Vaucheret H and Caboche M. (1993) Regulation of nitrate and nitrite reductase expression in Nicotiana plumbaginifolia leaves by nitrogen and carbon metabolites. Plant J. 3: 315-324
    Wada K, Dechesne C J, Shimasaki S, King R G, Kusano K, Buonanno A, Hampson D R, Banner C, Wenthold R J and Nakatani Y. (1989) Sequence and expression of a frog brain complementary DNA encoding a kainate-binding protein. Nature. 342: 684-689
    Willemsen V, Wolkenfelt H. de Vrieze G, Weisbeek P and Scheres B. (1998) The HOBBIT gene is required for formation of the root meristem in the Arabidopsis embryo. Development. 125:521-531
    Wilson A K, Pickett F B, Turner J C and Estelle M. (1990) A dominant mutation in Arabidopsis confers resistance to auxin, ethylene and abscisic acid. Mol Gen Genet. 222: 377-383
    Wopereis J, Pajuelo E, Dazzo F B, Jiang Q, Gresshoff P M, Bruijn de F J Stougaard J and Szczyglowski k. (2000) Short root mutant of Lotus Japonicus with a dramatically altered symboiotic phenoltype. Plant J. 23: 97-114
    
    
    Yao S G, Taketa S and Ichii M. (2002) A novel short-root gene that affects specifically early root.development in rice (Oryza sativa L.). Plant Science. 163: 207-215
    Yao S G, Taketa S and Ichii M. (2003) Isolation and characterization of an abscisic acid-insensitive mutation that affects specifically primary root elongation in rice (Oryza sativa L.). Plant Science. 164: 971-978
    Yi X P, Liang Z W, Kawasaki S, Kuroda S, Ichii M and Ashikawa I. (2002) Construction of a cotig with transformation competent subclones in the gene region of srt3, responsible for the root growth in rice. plant & animal genome Ⅹ conference. Town & Country convention center, San Diego, CA. January 12-16
    Yosida S, Forno D A, Cock J H, and Gpmez K A. (1976) Laboratory Manual for Physiological Studies of Rice. 3rd ed. Manila, IRRI. 61-64
    Zhang H, Jennings A, Barlow P W and Forde B. (1999) Dual pathways for regulation of root branching by nitrate. PNAS. 96: 6529-6534
    Zhang W H and Rengel Z. (1998) Determination of intracellular Ca~(2+) in cells of intact wheat roots: loading of acetoxymethyl ester of fluo-3 under low temperature. Plant J. 15: 147-151