介孔ZSM-5分子筛的合成、表征及其催化加氢性能评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用纳米碳黑颗粒作为硬模板,在水蒸气气氛下合成了介孔ZSM-5分子筛,使用所合成的介孔ZSM-5分子筛与氧化铝机械混合制备复合载体,担载金属组分制备NiMo/复合载体催化剂,并对其加氢脱硫和加氢脱氮活性进行了评价。
     论文系统考察了分子筛合成过程中纳米碳黑颗粒和乙醇的加入比例、晶化时间、焙烧温度对介孔ZSM-5分子筛结构及性质的影响,并得出适宜的合成条件。采用XRD、BET、Py-IR、SEM、TEM、EDAX、AAS等手段对所合成的介孔分子筛进行表征。结果表明,通过选择不同粒径的碳黑颗粒及改变加入碳黑颗粒的比例,可以调控介孔ZSM-5分子筛的孔径分布、孔容大小及孔壁厚度;孔容较小的介孔分子筛具有较高的结晶度、较强的酸性及较好的热稳定性和水热稳定性。
     论文采用XRD、BET、Py-IR、NH_3-TPD、HRTEM等手段对载体和催化剂进行表征。表征结果显示,与氧化铝为载体的催化剂相比,引入介孔ZSM-5分子筛使催化剂的介孔孔容和孔径有所增大,B酸中心增多,催化剂表面单层MoS_2晶片的数量减小,MoS_2晶片的平均堆垛层数增加。
     分别以DBT和喹啉为模型化合物,利用高压微型反应器对催化剂的加氢脱硫和加氢脱氮进行了活性评价。与氧化铝为载体的催化剂相比,介孔分子筛-氧化铝复合载体催化剂中具有较强的酸性,促进了C-S、C-N键的断裂,提高了催化剂氢解脱硫和脱氮的能力。同时,介孔分子筛的加入,减弱了载体与活性组分间的相互作用,使MoS_2晶片的堆垛层数增加,加氢活性位数量增多,催化剂的加氢活性增强。与微孔分子筛-氧化铝复合载体催化剂相比,介孔分子筛-氧化铝复合载体催化剂具有孔道优势,较大的孔容和孔径降低了大分子的扩散阻力,避免副反应的发生。
In this paper, mesoporous ZSM-5 zeolites was synthesized in air of water steam using nano-carbon particles as the“hard template”. Ni-Mo catalyst with mixture ofγ-Al2O3 and mesoporous zeolite as support was prepared and the catalytic performance in HDS and HDN was evaluated.
     The optimal synthesis condition was obtained, after the influence of carbon particles mass, ethanol mass, crystallizing time and calcining temperature on the performances of the mesoporous ZSM-5 zeolites was investigated. The mesoporous zeolites were characterized by XRD, BET, Py-IR, SEM, TEM, EDAX and AAS, and the results showed that the pore size distribution, pore volume and mesoporous wall thickness of the mesoporous zeolites could be controlled by using different carbon particles and changing the mass of the carbon particles. The mesoporous zeolites with smaller pore volume exhibited higher crystallinity, stronger acidity, higher thermal and hydrothermal stability.
     In this paper, the carriers and catalysts were characterized by XRD, BET, Py-IR, NH3-TPD and HRTEM. Compared with Ni-Mo/γ-Al_2O_3, catalysts containing mesoporous zeolites showed lager pore volumes, lager pore diameter and more Bronsted acid, the number of single MoS_2 layer decreased and the average number of MoS_2 layers increased.
     The evaluation of HDS and HDN catalytic activity was carried out in a high pressure micro-reactor, DBT and quinoline was used as model molecule respectively. Compared with Ni-Mo/γ-Al2O3, the catalysts containing mesoporous zeolites exhibited stronger acidity, and higher desulfurization and denitrogenation activity through the direct hydrogenalysis route. Meanwhile, the reaction between active constituent and carrier was reduced because the existence of mesoporous zeolites in carrier, and the number of MoS_2 layers increased, thus enhanced the forming of more catalytical active sites and the improving of hydrogenation ability. Compared with microporous zeolites-containing catalyst, catalysts containing mesoporous zeolites had lager pore volume and pore size, which reduced the diffusion resistance of large molecules and avoided the happening of side reactions.
引文
[1]柯晓明,刘燕. 2020年前成品油消费结构变化对炼油结构调整的要求[J].当代石油石化, 2004, 12(3): 31-34
    [2]蒋庆哲,孙铭勤,柯明,等.国内外清洁柴油质量分析及发展趋势[J].承德石油高等专科学校学报, 2005, 7(4): 1-5
    [3]钱伯章.新世纪清洁汽油、柴油生产技术[J].金山油化纤, 2002, 21(3): 45-52
    [4]朱全力,赵旭涛,赵振兴,等.加氢脱硫催化剂与反应机理的研究进展[J].分子催化, 2006, 20(4): 372-383
    [5]徐永强,刘晨光. 4,6-二甲基二苯并噻吩在Co-Mo/γ-Al2O3上加氢脱硫反应机理的研究[J].炼油技术与工程, 2003, 33(8): 21-25
    [6]左东华,谢玉萍,聂红,等. 4,6-二甲基二苯并噻吩加氢脱硫反应机理的研究I. NiW体系催化剂的催化行为[J].催化学报, 2002, 23(3): 271-275
    [7]刘志红,王豪,鲍晓军.提高柴油加氢精制催化剂活性的方法[J].化工进展, 2008, 27(2): 173-179
    [8]杜明仙,翟效珍,李源,等.高比表面积窄孔分布氧化铝的制备Ⅰ.沉淀条件的影响[J].催化学报, 2002, 23(5): 465-468
    [9]杜明仙,翟效珍,李源,等.高比表面积窄孔分布氧化铝的制备Ⅱ.添加硅的影响[J].催化学报, 2002, 23(5): 469-472
    [10]孙素华,王纲,王永林.不同扩孔方法对氧化铝载体物化性质的影响[J].工业催化, 2001, 9(1): 62-64
    [11]康小洪,宋安篱.双重孔氧化铝载体的研制-炭黑粉扩孔剂的应用[J].石油炼制与化工, 1997, 28(1): 44-47
    [12]林之恩,龚茂初,谢春英,等.高温高表面氧化铝新材料的制备化学研究—镧和表面活性剂对氧化铝性质的影响[J].化学研究与应用, 2001, 13(2): 216-219
    [13]刘勇,王敬先,杨竹仙,等.钡对氧化铝的高温热稳定作用[J].物理化学学报, 2000, 16(6): 533-537
    [14]卢伟光,龙军,田辉平.镧和铈改性对氧化铝性质的影响[J].催化学报, 2003, 24(8): 574-578
    [15]张铁珍,张文成,刘文勇,等.复合氧化物载体用于加氢脱硫催化剂的研究进展[J].精细石油化工进展, 2006, 7(6): 13-16
    [16]李国然,张伟,张明慧,等. Co-Mo/ZrO_2-Al_2O_3催化剂的加氢脱硫活性[J].石油学报, 2003, 19(5): 22-26
    [17]刘百军,郑宇印,孟庆民,等. TiO_2-Al_2O_3复合氧化物负载NiMo加氢脱硫催化剂的研究[J].分子催化, 2004, 18(6): 447-451
    [18]鲁勋,罗来涛,程新孙.制备方法对Pd-CeO_2/Al_2O_3催化剂加氢脱硫性能的影响[J].分子催化, 2008, 22(3): 230-235
    [19]孙万付,罗锡辉,马波,等.W-Ni/Al_2O_3-USY催化剂中USY的作用[J].催化学报,1998,19(5):415-418
    [20] Richard F., Boita T., Perot G.. Reaction mechanism of 4, 6-dimethydiben -zothiophene desulfurization over sulfided NiMoP/Al2O3-zeolite catalysts[J]. Applied Catalysis A: General, 2007, 320: 69-79
    [21] Ding L. H., Zheng Y., Zhang Z.S., et al. Hydrotreating of light cycled oil using WNi/Al2O3 catalysts containing zeolite beta and/or chemically treated zeolite Y[J]. Journal of Catalysis, 2006, 241(2): 435-445
    [22] Ding L. H., Zheng Y., Zhang Z. S., et al. Hydrotreating of light cycle oil using WNi/Al2O3 catalysts containing hydrothermally and chemically treated zeolite Y[J]. Catalysis Today, 2007, 125(3-4): 229-238
    [23]韩继红,顾昌鑫,等. EXAFS研究加氢处理催化剂载体中Y型分子筛对催化性能的影响[J].真空科学与技术, 2000, 20(4): 232-235
    [24] Isoda T., Nagao S., Ma X. L.. Hydrodesulfurization Pathway of 4,6-Dimethyldibenzothiophene through Isomerization over Y-Zeolite Containing CoMo/Al2O3 Catalyst[J]. Energy & Fuels, 1996, 10: 1078-1082
    [25] Schacht P., Hernandez G., Cedeno L., et al. Hydrodesulfurization Activity of CoMo Catalysts Supported on Stabilized TiO2[J]. Energy &Fuels, 2003, 17: 81-86
    [26]王瑶,王安杰,陈永英,等.以MCM-41为载体担载Ni-Mo硫化物制备柴油深度加氢脱硫催化剂[J].石油学报, 2003, 19(5): 36-41
    [27] Zepeda T. A., Fierro J. L. G., Pawelec B.. Synthesis and Characterization of Ti-HMS and CoMo/Ti-HMS Oxide Materials with Varying Ti Content[J]. Chem. Mater. , 2005, 17: 4062-4073
    [28] Kumaran G.. M., Garg S., Soni K., et al. Effect of Al-SBA-15 Support on Catalytic Functionalities of Hydrotreating Catalysts. II. Effect of Variation of Molybdenum and Promoter Contents on Catalytic Functionalities[J]. Ind. Eng. Chem. Res., 2007, 46: 4747-4754
    [29]商红岩,刘晨光,徐永强,等.活性炭负载的Co-Mo催化剂的加氢脱硫性能I.活性炭载体与γ-Al2O3的对比[J].催化学报, 2004, 25(5): 363-368
    [30]魏昭彬,辛勤,盛世善,等.炭担载的Mo和CoMo加氢脱硫催化剂[J].催化学报, 1995, 16(5): 359-394
    [31] Meng X. J., Nawaz F., Xiao F. S.. Templating route for synthesizing mesoporous zeolites with improved catalytic properties[J]. Nano Today, 2009, 48:1-10
    [32]马广伟,葛学贵,黄少云.新型中微孔复合分子筛的合成[J].工业催化, 2003, 11(1): 40-42
    [33]周志华,鲁金明,巫树峰,等.两步晶化法制备MCM-48/ZSM-5复合分子筛[J].无机材料学报, 2009, 24(2): 325-329
    [34] Xiao F. S., Wang L. F., Yin C. Y., et a1. Catalytic properties of hierarchical mesoporous zeolites templated with a mixture of small organic ammonium salts and mesoscale cationic polymers[J]. Angew Chem Int Ed, 2006, 45(19): 3090-3093
    [35] Choi M., Cho H. S., Srivastava R., et al. Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity[J]. Nature Mater., 2006, 5(9): 718-723
    [36] Tao Y. S., Kanoh H., Hanzawa Y., et al. Template synthesis and characterization of mesoporous zeolites[J]. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2004, 241: 75-80
    [37] Schmidt I., Madsen C., Jacobsen C. J. H.. Confined Space Synthesis. A Novel Route to Nanosized Zeolites[J]. Inorg. Chem, 2000, 39: 2279-2283
    [38] Jacobsen C. J. H., Madsen C., Janssens T. V. W., et al. Zeolites by confined space synthesis -characterization of the acid sites in nanosized ZSM-5 by ammonia desorption and 27Al/29Si-MAS NMR spectroscopy[J]. Microporous and Mesoporous Materials, 2000, 39: 393-401
    [39] Schmidt I., Boisen A., Gustavsson E., et al. Carbon Nanotube Templated Growth of Mesoporous Zeolite Single Crystals[J]. Chem. Mater. , 2001, 13: 4416-4418
    [40] Jacobsen C. J. H., Madsen C., Houzvicka J., et al. Mesoporous Zeolite Single Crystals[J]. J. Am. Chem. Soc., 2000, 122: 7116-7117
    [41] Janssen A. H., Schmidt I., Jacobsen C. J. H., et al. Exploratory study of mesopore templating with carbon during zeolite synthesis[J]. Microporous and Mesoporous Materials, 2003, 65: 59-75
    [42] Kim S. S., Shah J., Pinnavaia T. J.. Colloid-Imprinted Carbons as Templates for the Nanocasting Synthesis of Mesoporous ZSM-5 Zeolite[J]. Chem. Mater., 2003, 15, 1664-1668
    [43] Garcia M. J., Cazorla A. D., Linares S. A., et al. Synthesis and characterisation of MFI-type zeolites supported on carbon materials [J]. Micropor. Mesopor. Mater., 2001, 42 : 255-268
    [44] Wei X. T., Smirniotis P. G.. Synthesis and characterization of mesoporous ZSM-12 by using carbon particles[J]. Microporous and Mesoporous Materials, 2006, 89:170-178
    [45]刘志成,孔德金,王仰东,等.淀粉模板法合成介孔ZSM-5分子筛[J].石油学报(石油加工), 2008, 10,增刊
    [46] Wang L. F., Yin C. Y., Shan Z. C., et al. Bread-template synthesis of hierarchical mesoporous ZSM-5 zeolite with hydrothermally stable mesoporosity[J]. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2009, 340, 126-130
    [47] Zhu H., Liu Z., Wang Y., et al. Nanosized CaCO3 as Hard Template for Creation of Intracrystal Pores within Silicalite-1 Crystal[J]. Chem. Mater. , 2008, 20: 1134-1139
    [48]任靖,王安杰,李翔,等. MCM-41-HY复合分子筛的合成及其在深度加氢脱硫中的应用[J].高等学校化学学报, 2006, 27(12): 2353-2356
    [49]张海娟,李永丹. MCM-41在微孔分子筛Y上的附晶生长[J].化工学报, 2006, 57(4): 751-756
    [50]宋春敏,姜杰,乔柯,等.微孔-介孔复合结构分子筛的合成及表征研究[J].分子催化, 2006, 20(4): 294-299
    [51]李福祥,钟炳.中孔MCM-41分子筛在微孔沸石ZSM-5上附晶生长的研究[J].燃料化学学报, 1998, 26(2): 102-107
    [52] Campos A. A., Dimitrov L., Silva C. R., et al. Recrystallisation of mesoporous SBA-15 into microporous ZSM-5[J]. Microporous and Mesoporous Materials, 2006, 95(1-3):92-103
    [53] Launay F., Habib S., Huet M. A. S. , et al. Investigation of the zeolitic nature of the microporosity inside the materials obtained from the hydrothermal treatment of Al-SBA-15 in the presence of the ZSM-5 template[J]. Studies in Surface Science and Catalysis, 2007, 170(1): 818-824
    [54] Chung K.H.. Dealumination of mordenites with acetic acid and their catalytic activity in the alkylation of cumene[J]. Microporous and Mesoporous Materials, 2008, 111(1-3):544-550
    [55] Boveri M., Alvarez C. M., Laborde M. A., et al. Steam and acid dealumination of mordenite: Characterization and influence on the catalytic performance in linear alkylbenzene synthesis[J]. Catalysis Today, 2003, 114(2-3):217-225
    [56] Viswanadham N., Dixit L., Gupta J. K., et al. Effect of acidity and porosity changes of dealuminated mordenites on n-hexane isomerization[J]. Journal of Molecular Catalysis A: Chemical, 2006, 258(1-2):15-21
    [57] Ogura M., Shinomiya S., Tateno J., et al. Alkali-treatment technique-new method formodification of structural and acid-catalytic properties of ZSM-5 zeolites [J]. Appl CatalA: Gen, 2001, 219: 33-43
    [58] Groen J. C., Jansen J. C., Moulijn J. A., et al. Optimal aluminum-assisted mesoporosity development in MFI zeolites by desilication[J]. J Phys Chem B, 2004, 108: 13062-13065
    [59] Dong X., Zhou C. F., Yue M. B., et al. New application of hierarchical zeolite in life science: fast trapping nitrosamines in artificial gastric juice by alkaline-tailored HZSM-5[J]. Mater Lett, 2007, 61(14-15): 3154-3158
    [60]吴伟,李凌飞,武光,等.具有介孔结构的ZSM-12分子筛的制备、表征及催化性能[J].催化学报, 2009, 30(6): 531-536
    [61] Abello S., Bonilla A., Ram?rez J. P.. Mesoporous ZSM-5 zeolite catalysts prepared by desilication with organic hydroxides and comparison with NaOH leaching[J]. Applied Catalysis A: General, 2009, 364:191-198
    [62]万克树,刘茜,张存满.热处理ZSM-5制备微孔-介孔双孔分子筛[J].无机材料学报, 2003, 18(5):1097-1101
    [63]李工,阚秋斌,吴通好,等.含有沸石结构单元体介孔材料的合成及催化性能[J].化学学报, 2002, 60(5): 759-763
    [64]王珊,窦涛,李玉平,等.一类新颖的介孔-微孔复合分子筛的合成[J].科学通报, 2005, 50(1): 24-27
    [65]宋春敏,阎子峰,王槐平,等.用碱处理的ZSM-5沸石合成MCM-41型结构复合分子筛的研究[J].中国石油大学学报(自然科学版), 2006, 30(5): 113-117
    [66]苏建明,刘文波,刘剑利,等.高硅铝比ZSM-5分子筛的合成及催化裂化性能研究[J].石油炼制与化工, 2004, 35(4):18-22
    [67] Martinez J. G., Amoros D. C., Solano A. L., et al. Synthesis and characterization of MFI-type zeolites supported on carbon materials[J]. Microporous and Mesoporous Materials, 2001, 42: 255-268
    [68]唐天地,陈久岭,李永丹.碳纳米纤维在浓硝酸-浓硫酸溶液中表面氧化对其负载的Pt-Pd催化剂颗粒分散状态的影响[J].高等学校化学学报, 2006, 27(1): 129-133
    [69] Nielsen L. P., Christensen S. V., Tops?e H., et al. Changes in metal-sulfur bond energy in promoted and unpromoted molybdenum catalysts [J]. Catalysis Letters, 2000, 67(2-4): 81-85
    [70] Vogelaar B. M., Kagami N., Thomas F., et al. Relation between sulfur coordination of active sites and HDS activity for Mo and NiMo catalysts[J]. Journal of Molecular Catalysis A: Chemical, 2009, 309:79-88
    [71]吴硕,肖丰收.高水热稳定的介孔杂原子分子筛的合成与表征[D].长春:吉林大学, 2004
    [72]孙淑玲,石亚华,徐广通,等. Co-Mo加氢催化剂的TEM表征[J].石油炼制与化工, 2006, 37(11):1-6
    [73] Liu C. G., Flora T. T. N. HDS of DBT using in situ generated hydrogen in the presence of dispersed Mo catalystsⅠ. Product Distribution and Reaction Network[J] .催化学报, 1999, 20(5): 499-505
    [74]徐永强,赵瑞玉,商红岩,等.二苯并噻吩和4-甲基二苯并噻吩在Mo和CoMo/γ-Al2O3催化剂上加氢脱硫的反应机理[J].石油学报(石油加工), 2003, 19(5):14-21
    [75]祁兴国,董群,马守波,等.硫化钼催化剂边缘结构的研究进展[J].化工进展, 2004, 23(12):1291-1295
    [76] Lauritsen J. V., Helveg S., Besenbacher F., et al. Atomic-scale Structure of Co-Mo-S Nanoclusters in Hydrotreating Catalysts[J]. Journal of Catalysis, 2001, 197:1-5
    [77]刘大鹏,李丹.加氢脱氮催化研究的新进展[J].化学进展, 2006, 18(4): 147-428
    [78]李矗,王安杰,鲁墨弘,等.加氢脱氮反应与加氢脱氮催化剂的研究进展[J].化工进展, 2003, 22(6): 583-588
    [79]张登前,段爱军,赵震,等.加氢脱氮催化剂及反应机理研究进展[J].现代化工, 2007, 27增刊(1): 54-59