基于ETM+遥感数据的矿化蚀变异常信息提取
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
西天山位于西伯利亚、塔里木和哈萨克斯坦-准噶尔板块三大板块之间的聚合拼接带,在地质历史上,特别是在古生代时期,曾是构造岩浆活动极为活跃的地区,总体上呈弧形帚状向东收敛展布,平面上呈一锐角向东的三角形,属世界级的巨型成矿造山带。西天山地区面积大,自然条件恶劣,人烟稀疏,高寒、缺水、风沙等都给地质工作者带来极大的困难,因而该地区地质工作程度较低,并且用常规的地质工作方法来进行矿产勘查不仅成本高,而且效率低,显然已经不能满足我国改革开放的需要。
     随着计算机、遥感和地理信息系统技术的不断发展与成熟,遥感机助解译、矿化蚀变信息的提取和多源数据融合技术得到了新的突破。本文在充分理解和吸收已有地质资料的基础上,选择适合该地区的蚀变信息增强方法,对ETM+图像数据中的蚀变信息进行增强,提取遥感蚀变异常信息,为该地区的找矿工作提供可靠资料。本文主要在以下方面开展研究工作:
     (1)对研究区遥感图像进行了几何校正、子区切取等预处理工作,并根据ETM+遥感数据的特征统计分析,选择彩色合成的最佳波段组合。
     (2)应用遥感软件对图像进行增强处理,并对增强后的遥感图像进行目视解译和线性构造的提取,概括了工作区的基本构造格局。
     (3)在充分分析岩矿光谱特征和ETM+波段性能的基础上,采用主成分分析法,辅以波段比值、掩膜技术,去除植被等干扰信息,提取出矿化蚀变异常信息。
     (4)在对研究区已有地质资料等地学信息进行不同程度叠加分析后,进行研究区遥感综合成矿预测,圈定了四处成矿预测区。
In the history of geology, especially in the Paleozoic era,west tianshan which is located the boundry of Siberia, tarim and Kazakhstan-junggar blocks,was the region that Tectono-magmatic activities extremely active. It arcs and generally spread eastwards,and looks like a acute triangle facing east. It is one of world-class orogenic belts. The geologists who work at west tianshan have many great difficulties because of the west tianshan's huge area, bad natural conditions, sparsely populated, low temperature, lack of water, sandstorm and so on.So if we use conventional geological working methods to do mineral exploration, this is not only high cost and low efficiency. Apparently it already cannot satisfy our needs for reforming.
     With the development of the computer、remote sensing and geographical information system,the manual interpretation、the extraction of mineralized alteration anomaly information and multi-data fusion gained a new breakthrough. This paper based on understanding and absorption of the geological data,select the appropriate method to enhance alteration information of ETM+ image,extract remote sensing alteration anomaly information.The paper researched mainly in the following aspects:
     (1)During the research I did some preprocessing works on the image I used, such as geometric correction, cutting the image and so on. And then, the image would be done the features and statistical analysis according to the features of ETM+ remote sensing data, next is choosing the best band combination of color synthesis.
     (2) Using remote sensing software to enhance the image, then to interpret the remote sensing image after enhancement and extract linear struckures, and summarizes the basic structural framework.
     (3)On the basis of the full analysis of rock mineral spectrum characteristic and the ETM+band performance,use the principal component analysis,supplemented by band ratio,image mask technology to remove vegetation interference information and extract mineralized alteration anomaly information.
     (4) After making different degree of information on the superposition analysis with the geological data I already have, and doing some studies on comprehensive metallogenic prediction of survey region, then four forecast areas were delineated.
引文
[1]王润生.遥感地质技术发展的战略思考[J].国土资源遥感,2008,3(1):1-12.
    [2]孙家抦.遥感原理与应用[M].武汉:武汉大学出版社,2003.
    [3]Rowan, L. C.,Goetz,A. F. H. and Ashley, R. P. Discrimination of hydrothermally altered and unaltered rocks in visible and near infrared multispectral images[J].Geophysics,1977(42):522-535.
    [4]Hunt,G. R.,Salisbury,J. W. and Lenhoff, G. J. Visible and near~infrared spectra of minerals and rocks:III Oxides and hydroxides[J]. Modern Geology,1978(2):195-205.
    [5]Crosta,A. and Moore,J. McM. Enhancement of Landsat Thematic Mapper imagery for residual soil mapping in SW Minais Gerais State,Brazil:a prospecting case history in Greenstone belt terrain[J]. Proceedings of the 7th ERIM ThematicConference:Remote sensing for exploration geology, 1989:1173~1187.
    [6]Loughlin, W. P. Principal Component Analysis for alteration mapping[J].Photogrammetric Engineering and Remote Sensing,1991(57):1163-1169.
    [7]王晓鹏,谢志清,伍跃中.ETM图像数据中矿化蚀变信息的提取—以西昆仑塔什库尔干地区为例[J]2002,11(2):119~122.
    [8]Tangestani,m. H. and Moore,F. Comparison of three principal component analysis techniques to porphyry copper alteration mapping:A case study, Meiduk area,Kerman,Iran[J]. Canadian Journal of remote Sensing,2001(27):176~181.
    [9]CROWL EY,James K.HUBBARD,Bernard E.,and MARS,John C. Hydrothermal Alteration on the cascade stratovolcanoes:A remote sensing survey[J].Geological Society of America Abstracts with Programs,2003,35(6):552.
    [10]刘燕君.遥感找矿原理和方法[M].北京:冶金工业出版社,1991.
    [11]赵元洪,张福祥,陈南峰.波段比值的主成分复合在热液蚀变信息提取中的应用[J].国土资源遥感,1991(3):12-16.
    [12]何国金,胡德永,陈志军.从TM图像中直接提取金矿化信息[J].遥感技术与应用,1995,10(3):51~54.
    [13]马建文.利用ETM数据快速提取含矿蚀变带方法研究[J].遥感学报,1997,1(3):208~213.
    [14]张远飞,吴健生.基于遥感图像提取矿化蚀变信息[J].有色金属矿产与勘查,1999,8(6):604~606.
    [15]刘庆生,燕守勋,马超飞.内蒙哈达门沟金矿区山前钾化带遥感信息提取[J].1999,14(3):7-11.
    [16]刘素红,马建文,蔺启忠.通过Gram-Schmidt投影方法在高山区提取TM数据中含矿蚀变带信息[J].地质与勘探,2000,36(5):62-65.
    [17]刘成,王丹丽,李笑梅.用混合像元线性模型提取中等植被覆盖区的粘土蚀变信息[J].地质找矿论,2003,18(2):131-137.
    [18]赵秋艳.LANDSAT-7卫星的有效载荷ETM+[J].航天返回与遥感,2000,21(4):25-32.
    [19]韩玲.关于遥感影像几何校正中纠正变换方法的探讨[J].西安地质学院学报,1997,19(4):86-90.
    [20]赵英时等.遥感应用分析原理与方法[M].北京:科学出版社,2003.
    [21]王新民.陆地卫星图像数据几何校正方法的讨论[J].计算机学报,1983,(4):314-316.
    [22]朱亮璞.遥感地质学[M].北京:地质出版社,1994.
    [23]楼性满,葛榜军.遥感找矿预测方法[M].北京:地质出版社,1994.
    [24]刘严松.里伍铜矿遥感找矿信息提取及外围找矿远景分析[D].成都:成都理工大学,2008.
    [25]王润生,杨文立.遥感线性体场的定量分析[J].国土资源遥感,1992,(3):19~53.
    [26]王四龙,王西华.北京地区遥感环形构造信息提取与金矿预测[J].地质与探,1996,32(4):36~39.
    [27]童庆禧等.中国典型地物波谱及特征分析[M].北京:科学出版社,1990.
    [28]陈光火.中等程度植被覆盖区岩石蚀变信息提取技术及其应用[J].国土资源遥感,1992,(3):55-60.
    [29]张玉君,杨建民,陈薇.ETM+(TM)蚀变遥感异常提取方法研究与应用——地质依据和波谱前提[J].国土资源遥感,2002,(4):29-37.
    [30]袁见奇等.矿床学[M].北京:地质出版社,1979.
    [31]陈亨亮.蚀变围岩及其找矿意义[J].福建地质,2008,(2):137-141.
    [32]张玉君,曾朝铭,陈薇.ETM+(TM)蚀变遥感异常提取方法研究与应用——方法选择和技术流程[J].国土资源遥感,2003,(2):44-50.
    [33]童庆禧.我院遥感科学技术的发展历程及其成就[J].中国科学院院刊,1990,(2):137-141.
    [34]薛云,戴塔根,邹艳红,杨自安,邹林.基于主成分分析的SVM矿化信息提取研究—以青海黄南州阿哇地区为例[J].遥感应用,2007,(6):32-35.
    [35]李东.内蒙古北山地区矿化蚀变遥感异常提取研究及应用[D].北京:中国地质大学(北京),2008.
    [36]张楠楠.新疆康古尔地区遥感矿化蚀变信息提取方法研究及应用[D].乌鲁木齐:新疆大学,2006.
    [37]杨建民,张玉君,陈薇.ETM+(TM)蚀变遥感异常技术方法在东天山戈壁地区的应用[J].矿床地质,2003,22(3):278-285.
    [38]汪保存等.基于遥感技术的开滦煤矿地面塌陷积水动态监测[J].国土资源遥感,2007,(3):95~97.
    [39]许殿元遥感图像信息处理[M].北京:宇航出版社,1990.
    [40]Bonham-Cater, G. F. and Cheng Q. M. Spatially weighted principal component analysis[N].Presented at IAMG2001 Meeting, Cancun, Mexico, September,2001:6~12.
    [41]Rutz-Armenta J R and Prol-Ledesma R. M. Techniques for enhancing the spectral response of hydrothermal lateration minerals in thematic mapper images of central Mexico[J]. International Journal of Remote Sensing,1998(19):1981~2000.
    [42]戴昌达,姜小光,唐伶俐等.遥感图像应用处理与分析[M].北京:清华大学出版社,2004.
    [43]Thomas M. Lillesand, Ralph W. Kiefer著;彭望禄,余先川,周涛等译.遥感与图像解译(第四版)[M].北京:电子工业出版社,2003.
    [44]章孝灿,黄智才,赵元洪.遥感数字图像处理[M].杭州:浙江大学出版社,1997.
    [45]韩玲,谢秋昌.利用遥感技术对新疆西天山地区矿化蚀变信息的提取[J].遥感应用,2007,(6):49-51
    [46]阎积慧等.TM图像地质应用原理与方法[M].北京:冶金工业出版社,1995.
    [47]刘纪选,曾朝铭,张秀茵.航天遥感图像数据索引及应用实例[J].中国地质调查局,2004,(5):42-47.
    [48]周秀银.误差理论与实验数据处理[M].北京:北京航天大学出版社,1986.
    [49]梅安新,彭望碌,秦其明等.遥感导论[M].北京:高等教育出版社,2001.
    [50]曹志新,王燕.成矿预测方法的理论基础及分类[J].地质科技情报,1993,3(1):69~72.