胶粉聚苯颗粒外保温系统抗裂砂浆的配制及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
建筑能耗约占社会总能耗的1/3。我国建筑能耗的总量逐年上升,在能源总消费量中所占的比例已从上世纪七十年代末的10%,上升到近年的27.45%。结合夏热冬冷地区对外墙节能设计的要求,通过对目前应用较广泛的外墙外保温技术的比较,在夏热冬冷地区采用聚苯颗粒保温砂浆外墙保温的节能措施较为经济、合理,既能够满足节能要求,且施工方便,结构合理,并采用柔性渐变逐层释放应力的抗裂技术,具有良好的性价比。聚苯颗粒外墙外保温系统基本构造:在结构墙体外侧由界面砂浆、胶粉聚苯颗粒保温浆料保温层、抗裂砂浆薄抹面层防护层和饰面层组成。抗裂砂浆用于保温砂浆层表面,对系统具有长期稳定性与机械稳定性起关键作用。抗裂砂浆的防护作用:①保护保温板不在自然环境中老化;②保护保温层不受雨水侵蚀;③提高抗冲击性;④具有较小的水蒸气渗透阻;⑤为外饰面提供附着基层。抗裂砂浆的研究具有举足轻重的作用,并对建筑节能系统工作意义重大。
     本文通过研究特细砂和外加剂对胶粉聚苯颗粒外保温系统抗裂砂浆性能的影响,确定特细砂参数和各外加剂的品种和最佳掺量,进一步提高抗裂砂浆的综合性能。①重庆砂资源主要为细度模数小于1.0的特细砂,因此工程中95%以上的砂浆为特细砂水泥砂浆。配制抗裂砂浆采用P.O42.5的水泥,灰砂比为1:2.8灰砂比。②研究结果表明:特细砂具有细度模数小,含泥量相对较高及质地坚硬等特点,特细砂细度模数改善砂浆的收缩、压折比等,含泥量影响砂浆工作性能,特细砂细度模数适宜范围为0.7-1.0之间;含泥量应控制在0%-3%以内。胶粉改善砂浆柔性,试验从断裂能、最大变形量、粘结性等进行表征:乳胶粉宜采用山西三维胶粉,最佳掺量为6kg/m3,即为水泥质量的1.67%。纤维解决砂浆的塑性收缩,试验从压折比、抗冲击性、收缩率、裂缝指数等方面进行表征:木质纤维适宜掺量为水泥质量的7 kg/m3,即为水泥质量的1.94%;聚丙烯纤维的适宜掺量为1-1.5kg/m3,试验最佳掺量取1.3kg/m3即为水泥质量的0.36%。适宜长度为9mm。纤维素醚保水剂提高砂浆与保温层的保水性,提高粘结强度和抗裂性,本文是从分层度、泌水率等表征进行研究:抗裂砂浆宜采用山东瑞泰HPMC,掺量为1.2 kg/m3,即为水泥质量的0.33%。试验结果配制出优化抗裂砂浆,性能优良,经过裂缝试验,没有出现裂缝,各种指标满足JG158—2004胶粉聚苯颗粒外墙外保温系统抗裂砂浆的性能要求。
     外墙保温面层砂浆产生开裂是保温建筑质量通病中的重症。一旦面层砂浆保护层发生开裂,将导致保温系统的保温、耐水和抗冻等整体性能和耐久性能降低,所以必须加强保温面层砂浆抗裂性能及其措施的研究。工程应用表明,以技术创新开发的抗裂砂浆,其抗裂性、耐候性优良远远大于普通砂浆,能用于外墙外保温,是对传统抹面砂浆技术性能的重大提升,满足建筑墙体外保温抗裂要求。
The building energy consumption occupies one third in our society. The total amount of building energy consumption in China increases year by year, the proportion in total energy consumption is increasing from ten percent to 27.45 percent. Combined with the design of energy saving outer wall in hot in summer and cold in winter areas, by comparison of exterior wall outer thermal insulation in nowadays, it is economical , rational, convenient construction and coincident energy saving to use External Thermal Insulating Rendering Systems with Mineral Binder Expanded Polystyrene Granule in hot in summer and cold in winter areas; what’s more, it is the good performance price ratioto use flexible gradual releasing stress in every layer. The basic structure of ETIRS: the lateral sideof wall is constituted by interface mortar, ETIRS, anti-crack protective layer, facing layer. protective effects of crack-resistance mortar is:①avoiding insulation board aging;②avoiding rain erosion in insulation board;③improving impact resistance;④smaller steam permeability resistivity;⑤providing base for external facing. Study on anti-crack mortar is important and signality for building energy.
     This paper studies the effect of superfine sand and admixture for ETIRS anti-crack mortar, for increasing mortar total properties, which determines superfine sand parameters and the variety and the optimum mix amount of admixtures.①Sand resources in Chongqing is mainly superfine sand which fineness modulus is less than 1.0. The preparation of anti-crack mortar uses P.O42.5 cement, C/S is 1:2.8.②The study result displays: superfine sand is smaller fineness modulus ,larger mud content and harder; it’s fineness modulus improves shrinkage , the ratio of compression strength and flexural strength (C/F) and so on. Superfine sand’s mud content effect workability. Superfine sand’s fineness modulus suitable range is 0.7-1.0,it’s mud content is 0%-3%. Rubber powder improves flexibility;the test characterses crack resistance by fracture energy, max-deformation, caking property and so on. Rubber powder use three-dimensional Shanxi, the mixing amount is 6kg/m3which is 1.67%of cement. Fibre solves plastic shrinkage; the test characterses C/F, impact resistance;shrinkage; fracture index and so on. Wooden fibre’s mixing amount suitable range is 7 kg/m3 which is 1.94%of cement. The mixing amount of Polypropylene fiber is 1-1.5kg/m3, the optimum mix amount in test is 1.3kg/m3 which is 0.36%of cement and fiber length is 9mm. Cellulose ether improves water retention, bond strength, crack resistance.This paper characterses segregation degree, bleeding rate: anti-crack mortar uses Shandong HPMC, the mixing amount is 1.2 kg/m3 which is 0.33%of cement. According to the test results, mortar to be made is good properties, no crack. The result meets JG158—2004 ETIRS.
     Cracking in ETIRS is the serious problem in building quality common faults. If surface mortar crack appears in protective layer,it’s to be decreased that insulation in ETIRS, water resistance, frost resistance and durability;so it must be studied to strengthen crack resistance and measures. Application results show, anti-crack mortar developed with technological innovation,which crack resistance and crack resistance is better than normal mortar. Anti-crack mortar which can use ETIRS greatly promotes technical performance of traditional mortar and satisfies the anti-crack requests of external insulation building wall.
引文
[1]罗杰明.行业动态[J].中国住宅设施,2007,(1):38-40.
    [2]王培铭.商品砂浆在中国的发展[J].上海建材,2002,(5) : 19-21.
    [3]周庆凡,朱又红.从世界能源统计数据看中国能源现状[J],中国能源,2005,27(11):40-42.
    [4]周铁军,王雪松.中国过渡地区住宅建筑节能现状与发展趋势研究[J].重庆建筑大学学报(社科版).2000(4):24-27.
    [5]石国柱.建筑节能措施及应用[J].安阳工学院学报,2006,(4):21-22.
    [6]贾伟,卢立平.EPS外墙外保温节能体系的概念设计与应用[J].山西建筑,2005,(1):1-3.
    [7]朱慧琴.建筑节能分析[J].华南热带农业大学学报,2003,(3):65-67.
    [8]李必瑜.建筑构造(上册)[M].北京:中国建筑工业出版社,2000.
    [9]陈旭伟,章宏,施安平等.墙体保温和建筑节能[J].浙江建筑,2006,(9):23.
    [10]刘飞.建筑外墙保温隔热技术[J],山西建筑,2003.(12):34-36.
    [11] M.F.Zedan and A.M.Mujahid,Laplace Transform Solution for Heat Transfer in Composite Roundary[J].Journal of Heat Transfer,1993,(6):115.
    [12]齐文龙等.聚苯板外墙保温技术的应用[J].建材?建筑?装修,2000.2:83-87.
    [13]刘亚生.ZL外墙外保温技术的优点[J].建筑应用,2003.12:41-44.
    [14]王全.EPS外墙外保温系统[J].辽宁建材,2003.4:52-56.
    [15]刘洪涛等.几种常见的外墙保温形式和材料[J].建材技术与应用,2002. 1:6-9.
    [16]王培铭.胶粉聚苯颗粒外墙外保温系统[J].上海建材,2005,(1):9-13.
    [17]张杰.可再分散乳胶粉在外墙外保温中的应用[J].涂料工业,2002,(8):21-22.
    [18] JGJ144-2004,外墙外保温工程技术规程[S].
    [19] B.И.彼斯耶夫等.在俄罗斯干式混合物生产与发展前景[J].建筑材料(俄),1999,(3):75-76
    [20]郁伟华,施惠生.建筑干混砂浆的开发研究与应用[J].房材与应用,2002,28(6):40-46.
    [21] Siltstones M.Needed-Prardigm Shifts in the Technology for Normal Strength Concrete ACI SP-144: Concrete Technology Past, Present and Future.61-84.
    [22]朱振光.新型坡体材料裂缝分析及治理[J].山西建筑,2004.(6):24-25.
    [23]杨医博.化学外加剂和矿物掺合料对砂浆干躁收缩和开裂性能的研究[D].g广州.华南理工大学.2002.
    [24] Kub Edward G.Ⅱ.Cracking in exterior insulation and finish systems [J].Journal of Performance of Constructed Facilities, 1993, 7(1):60~66.
    [25]郝先成,马保国,李廷芥.新型外墙保温隔热材料系统抗裂设计[J].建筑节能2006, (10).46-48.
    [26]张巍,杨全兵.混凝土收缩研究综述[J].低温建筑技术,2003,(5):4-6.
    [27]覃维祖.低水灰比混凝土的收缩及其补偿[J].粉煤灰,2002,14 (1):3-6.
    [28] BREUGEL KV. Numerical modeling of volume changes at early ages -potential, pitfalls and challenges [J].Materials and Structures, 2001, 34(5):293-301.
    [29]严捍东,孙伟.粉煤灰砂浆自生收缩和干燥收缩关系的研究[J].硅酸盐学报,2003,31(5):428-433.
    [30] Tzazw an E. Autogenous Shrinkage of Concrete [M].New York: E & FN Spon, 1998, 9-51.
    [31]安明哲,覃维祖,朱金栓.高强混凝土自收缩试验研究.山东建材学院学报,1998.6,No I2,139-144.
    [32] Persson B. Self2desiccation and its importance in concrete technology [J].Materials and Structure, 1997, 30 (199):293-305.
    [33]吴中伟,廉惠珍.高性能混凝土[M].北京:中国铁道出版社,1999,9:271-282.
    [34]湖南大学,天津大学,同济大学,东南大学.建筑材料(第四版),1997,78.
    [35]罗文英.干粉砂浆及其在广东省的应用[J].广东建材,2005,(12):17-19.
    [36]蔡正咏.混凝土性能[M].北京:中国建筑工业出版社,1979.127.
    [37]马保国,郝先成,蹇守卫,张琴.外墙外保温抗裂砂浆抗裂性能研究.新型建筑材料, 2006,(3):61-64.
    [38]郝先成,马保国,李廷芥.新型外墙保温隔热材料系统抗裂设计[J].建筑节能,2006(10):45-47.
    [39]王勇杰,孙成林.聚苯颗粒保温浆料玻纤网格布抗裂砂浆.建筑技术,2004.35(10):759~761.
    [40]钱春香,耿飞,李丽.聚丙烯纤维提高水泥砂浆抗塑性开裂的机理[J].东南大学学报.2005,35(5).786-791.
    [41]郑桂兰,谢红波,李国忠.聚丙烯纤维聚合物水泥砂浆的抗冲击性能研究[1].公路交通科技.2005,(3).61-63.
    [42]胡紫日,史小兴,王新民,李影.用对比试验方法评价新型纤维增强混凝土[J].市政技术.2004,22(4).222-223.
    [43]马保国,郝先成,赛守卫,张琴.外墙外保温抗裂砂浆抗裂性能研究[J].新型建筑材料.2006,(3).61-64.
    [44]林玉梅,罗伍文.聚合物改性抗裂防渗砂浆的试验[J].新型建筑材料.2007,(3).26-29.
    [45]马丽媛,姚燕,王玲.粉煤灰高强混凝土收缩开裂趋势的研究[J].混凝土.2002(6):34-53.
    [46]王正权.改善EPS砂浆保温性和防裂砂浆抗裂性的研究[D].南京:南京工业大学.2004.
    [47]王春阳.保水剂对抗裂抹灰砂浆性能的影响[J].平顶山工学院学报.2006.15(2).16-18.
    [48]张义顺,朱伶俐.聚合物改型防水干混砂浆的试验研究J].混凝土,2006,(10):85-88.
    [49] P.P.Kraai. A Proposed Test to Determine the Cracking Potential Due to Drying Shrinkage of Concrete [J]. Concrete Construction, 1985(4),775-778.
    [50]袁震字,吴慧敏,杨建西.聚丙烯纤维对砂浆抗裂性能影响的试验研究[J].混凝土与水泥制品,1999,(6):41-42.
    [51] Parviz Soroushian, Faiz Mirza&Abdurahman Alzozaimy. Plastic shrinkage cracking of polypropylene fiber reinforced concrete [J]. ACI Material Journal, 1995, 92(5), 753-758.
    [52]马一平,李吴,谈慕华.陶瓷一尼龙纤维水泥基复合材料力学性能研究[J].建筑材料学报,1998,1(1):43-48.
    [53]马一平,谈慕华.聚丙烯纤维水泥基复合材料物理力学性能研究[J].建筑材料学报,2000,3(1):48-52.
    [54]戴建国,刘明,黄承连.聚丙烯纤维混凝土和砂浆的塑性收缩试验研究[J].沈阳建筑工程学院学报,2000,16(3):195-198.
    [55] P.P.Kraai. A Proposed Test to Determine the Cracking Potential Due to Drying Shrinkage of Concrete [J]. Concrete Construction, 1985, 775-778.
    [56] Parviz Soroushian, Faiz Mirza&Abdurahman Alzozaimy. Plastic shrinkage cracking of polypropylene fiber reinforced concrete [J]. ACI Material Journal, Vo1.92, No.5, Sept.-Oct., 1995.
    [57] Parviz Soroushian. Secondary Reinforcement Adding Cellulose Fibers. International, 1997(6).
    [58]朱伶俐,赵宇.灰砂比对防水干混砂浆性能影响的试验研究[J],砖瓦,2006,(9):65-66.
    [59]陈明凤,王春阳,彭家惠等.柔性粘结砂浆的性能影响因素分析[J].化学建材,2003,(10):22-25.
    [60]田文玉.细集料细度模数计算公式的修正[J].重庆交通学院学报,1996(3) : 65-66.
    [61]陈伟民.浅析砂子粗细对混凝土的影响[J].浙江水利科技,2001,(4) : 35-37.
    [62]李怒放,郑汉斌.砂的含泥量试验方法探讨[J].混凝土与水泥制品,1992(2) : 22-23.
    [63]朱伶俐,赵宇.灰砂比对防水干混砂浆性能影响的试验研究[J].产品开发,2006(9) : 64-66
    [64]王春发.砂石含泥量对混凝土强度的影响[J].混凝土,1982,(1) : 37-41.
    [65] Yamasaki. T... My kava. K... A Study on the rheological mix design of unsaturated polyester resin concrete. 5th International Congress on Polymers in Concrete. Bringhton. England. 1987.
    [66]王培铭,张国防,吴建国.聚合物干粉对水泥砂浆的减水和保水作用[J].新型建筑材料,2003, (3):25-28.
    [67] Gao. J.M. et.al.The Properties of polymer Modified Concrete.southeast university.1996. No5
    [68] Etsuo Sakai and Jun Sugita. Composite mechanism of polymer modified cement. Cement and Concrete Research. 1995. No1.
    [69] Musarrat Ullah Khan Afridi and Zia Ullah Chuddar etc. Morphological characterization of low sulphoaluminate type (AFM) crystals. Hollow tubules and hollow crystals in polymer-modified mortars. Cement and Concrete Research. 1995. No2.
    [70] Yoshihiko Omaha. Handbook of Polymer-Modified Concrete and Mortars. USA Noyes publications. 1995.
    [71] Wu Lixian.et al. Fracture Energy of Polymer Modified Cement Mortar with Super-fine Sand as Aggregate.[M].1990.
    [72] Hillerborg A. The theoretical basis of a method to determine the facture energy GF of concrete [J]. Mater & Struct.1985.18 (106):291-296
    [73]郭金敏.干拌砂浆的发展概况及保水剂的选用研究[J].平顶山工学院学报,2005 (1) :7 - 9.
    [74]张燕.加气混凝土抹灰层空鼓开裂的病因与防治[J].墙材革新与建筑节能,2004(2):33 - 35.
    [75]李春荣.AF砂浆保水剂的研制[J].房材与应用,2001 (6) :11 - 13.
    [76] L.Schmitz,C-J.Hacker,张量(译).纤维素醚在水泥基干拌砂浆产品中的应用[J].新型建筑材料,2006(7):45-48.
    [77]许志钢.水泥制品中纤维素醚的应用特性[J].新型建筑材料,2001.(7):13-15.
    [78]王培铭.纤维素醚和乳胶粉在商品砂浆中的作用[J].硅酸盐通报,2005,(5):136-139.
    [79]鞠丽艳,张雄.建筑砂浆保水增稠剂的性能及作用机理[J].建筑材料学报.2003,6(1).25-29.
    [80] L.Schmitz1, C- J.Hаcker1,张量.纤维素醚在水泥基干拌砂浆产品中的应用[J].新型建筑材料,2006,(7):45-48.
    [81]刘丽芳,王培铭,杨晓杰.纤维参数对水泥砂浆断裂韧性的影响.混凝土与水泥制品,2006,2(1):40-43.
    [82]李玉海.乳胶粉、纤维素醚及养护条件对抹面砂浆抗冲击性能影响的研究[J].中国建材.2007,(3):85-87.
    [83] P.Soroushian,A.Khan,J.W.Hsu,Mechanical properties of concrete material reinforced with polypropylene or polyethylene fiber[J].ACI Master.J. 1992, 89(2):535-540.
    [84]杨长辉,王川,吴芳.混凝土塑性收缩裂缝成因及防裂措施研究综述[J].混凝土,2002,(5):33-36.
    [85]马一平,朱蓓蓉,谈慕华.纤维参数对水泥砂浆塑性收缩开裂性能的影响[J].建筑材料学报,2002,5(3):220-224.
    [86] Z.Bayasi,J.Zeng.Properties of polypropylene fiber reinforced concrete,ACI Master .J.1993,90(6):605-610.
    [87]马一平,朱蓓蓉,谈慕华.纤维参数对水泥砂浆塑性收缩开裂性能的影响[J ].建筑材料学报,2002,5 (3):220-224.
    [88]朱江.聚丙烯纤维混凝土(砂浆)的防水机理及应用技术[J] .建筑技术,2001,32 (7):456.
    [89] Gao. J.M. et.al.. The Properties of polymer Modified Concrete .southeast University. 1996.No5
    [90]梅爱华.聚丙烯纤维对砂浆性能的影响[J].玻璃钢/复合材料,2002,(5):15-16.
    [91] Sezan Orak. Investigation of vibration damping on polymer concrete with polyester resin. Concrete.Cement.Research.2000.30.
    [92] Hyun-Joon kong,Stacy G.Bike,Victor C.Li,Constitutive rheological control ti develop a self-consolidating engineered cementitious composite reinforced with hydrophilic poly (vinyl alcohol) fibers,Cement&Concrete Composites[J].2003,25(3).333-334.
    [93]邓咏梅.维伦纤维对水泥砂浆抗裂性的影响[J].上海建材,1998(6).45-48.
    [94]袁震宇,吴慧敏,杨建西.聚丙烯纤维对砂浆抗裂性能影响的试验研究[J].混凝土与水泥制品,1999(6):41-42.
    [95]龚益,沈荣熹,李清海.杜拉纤维在土建工程中的应用[M].北京:机械工业出版社,2002.
    [96]彭家惠,杨凯,张建新,谢厚礼,白冷.聚丙烯纤维掺量与长度对特细砂干混砂浆性能的影响[J].新型建筑材料,2006,(12) :1-3.
    [97]周敏,曹杨,李国忠.聚丙烯纤维和硅灰在水泥基材料中的协同效应[J].混凝土与水泥制品,2007,(5):40-42.
    [98]王新民,李颂.新型建筑干拌砂浆指南[M],中国建筑工业出版社.2004.12.
    [99] Wu Yao,Keru Wu.Study of mechanical properties on polypropylene fiber reinforced concrete. Proceedings of the 3rdAsia symposium on polymers in concrete , Tong ji University Press,Shanghai China 2000:293-298.
    [100]周爱东,廖绍锋.墙体砌筑砂浆质量问题的研究[J].安徽建筑.2000.(1):20-23.
    [101]王海林,李茹,张容富.外强抹灰空、裂通病分析及防治[J].中州煤炭.2003.(1):75-77.
    [102]王海阳.高强混凝土早期收缩及塑性开裂影响因素研究[D].重庆:重庆大学,2005.