金纳米结构的分离和转化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金原子外层电子之间的相互作用非常紧密,电子不容易被氧化剂夺取,使得金元素化学性质非常稳定并以单质状态散布于矿物质中。Au元素在元素周期表中的位置,决定了它具有很多特殊的性质。十九世纪,Michael Faraday首先发现Au胶体粒子与金黄色的Au块材不同,是一种红色溶液,而且大小不同颜色会发生变化。随着纳米技术的发展,Au纳米结构特殊的表面等离子共振(SPR)、表面增强拉曼散射(SERS)、电学以及催化等性质被揭示,使它在纳米电子学、传感器、生物医药、载药、生物成像、光热治疗、催化、分析、导电和传热等众多领域已经展现出其独特的潜在应用价值,成为学术界广泛研究的热点。Au纳米结构的性能与纳米粒子的组成、尺寸及形貌有着密切的联系,然而,制备超单分散的Au纳米结构的合成条件大都非常苛刻,很难控制;而制备Au复合纳米结构的方法有限且很难控制纳米结构的组成和形貌。因此,组成结构可控的单分散Au纳米结构的制备成为现阶段研究的趋势。本文主要介绍了利用有机密度梯度速率离心分离的方法获得单分散的Au纳米结构以及利用化学转化控制Au复合纳米结构,具体的研究工作及研究结果包括:
     1. Au纳米结构的有机密度梯度速率离心分离
     将一种纯液相、无破坏、适用性广的分离手段——密度梯度速率离心分离法拓展到有机相,发展了有机密度梯度速率离心分离法。利用此法将未经预处理的包含表面活性剂分子的原始Au胶体粒子进行了分离和纯化,获得了多种尺寸的超单分散Au纳米颗粒。对直径<2nm的超细Au纳米线/Au纳米颗粒混合物进行了分离,由于Au纳米线大的长径比,使它在运动中的摩擦力增大,而被留在梯度液的顶部,从而使纳米线与纳米颗粒得到了分离。分离后的单分散Au纳米粒子可以直接在乙醇和环己烷的界面处组装,得到六边形密堆积的超晶格结构。同时,我们将此有机密度梯度速率分离体系拓展到了Ag纳米粒子、CdSe和CdS半导体纳米粒子,以及Fe3O4等磁性纳米粒子的分离,也获得了成功。特别是在CdSe半导体的分离中,分离将原始较为单分散的CdSe胶体粒子的荧光半峰宽从~100nm降低到50nm。另一方面,将高分子PS(聚苯乙烯)引入梯度介质中,增加了梯度液的粘度,使分离效果提高。最后,以CdSe纳米粒子作为探针分子,考察了梯度液的坡度和粘度对分离效果的影响。
     2. Au纳米结构的转化
     根据李亚栋等报道的方法,合成出Au纳米复合结构Au-Ni异质结构。由于很多文献报道,卤素离子在贵金属纳米结构的合成中对形貌有很大影响,我们将DDAB(双十二烷基二甲基溴化铵)引入到Au纳米结构的化学转化中,以溶解有DDAB或OA(油胺)的HAuCl_4·4H_2O溶液作为前驱体,对Au-Ni异质结构进行化学转化。由于不同配体的调控作用不同,使得这两种前驱体与Au-Ni异质结构发生着两种截然不同的反应。在含有OA的前驱体中,随着前驱体量的增大,Au“头”逐渐变大,Ni“尾”逐渐减小。但在含有DDAB的前驱体中,我们发现随着前驱体量的增加,Au“头”首先逐渐消失,后又出现,然后再溶解,最终得到空心的NiO纳米晶。通过HRTEM、UV-vis、EDS等的表征结果和一系列的对比实验,我们提出了反应的机理:在Au-Ni异质结构的外部有一薄层的NiO壳,NiO在含有OA的前驱体中先被溶解,然后Ni“尾”被Au~(3+)氧化而变小,Au通过油胺的还原和Ni的置换而长大。在含有DDAB的前驱体中,Au~(3+)和Au~0在DDAB存在的情况下可以反应生成AuBr,而且由于NiO的保护作用,使得此体系中Ni被保护,Au首先被溶解,Au溶解完之后在Au和Ni的界面处开始Ni与Au~(3+)的置换反应,此时Ni开始溶解并伴随着新的Au纳米晶的生成;当溶解有DDAB的HAuCl4·4H2O前驱体的量继续增大,新的Au也被溶解,留下NiO的空心结构。利用这种以异质结构为模板,通过配体的调控进行低对称Au复合纳米结构的选择性化学转化,可以拓展到更多的纳米材料和配体中,为更多的非对称功能复合纳米结构的调控提供了新的方法。
Close interaction between the outer electrons makes gold chemicallystable and hard to be oxidized. Therefore, gold always exits as elementalstate in the minerals. The position of gold in the periodic table indicatesits special properties. In the1800s, Michael Faraday found that a solutionof nanometer-sized gold particles was red in color, unlike the yellowcolor of bulk gold, and that varying the size of the particle s could changethe color of the colloid. With the development of nanotechnology, manyspecial properties of gold nanostructures such as surface plasmonresonance (SPR), surface-enhanced Raman scattering (SERS), electricaland catalytic properties have been demonstrated, which make goldnanostructures potential candidates in many areas such as nanoelectronics,sensors, bio-medicine, drug delivery, biological imaging, photothermaltherapy, catalysis, analysis, conductivity and heat transfer, etc. Recently,research on gold nanostructures has been a hotspot. The properties of gold nanostructures closely related to their composition, size andmorphology, however, fabrication of monodisperse gold nanostructurealways need strict synthetic conditions and synthesis of goldnanocomposite lacks accurate control of the composition. Thus, researchon the fabrication of monodisperse gold nanoparticles with controlledcomposition has been a research direction. In this thesis, we demonstratea density gradient rate separation method to obtain monodisperse goldnanoparticles along with a chemical transformation of goldnanocomposite. Details are illustrated as follows:
     1. Density gradient rete separation of gold nanostructures inorganic media
     We expanded a pure liquid phase, no damage and wide applicableseparation method, density gradient rete separation, into organic media.Through this method, non-pretreatment gold nanoparticles with surfactantmolecules attached on the surface could be isolated by size and severalmonodisperse gold nanoparticles with certain diameters could be obtained.This method could also be applied to ultra-fine goldnanowire/nanoparticle system. Large aspect ratio of ultra-fine nanowireincreased its friction and made it stayed on the top of the gradient, whilethe nanoparticles fell down and thus separation achieved. Themonodisperse gold nanoparticles obtained after separation could assembleinto superlattice at the interface of ethanol and cyclohexane. Furthermore, the success on separation of gold nanostructures could be expaneded tolots of other nanostructures like noble metals (Ag), semiconductors (CdSe,CdS) and magnetic nanoparticles (Fe_3O_4, Au/Co, Au/Ni) and so on.Specially, in the separation CdSe nanoparticles, we used relativelymonodisperse nanoparticles, after separation, the half peak width of theoriginal “monodisperse” samples in the fluorescence was successfullyreduced from100nm to50nm, which confirmed the efficiency of densitygradient rete separation. We have also introduced polymers into thegradients to increase the viscosity; results indicated that viscosity increasecould enhance the separation efficiency. Finally, CdSe nanoparticles wereused as probe molecule to study the influence of viscosity and slope ofthe gradient.
     2. Transformation of gold nanostructures
     Au–Ni spindly nanostructures were synthesized using the methodreported by Wang and Li. Many reports have shown that halogen ionsplay important roles in synthesis and conversion of noble metalnanoparticles by interfering with the reaction process. Here we introducedDDAB and OA into the Au-Ni system to study the chemicaltransformation of Au-Ni heteronanostructures. Different ligands results indifferent reactions. When increasing quantities of OA-containingHAuCl4·4H2O solutions were gradually added to solutions of the Au–Ninanoparticles, the Au tips grew larger while the Ni tails gradually dissolved. However, when OA was replaced by DDAB, the results werecompletely different. As the amount of DDAB-containing HAuCl4·4H2Osolution was increased, the Au tips first shrank and then vanished leavinga bowl-like structure. Subsequently the Ni tails dissolved leaving asemi-filled sphere within which new Au cores were generated. Finally,the newly generated Au cores mostly disappeared again, leaving hollownanospheres. HRTEM, UV-Vis spectroscope, EDS and a series of controlexperiments helps us to propose a mechanism of the two differenttransformation routes: we propose that the rapid reaction between Au–Niand the DDAB-containing HAuCl_4·4H_2O solution leads to the initialdissolution of the Au tips, while the NiO layer prevents any redoxreaction between Au~(3+)and Ni, resulting in selective etching of the Au.However, such etching of Au at the “neck” sections of the original Au–Niheterostructures eventually exposes fresh Ni metal not protected by alayer of NiO, and when larger quantities of DDAB-containingHAuCl4·4H2O solution were added, etching of the exposed Ni metal leadsto a “bowl-like” Ni tail with a NiO layer. The new Au cores generatedfrom the galvanic replacement reaction between Ni metal and Au~(3+)aremostly located at the openings/cores of the “bowls”. Eventually the Nitail dissolves completely leaving Au cores inside or attached to the NiOshell. Finally, the redox reaction between the Au cores and theDDAB-containing HAuCl_4·4H_2O solution restarts until most of the regenerated Au cores redissolved again. The ability to tailor thecompositions and structures of heterostructures with low symmetryshould benefit finely manipulation on their properties and lead to newbuilding blocks for the construction of new functional nanomaterials.
引文
[1]文玉华,周富信,刘曰武.纳米材料的研究进展[J].力学进展,2001,1(2):47-61.
    [2]刘奎立李.纳米材料及其应用[J].周口师范学院学报,2005,21(2):27-28.
    [3] Balasubramanian R, Guo R, Mills AJ, et al. Reaction of Au55(PPh3)12Cl6with ThiolsYields Thiolate Monolayer Protected Au75Clusters [J]. J. Am. Chem. Soc.,2005,127(22):8126-8132.
    [4] Toikkanen O, Ruiz V, R nnholm G, et al. Synthesis and Stability of Monolayer-ProtectedAu38Clusters [J]. J. Am. Chem. Soc.,2008,130(33):11049-11055.
    [5] Menard LD, Gao S-P, Xu H, et al. Sub-Nanometer Au Monolayer-Protected ClustersExhibiting Molecule-like Electronic Behavior: Quantitative High-Angle AnnularDark-Field Scanning Transmission Electron Microscopy and ElectrochemicalCharacterization of Clusters with Precise Atomic Stoichiometry [J]. J. Phys. Chem. B,2006,110(26):12874-12883.
    [6] Liljeroth P, Quinn BM, Ruiz V, et al. Charge injection and lateral conductivity inmonolayers of metallic nanoparticles [J]. Chem. Commun.,2003,(13):1570-1571.
    [7] Gimeno MC, Laguna A. Three-and Four-Coordinate Gold(I) Complexes [J]. Chem. Rev.,1997,97(3):511-522.
    [8] Faraday M.[M]. Philos. Trans. R. Soc. London.1857:145.
    [9] Chengmin S, Chao H, Tianzhong Y, et al. Monodisperse Noble-Metal Nanoparticles andTheir Surface Enhanced Raman Scattering Properties [J]. Chem. Mater.,2008,20:6939-6944.
    [10] Daniel M-C, Astruc D. Gold Nanoparticles: Assembly, Supramolecular Chemistry,Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, andNanotechnology [J]. Chem. Rev.,2004,104:293-346.
    [11] Sun Y, Khang DY, Hua F, et al. Photolithographic Route to the Fabrication ofMicro/Nanowires of III–V Semiconductors [J]. Adv. Func. Mater.,2005,15(1):30-40.
    [12] Corti C, Holliday R. Commercial aspects of gold applications: From materials science tochemical science [J]. Gold. Bull.,2004,37(1):20-26.
    [13] Haruta M. Gold as a novel catalyst in the21st century: Preparation, working mechanismand applications [J]. Gold. Bull.,2004,37(1):27-36.
    [14]董守安,唐春. DNA识别、生物传感器和基因芯片中的纳米金和银粒子[J].贵金属,2005,26(1):55-61.
    [15] Link S, El-Sayed MA. Size and Temperature Dependence of the Plasmon Absorption ofColloidal Gold Nanoparticles [J]. J. Phys. Chem. B,1999,103(21):4212-4217.
    [16] Wolfe RL, Balasubramanian R, Tracy JB, et al. Fully Ferrocenated HexanethiolateMonolayer-Protected Gold Clusters [J]. Langmuir,2006,23(4):2247-2254.
    [17] Schaaff TG, Shafigullin MN, Khoury JT, et al. Isolation of Smaller Nanocrystal AuMolecules: Robust Quantum Effects in Optical Spectra [J]. J. Phys. Chem. B,1997,101(40):7885-7891.
    [18] Brown KR, Natan MJ. Hydroxylamine Seeding of Colloidal Au Nanoparticles in Solutionand on Surfaces [J]. Langmuir,1998,14(4):726-728.
    [19] Becker J, Zins I, Jakab A, et al. Plasmonic Focusing Reduces Ensemble Linewidth ofSilver-Coated Gold Nanorods [J]. Nano Lett.,2008,8(6):1719-1723.
    [20] Huang T, Murray RW. Visible Luminescence of Water-Soluble Monolayer-ProtectedGold Clusters [J]. J. Phys. Chem. B,2001,105(50):12498-12502.
    [21] J. P. Wilcoxon JEM, F. Parsapour, B. Wiedenman, D. F. Kelley. Photoluminescence fromnanosize gold clusters [J]. J. Chem. Phys.,1998,108(21):9137-9143.
    [22] Wang C, Hu Y, Lieber CM, et al. Ultrathin Au Nanowires and Their Transport Properties[J]. J. Am. Chem. Soc.,2008,130(28):8902-8903.
    [23] Zhang J, Sasaki K, Sutter E, et al. Stabilization of Platinum Oxygen-ReductionElectrocatalysts Using Gold Clusters [J]. Science,2007,315(5809):220-222.
    [24] Guo S, Li J, Dong S, et al. Three-Dimensional Pt-on-Au Bimetallic DendriticNanoparticle: One-Step, High-Yield Synthesis and Its Bifunctional Plasmonic andCatalytic Properties [J]. J. Phys. Chem. C,2010,114(36):15337-15342.
    [25] Gu X, Cong X, Ding Y. Platinum-Decorated Au Porous Nanotubes as Highly EfficientCatalysts for Formic Acid Electro-Oxidation [J]. Chem. phys. chem.,2010,11(4):841-846.
    [26] Dingsheng Wang, Li Y. One-Pot Protocol for Au-Based Hybrid Magnetic Nanostructuresvia a Noble-Metal-Induced Reduction Process [J]. J. Am. Chem. Soc.,2010,132:6280–6281.
    [27] Ulrich Siemeling DR, Clemens Bruhn, Heinrich Fink, et al. The Interaction of1,1'-Diisocyanoferrocene with Gold: Formation of Monolayers and SupramolecularPolymerization of an Aurophilic Ferrocenophane [J]. J. Am. Chem. Soc.,2005,127:1102-1103.
    [28] Lewinski N, Colvin V, R. D. Cytotoxicity of nanoparticles [J]. Small,2008,4(1):26-49.
    [29] Krueger KM, Al-Somali AM, Falkner JC, et al. Characterization of Nanocrystalline CdSeby Size Exclusion Chromatography [J]. Anal. Chem.,2005,77(11):35113515.
    [30] Novak JP, Nickerson C, Franzen S, et al. Purification of Molecularly Bridged MetalNanoparticle Arrays by Centrifugation and Size Exclusion Chromatography [J]. Anal.Chem,2001,73(23):57585761.
    [31] Hanauer M, Pierrat S, Zins I, et al. Separation of Nanoparticles by Gel ElectrophoresisAccording to Size and Shape [J]. Nano Lett.,2007,7(9):28812885.
    [32] Arnaud I, Abid J-P, Roussel C, et al. Size-selective separation of gold nanoparticles usingisoelectric focusing electrophoresis (IEF)[J]. Chem. Commun.,2005,6(6):787788.
    [33] Liu F-K, Tsai M-H, Hsu Y-C, et al. Analytical separation of Au/Ag core/shellnanoparticles by capillary electrophoresis [J]. J. Chromatogr. A,2006,1133(1-2):340346.
    [34] Rheinlander T, Kotitz R, Weitschies W, et al. Magnetic fractionation of magnetic fluids[J]. J. Magn. Magn. Mater.,2000,219(2):219228.
    [35] Akthakul A, Hochbaum AI, Stellacci F, et al. Size Fractionation of Metal Nanoparticlesby Membrane Filtration [J]. Adv. Mater.,2005,17(5):532535.
    [36] Sweeney SF, Woehrle GH, Hutchison JE. Rapid Purification and Size Separation of GoldNanoparticles via Diafiltration [J]. J. Am. Chem. Soc.,2006,128(10):31903197.
    [37] Prabha S, Zhou W-Z, Panyam J, et al. Size-dependency of nanoparticle-mediated genetransfection: studies with fractionated nanoparticles [J]. Int. J. Pharm.,2002,244(1-2):105115.
    [38] Green AA, Hersam MC. Solution Phase Production of Graphene with ControlledThickness via Density Differentiation [J]. Nano Lett.,2009,9:40314036.
    [39] Arnold MS, Stupp SI, Hersam MC. Enrichment of Single-Walled Carbon Nanotubes byDiameter in Density Gradients [J]. Nano Lett.,2005,5(4):713718.
    [40] Green AA, Hersam MC. Processing and Properties of Highly Enriched Double-WallCarbon Nanotubes [J]. Nat Nanotechnol,2009,4:6470.
    [41] Brakke MK. Density Gradient Centrifugation: A New Separation Technique [J]. J. Am.Chem. Soc.,1951,73:18471848.
    [42] Sun X, Liu Z, Welsher K, et al. Nano-Graphene Oxide for Cellular Imaging and DrugDelivery [J]. Nano Res.,2008,1:203212.
    [43] Sun X, Tabakman SM, Seo W-S, et al. Separation of Nanoparticles in a Density Gradient:FeCo@C and Gold Nanocrystals [J]. Angew. Chem. Int. Ed.,2009,48:939942.
    [44] Sun X, Zaric S, Daranciang D, et al. Optical Properties of Ultrashort SemiconductingSingle-Walled Carbon Nanotube Capsules Down to Sub-10nm [J]. J. Am. Chem. Soc.,2008,130:65516555.
    [45] Brakke MK. Density Gradient Centrifugation: A New Separation Technique [J]. J. Am.Chem. Soc.,1951,73:1847-1848.
    [46] Brakke MK, Daly JM. Density-Gradient Centrifugation: Non-Ideal Sedimentation and theInteraction of Major and Minor Components [J]. Science,1965,148:387-389.
    [47] Hwang W-M, Lee C-Y, Boo DW, et al. Separation of Nanoparticles in Different Sizes andCompositions by Capillary Electrophoresis [J]. Bull. Korean. Chem. Soc.,2003,24(5):684-686.
    [48] Liu F-K, Tsai M-H, Hsu Y-C, et al. Analytical separation of Au/Ag core/shellnanoparticles by capillary electrophoresis [J]. J. Chromatogr. A,2006,1133(1-2):340-346.
    [49] Schaaff TG, Knight G, Shafigullin MN, et al. Isolation and Selected Properties of a10.4kDa Gold: Glutathione Cluster Compound [J]. J. Phys. Chem. B,1998,102(52):10643-10646.
    [50] Negishi Y, Takasugi Y, Sato S, et al. Magic-Numbered AunClusters Protected byGlutathione Monolayers (n=18,21,25,28,32,39): Isolation and SpectroscopicCharacterization [J]. J. Am. Chem. Soc.,2004,126(21):6518-6519.
    [51] Eychmueller A, Katsikas L, Weller H. Photochemistry of semiconductor colloids.35. Sizeseparation of colloidal cadmium sulfide by gel electrophoresis [J]. Langmuir,1990,6(10):1605-1608.
    [52] Hanauer M, Pierrat S, Zins I, et al. Separation of Nanoparticles by Gel ElectrophoresisAccording to Size and Shape [J]. Nano Lett.,2007,7(9):2881-2885.
    [53] Xu X, Caswell KK, Tucker E, et al. Size and shape separation of gold nanoparticles withpreparative gel electrophoresis [J]. J. Chromatogr. A,2007,1167(1):35-41.
    [54] Peterson RR, Cliffel DE. Continuous Free-Flow Electrophoresis of Water-SolubleMonolayer-Protected Clusters [J]. Anal. Chem.,2005,77(14):4348-4353.
    [55] Gigault J, Gale BK, Le Hecho I, et al. Nanoparticle Characterization by Cyclical ElectricalField-Flow Fractionation [J]. Anal. Chem.,2011,83(17):6565-6572.
    [56] Lao AIK, Trau D, Hsing IM. Miniaturized Flow Fractionation Device Assisted by aPulsed Electric Field for Nanoparticle Separation [J]. Anal. Chem.,2002,74(20):5364-5369.
    [57] Roman MC, Brow PR. As a Preparative Separation Technique [J]. Anal. Chem.,1994,66(2):86-94.
    [58] Gole AM, Sathivel C, Lachke A, et al. Size separation of colloidal nanoparticles using aminiscale isoelectric focusing technique [J]. J. Chromatogr. A,1999,848(1-2):485-490.
    [59] Fischer CH, Weller H, Katsikas L, et al. Photochemistry of colloidal semiconductors.30.HPLC investigation of small CdS particles [J]. Langmuir,1989,5(2):429-432.
    [60] Wei G-T, Liu F-K. Separation of nanometer gold particles by size exclusionchromatography [J]. J. Chromatogr. A,1999,836(2):253-260.
    [61] Jimenez VL, Leopold MC, Mazzitelli C, et al. HPLC of Monolayer-Protected GoldNanoclusters [J]. Anal. Chem.,2002,75(2):199-206.
    [62] Rheinl nder T, K titz R, Weitschies W, et al. Magnetic fractionation of magnetic fluids[J]. J. Magn. Magn. Mater.,2000,219(2):219-228.
    [63] Latham AH, Freitas RS, Schiffer P, et al. Capillary Magnetic Field Flow Fractionation andAnalysis of Magnetic Nanoparticles [J]. Anal. Chem.,2005,77(15):5055-5062.
    [64] Beveridge JS, Stephens JR, Latham AH, et al. Differential Magnetic Catch and Release:Analysis and Separation of Magnetic Nanoparticles [J]. Anal. Chem.,2009,81(23):9618-9624.
    [65] Beveridge JS, Buck MR, Bondi JF, et al. Purification and Magnetic Interrogation ofHybrid Au-Fe3O4and FePt-Fe3O4Nanoparticles [J]. Angew. Chem. Int. Ed.,2011,50(42):9875-9879.
    [66] O'Connell MJ, Bachilo SM, Huffman CB, et al. Band Gap Fluorescence from IndividualSingle-Walled Carbon Nanotubes [J]. Science,2002,297(5581):593-596.
    [67] Guo Z, Fan X, Xu L, et al. Shape separation of colloidal gold nanoparticles throughsalt-triggered selective precipitation[J]. Chem. Commun.,2011,47(14):4180-4182.
    [68] Sharmaa v, Parka K, Srinivasaraoa M. Shape separation of gold nanorods usingcentrifugation [J]. PNAS,2009,106(13):4981-4985.
    [69] Jamison JA, Krueger KM, Yavuz CT, et al. Size-Dependent Sedimentation Properties ofNanocrystals [J]. ACS Nano,2008,2(2):311-319.
    [70] Svedberg T, Nichols JB. Determination of size and distribution of size of particle bycentrifgal methods [J]. J. Am. Chem. Soc.,1923,45(12):2910-2917.
    [71] Price CA. Centrifugation in Density Gradients [M]. New York: Academic Press,1982.
    [72]金绿松,林元喜.离心分离[M].北京:化学工业出版社,2008.
    [73] Sun X, Luo D, Liu J, et al. Monodisperse Chemically Modified Graphene Obtained byDensity Gradient Ultracentrifugal Rate Separation [J]. ACS Nano,2010,4(6):3381-3389.
    [74] Li S, Chang Z, Liu J, et al. Separation of gold nanorods using density gradientultracentrifugation [J]. Nano. Res.,2011,4(8):723-728.
    [75] Sun X, Zaric S, Daranciang D, et al. Optical Properties of Ultrashort SemiconductingSingle-Walled Carbon Nanotube Capsules Down to Sub-10nm [J]. J. Am. Chem. Soc.,2008,130(20):6551-6555.
    [76] Bonaccorso F, Hasan T, Tan PH, et al. Density Gradient Ultracentrifugation of Nanotubes:Interplay of Bundling and Surfactants Encapsulation [J]. J. Phys. Chem. C,2010,114(41):17267-17285.
    [77] Holter H, Ottesen M, Weber R. Separaion of cytoplasmic particles by centrifugation in adensity-gradient [J]. Experientia,1953,9(9):346348.
    [78] Ottesen M, Weber R. Density-gradient centrifugation as a means of separatingcytoplasmic particles [J]. Compt. Rend. Lab. Carlsberg. Ser. Chim.,1955,29(25):417434.
    [79] Lu Q, Keskar G, Ciocan R, et al. Determination of Carbon Nanotube Density by GradientSedimentation [J]. J. Phys. Chem. B,2006,110(48):24371-24376.
    [80] Arnold MS, Green AA, Hulvat JF, et al. Sorting Carbon Nanotubes by ElectronicStructure using Density Differentiation [J]. Nat Nanotechnol,2006,1(1):6065.
    [81] Fagan JA, Becker ML, Chun J, et al. Length Fractionation of Carbon Nanotubes UsingCentrifugation [J]. Adv. Mater.,2008,20(9):1609-1613.
    [82] Hároz EH, Rice WD, Lu BY, et al. Enrichment of Armchair Carbon Nanotubes viaDensity Gradient Ultracentrifugation: Raman Spectroscopy Evidence [J]. ACS Nano,2010,4(4):1955-1962.
    [83] Arnold MS, Stupp SI, Hersam MC. Enrichment of Single-Walled Carbon Nanotubes byDiameter in Density Gradients [J]. Nano Lett.,2005,5(4):713-718.
    [84] Green AA, Hersam MC. Processing and properties of highly enriched double-wall carbonnanotubes [J]. Nat. Nano,2009,4(1):64-70.
    [85] Arnold MS, Green AA, Hulvat JF, et al. Sorting carbon nanotubes by electronic structureusing density differentiation [J]. Nat. Nano,2006,1(1):60-65.
    [86] Chen G, Wang Y, Tan LH, et al. High-Purity Separation of Gold Nanoparticle Dimers andTrimers [J]. J. Am. Chem. Soc.,2009,131(12):4218-4219.
    [87] Tyler TP, Henry A-I, Van Duyne RP, et al. Improved Monodispersity of PlasmonicNanoantennas via Centrifugal Processing [J]. J. Phys. Chem. Lett.,2011,2(3):218-222.
    [88] Sun X, Tabakman SM, Seo W-S, et al. Separation of Nanoparticles in a Density Gradient:FeCo@C and Gold Nanocrystals [J]. Angew. Chem. Int. Ed.,2009,48(5):939-942.
    [89] Cushing BL, Kolesnichenko VL, O'Connor CJ. Recent Advances in the Liquid-PhaseSyntheses of Inorganic Nanoparticles [J]. Chem. Rev.,2004,104(9):3893-3946.
    [90] Murray CB, Kagan CR, Bawendi MG. Synthesis and characterization of monodispersenanocrystals and close-packed nanocrystal assemblies [J]. Annu. Rev. Mater. Sci.,2000,30(1):545-610.
    [91] Feng S, Xu R. New Materials in Hydrothermal Synthesis [J]. Acc. Chem. Res.,2000,34(3):239-247.
    [92] Son DH, Hughes SM, Yin Y, et al. Cation Exchange Reactions in Ionic Nanocrystals [J].Science,2004,306(5698):1009-1012.
    [93] Geon Dae Moon, Sungwook Ko, Yuho Min, et al. Chemical transformations ofnanostructured materials [J]. Nano Today,2011,6:186—203.
    [94] G. Ottaviani JV. Review of binary alloy formation by thin film interactions [J]. J. Vac.Sci. Technol.,1979,16:1112-1119.
    [95] M rtensson N, Nyholm R, Calén H, et al. Electron-spectroscopic studies of the CuxPd1-xalloy system: Chemical-shift effects and valence-electron spectra [J]. Phys. Rev. B,1981,24(4):1725-1738.
    [96] Yin Y, Rioux RM, Erdonmez CK, et al. Formation of Hollow Nanocrystals Through theNanoscale Kirkendall Effect [J]. Science,2004,304(5671):711-714.
    [97] Cabot A, Smith RK, Yin Y, et al. Sulfidation of Cadmium at the Nanoscale [J]. ACSNano,2008,2(7):1452-1458.
    [98] Gao J, Zhang B, Zhang X, et al. Magnetic-Dipolar-Interaction-Induced Self-AssemblyAffords Wires of Hollow Nanocrystals of Cobalt Selenide [J]. Angew. Chem. Int. Ed.,2006,45(8):1220-1223.
    [99] Jeong U, Xia Y. Photonic Crystals with Thermally Switchable Stop Bands Fabricatedfrom Se@Ag2Se Spherical Colloids [J]. Angew. Chem. Int. Ed.,2005,44(20):3099-3103.
    [100] Henkes AE, Vasquez Y, Schaak RE. Converting Metals into Phosphides: A GeneralStrategy for the Synthesis of Metal Phosphide Nanocrystals [J]. J. Am. Chem. Soc.,2007,129(7):1896-1897.
    [101] Henkes AE, Schaak RE. Template-Assisted Synthesis of Shape-Controlled Rh2PNanocrystals [J]. Inorg. Chem.,2007,47(2):671-677.
    [102] Leonard BM, Schaak RE. Multistep Solution-Mediated Formation of AuCuSn2:Mechanistic Insights for the Guided Design of Intermetallic Solid-State Materials andComplex Multimetal Nanocrystals [J]. J. Am. Chem. Soc.,2006,128(35):11475-11482.
    [103] Chou NH, Schaak RE. Shape-Controlled Conversion of β-Sn Nanocrystals intoIntermetallic M-Sn (M=Fe, Co, Ni, Pd) Nanocrystals [J]. J. Am. Chem. Soc.,2007,129(23):7339-7345.
    [104] Chou NH, Schaak RE. A Library of Single-Crystal Metal Tin Nanorods: Using Diffusionas a Tool for Controlling the Morphology of Intermetallic Nanocrystals [J]. Chem. Mater.,2008,20(6):2081-2085.
    [105] Wang C, Tian W, Ding Y, et al. Rational Synthesis of Heterostructured Nanoparticleswith Morphology Control [J]. J. Am. Chem. Soc.,2010,132(18):6524-6529.
    [106] Wang C, Daimon H, Sun S. Dumbbell-like Pt Fe3O4Nanoparticles and Their EnhancedCatalysis for Oxygen Reduction Reaction [J]. Nano Lett.,2009,9(4):1493-1496
    [107] Pellegrino T, Fiore A, Carlino E, et al. Heterodimers Based on CoPt3Au Nanocrystalswith Tunable Domain Size[J]. J. Am. Chem. Soc.,2006,128(20):6690-6698.
    [108] Lim B, Kobayashi H, Yu T, et al. Synthesis of Pd Au Bimetallic Nanocrystals viaControlled Overgrowth[J]. J. Am. Chem. Soc.,2010,132(8):2506-2507.
    [109] Lu Y, Zhao Y, Yu L, et al. Hydrophilic Co@Au Yolk/Shell Nanospheres: Synthesis,Assembly, and Application to Gene Delivery [J]. Advanced Materials,2010,22(12):1407-1411.
    [110] Skrabalak SE, Chen J, Sun Y, et al. Gold Nanocages: Synthesis, Properties, andApplications [J]. Acc. Chem. Res.,2008,41(12):1587-1595.
    [111] Liang H-P, Guo Y-G, Zhang H-M, et al. Controllable AuPt bimetallic hollownanostructures[J]. Chem. Commun.,2004:1496-1497.
    [112] Vasquez Y, Sra AK, Schaak RE. One-Pot Synthesis of Hollow Superparamagnetic CoPtNanospheres [J]. J. Am. Chem. Soc.,2005,127(36):12504-12505.
    [113] Zeng J, Huang J, Lu W, et al. Necklace-like Noble-Metal Hollow Nanoparticle Chains:Synthesis and Tunable Optical Properties [J]. Adv. Mater.,2007,19(16):2172-2176.
    [114] Lu Y, Zhao Y, Yu L, et al. Hydrophilic Co@Au Yolk/Shell Nanospheres: Synthesis,Assembly, and Application to Gene Delivery [J]. Adv. Mater.,2010,22(12):1407-1411.
    [115] Wetz F, Soulantica K, Falqui A, et al. Hybrid Co–Au Nanorods: Controlling AuNucleation and Location [J]. Angew. Chem. Int. Ed.,2007,119(37):7209-7211.
    [116] Camargo PHC, Xiong Y, Ji L, et al. Facile Synthesis of Tadpole-like NanostructuresConsisting of Au Heads and Pd Tails[J]. J. Am. Chem. Soc.,2007,129(50):15452-15453.
    [117] Yacobi BG. Semiconductor materials: an introduction to basic principles [M]. New York:Kluwer Academic/Plenum Publishers,2003.
    [118] Mews A, Eychmueller A, Giersig M, et al. Preparation, characterization, and photophysicsof the quantum dot quantum well system cadmium sulfide/mercury sulfide/cadmiumsulfide [J]. J. Phys. Chem.,1994,98(3):934-941.
    [119] Lewin S. The solubility product principle: An introduction to its uses and limitations [M].New York: Interscience Publishers,1960
    [120] Sadtler B, Demchenko DO, Zheng H, et al. Selective Facet Reactivity during CationExchange in Cadmium Sulfide Nanorods [J]. J. Am. Chem. Soc.,2009,131(14):5285-5293.
    [121] Feldman Y, Frey GL, Homyonfer M, et al. Bulk Synthesis of Inorganic Fullerene-likeMS2(M=Mo, W) from the Respective Trioxides and the Reaction Mechanism [J]. J. Am.Chem. Soc.,1996,118(23):5362-5367.
    [122] Wang Q, Li J-X, Li G-D, et al. Formation of CuS nanotube arrays from CuCl Nanorodsthrough a gas-solid reaction route [J]. J. Cryst. Growth.,2007,299(2):386-392.
    [123] L. Dloczik RE, K. Ernst, S. Fiechter, I. Sieber, R. Konenkamp. Hexagonal nanotubes ofZnS by chemical conversion of monocrystalline ZnO columns [J]. Appl. Phys. Lett.,2001,78:3687-3689.
    [124] Yan C, Xue D. Conversion of ZnO Nanorod Arrays into ZnO/ZnS Nanocable and ZnSNanotube Arrays via an in Situ Chemistry Strategy [J]. J. Phys. Chem. B,2006,110(51):25850-25855.
    [125] Ichinose I, Kurashima K, Kunitake T. Spontaneous Formation of Cadmium HydroxideNanostrands in Water [J]. J. Am. Chem. Soc.,2004,126(23):7162-7163.
    [126] Tang B, Zhuo L, Ge J, et al. Hydrothermal Synthesis of Ultralong and Single-CrystallineCd(OH)2Nanowires Using Alkali Salts as Mineralizers[J]. Inorg. Chem.,2005,44(8):2568-2569.
    [127] Matsui K, Kyotani T, Tomita A. Hydrothermal Synthesis of Single-Crystal Ni(OH)2Nanorods in a Carbon-Coated Anodic Alumina Film[J]. Adv. Mater.,2002,14(17):1216-1219.
    [128] Buscaglia MT, Buscaglia V, Bottino C, et al. Morphological Control of HydrothermalNi(OH)2in the Presence of Polymers and Surfactants: Nanocrystals, Mesocrystals, andSuperstructures[J]. Cryst. Growth. Des.,2008,8(10):3847-3855.
    [129] Kuang D-B, Lei B-X, Pan Y-P, et al. Fabrication of Novel Hierarchical β-Ni(OH)2andNiO Microspheres via an Easy Hydrothermal Process[J]. J. Phys. Chem. C,2009,113(14):5508-5513.
    [130] Li Y, Tan B, Wu Y. Ammonia-Evaporation-Induced Synthetic Method for Metal (Cu, Zn,Cd, Ni) Hydroxide/Oxide Nanostructures [J]. Chem. Mater.,2007,20(2):567-576.
    [131] Zhang S, Zeng HC. Self-Assembled Hollow Spheres of β-Ni(OH)2and Their DerivedNanomaterials[J]. Chem. Mater.,2009,21(5):871-883.
    [132] Ni Y, Li H, Jin L, et al. Synthesis of1D Cu(OH)2Nanowires and Transition to3D CuOMicrostructures under Ultrasonic Irradiation, and Their Electrochemical Property[J].Cryst. Growth. Des.,2009,9(9):3868-3873.
    [133] Hu CG, Liu H, Dong WT, et al. La(OH)3and La2O3Nanobelts—Synthesis and PhysicalProperties[J]. Adv. Mater.,2007,19(3):470-474.
    [134] Hu X, Masuda Y, Ohji T, et al. Fabrication of Zn(OH)2/ZnO Nanosheet-ZnO NanoarrayHybrid Structured Films by a Dissolution–Recrystallization Route[J]. J. Amer. Ceram.Soc.,2010,93(3):881-886.
    [135] Roduner E. Size matters: why nanomaterials are different [J]. Chem. Soc. Rev.,2006,35(7):583-592.
    [136] Burda C, Chen X, Narayanan R, et al. Chemistry and Properties of Nanocrystals ofDifferent Shapes [J]. Chem. Rev.,2005,105:1025-1102.
    [137] Panda SK, Hickey SG, Demir HV, et al. Bright White-Light Emitting Manganese andCopper Co-Doped ZnSe Quantum J. Phys. Chem. Dots [J]. Angew. Chem. Int. Ed.,2011,50(19):4432–4436.
    [138] Jana NR, Gearheart L, Murphy CJ. Wet Chemical Synthesis of High Aspect RatioCylindrical Gold Nanorods [J]. J. Phys. Chem. B,2001,105(19):4065-4067.
    [139] Wiley B, Sun Y, Mayers B, et al. Shape-Controlled Synthesis of Metal Nanostructures:The Case of Silver [J]. Chem. Eur. J.,2005,11(2):454-463.
    [140] Xia Y, Xiong Y, Lim B, et al. Shape-Controlled Synthesis of Metal Nanocrystals: SimpleChemistry Meets Complex Physics?[J]. Angew. Chem. Int. Ed.,2009,48(1):60-103.
    [141] Wu F, Yang Q. Ammonium bicarbonate reduction route to uniform gold nanoparticles andtheir applications in catalysis and surface-enhanced Raman scattering [J]. Nano Res.,2011:1-9.
    [142] Wang C, Shen E, Wang E, et al. Controllable synthesis of ZnO nanocrystals via asurfactant-assisted alcohol thermal process at a low temperature[J]. Mater. Lett,2005,59:2867-2871.
    [143] Sun S, Murray CB, Weller D, et al. Monodisperse FePt Nanoparticles and FerromagneticFePt Nanocrystal Superlattices [J]. Science,2000,287:1989-1992.
    [144] Peng X, Manna L, Yang W, et al. Shape control of CdSe nanocrystals [J]. Nature,2000,404:59-61.
    [145] Jun Y-w, Choi J-s, Cheon J. Shape Control of Semiconductor and Metal OxideNanocrystals through Nonhydrolytic Colloidal Routes [J]. Angew. Chem. Int. Ed.,2006,45:3414-3439.
    [146] Sharma V, Par K, Srinivasarao M. Shape separation of gold nanorods using centrifugation[J]. PNAS,2009,106(13):4981–4985.
    [147] Hanauer M, Pierrat S, Zins I, et al. Separation of Nanoparticles by Gel ElectrophoresisAccording to Size and Shape [J]. Nano Lett.,2007,7(9):2881-2885.
    [148] Heller DA, Mayrhofer RM, Baik S, et al. Concomitant length and diameter separation ofsingle-walled carbon nanotubes[J]. J. Am. Chem. Soc.,2004,126(44):14567-14573.
    [149] Zheng M, Jagota A, Semke ED, et al. DNA-assisted dispersion and separation of carbonnanotubes [J]. Nat. Mater.,2003,2(5):338-342.
    [150] James P. Novak CN, Stefan Franzen, and Daniel L. Feldheim. Purification of MolecularlyBridged Metal Nanoparticle Arrays by Centrifugation and Size ExclusionChromatography [J]. Anal. Chem.,2001,73:5758-5761.
    [151] Huang XY, McLean RS, Zheng M. High-resolution length sorting and purification ofDNA-wrapped carbon nanotubes by size-exclusion chromatography [J]. Anal. Chem.,2005,77(19):6225-6228.
    [152] Akthakul A, Hochbaum AI, Stellacci F, et al. Size Fractionation of Metal Nanoparticlesby Membrane Filtration [J]. Adv. Mater.,2005,17(5):532-535.
    [153] Yanagi K, Iitsuka T, Fujii S, et al. Separations of Metallic and Semiconducting CarbonNanotubes by Using Sucrose as a Gradient Medium[J]. J. Phys. Chem. C,2008,112(48):18889-18894.
    [154] Green AA, Hersam MC. Solution Phase Production of Graphene with ControlledThickness via Density Differentiation [J]. Nano Lett.,2009,9(12):4031-4036.
    [155] Chen Z, Du X, Du M-H, et al. Bulk Separative Enrichment in Metallic or SemiconductingSingle-Walled Carbon Nanotubes [J]. Nano Lett.,2003,3(9):1245-1249.
    [156] Fagan JA, Becker ML, Chun J, et al. Length Fractionation of Carbon Nanotubes UsingCentrifugation [J]. Adv. Mater.,2008,20:1609-1613.
    [157] Wang D-S, Xie T, Peng Q, et al. Direct Thermal Decomposition of Metal Nitrates inOctadecylamine to Metal Oxide Nanocrystals [J]. Chem. Eur. J.,2008,14:2507-2513.
    [158] Selvakannan PR, Sastry M. Hollow gold and platinum nanoparticles by a transmetallationreaction in an organic solution [J]. Chem. Commun.,2005,(13):1684.
    [159] Wei Chen, Rong Yu, Lingling Li, et al. A Seed-Based Diffusion Route to MonodisperseIntermetallic CuAu Nanocrystals [J]. Angew. Chem. Int. Ed.,2010,49:2917–2921.
    [160] Liu J, Chen W, Liu X, et al. Au/LaVO4Nanocomposite: Preparation, Characterization,and Catalytic Activity for CO Oxidation [J]. Nano Res.,2008,1:46-55.
    [161] Lu X, Yavuz MS, Tuan H-Y, et al. Ultrathin Gold Nanowires Can Be Obtained byReducing Polymeric Strands of Oleylamine-AuCl Complexes Formed via AurophilicInteraction [J]. J. Am. Chem. Soc.,2008,130:8900-8901.
    [162] Huo Z, Tsung C-k, Huang W, et al. Sub-Two Nanometer Single Crystal Au Nanowires[J]. Nano Lett.,2008,8:2041-2044.
    [163] Chengmin Shen CH, Tianzhong Yang, Congwen Xiao, Jifa Tian, Lihong Bao, ShutangChen, Hao Ding, Hongjun Gao. Monodisperse Noble-Metal Nanoparticles and TheirSurface Enhanced Raman Scattering Properties [J]. Chem. Mater.,2008,20:6939-6944.
    [164] Yang YA, Wu H, Williams KR, et al. Synthesis of CdSe and CdTe Nanocrystals withoutPrecursor Injection [J]. Angew. Chem. Int. Ed.,2005,44:6712-6715.
    [165] Ou Chen, Xian Chen, Yongan Yang, et al. Synthesis of Metal–Selenide NanocrystalsUsing Selenium Dioxide as the Selenium Precursor [J]. Angew. Chem. Int. Ed.,2008,47:8638–8641.
    [166] Rickwood. D. Preparative centrifugation a practical approach [M]. New York: Oxford;New York: IRL Press at Oxford University Press,1992.
    [167] Tan H, Li S, Fan WY. Core Shell and Hollow Nanocrystal Formation via Small MoleculeSurface Photodissociation; Ag@Ag2Se as an Example [J]. J. Phys. Chem. B,2006,110(32):15812-15816.
    [168] Wark SE, Hsia C-H, Son DH. Effects of Ion Solvation and Volume Change of Reactionon the Equilibrium and Morphology in Cation-Exchange Reaction of Nanocrystals [J]. J.Am. Chem. Soc.,2008,130(29):9550-9555.
    [169] Jeong U, Kim J-U, Xia Y, et al. Monodispersed Spherical Colloids of Se@CdSe:Synthesis and Use as Building Blocks in Fabricating Photonic Crystals [J]. Nano Lett.,2005,5(5):937-942.
    [170] Robinson RD, Sadtler B, Demchenko DO, et al. Spontaneous Superlattice Formation inNanorods Through Partial Cation Exchange [J]. Science,2007,317(5836):355-358.
    [171] Deka S, Miszta K, Dorfs D, et al. Octapod-Shaped Colloidal Nanocrystals of CadmiumChalcogenides via “One-Pot” Cation Exchange and Seeded Growth[J]. Nano Lett.,2010,10(9):3770-3776.
    [172] Pang M, Hu J, Zeng HC. Synthesis, Morphological Control, and Antibacterial Propertiesof Hollow/Solid Ag2S/Ag Heterodimers [J]. J. Am. Chem. Soc.,2010,132(31):10771-10785.
    [173] Zhang B, Jung Y, Chung H-S, et al. Nanowire Transformation by Size-Dependent CationExchange Reactions [J]. Nano Lett.,2009,10(1):149-155.
    [174] Jeong U, Xia Y, Yin Y. Large-scale synthesis of single-crystal CdSe nanowires through acation-exchange route [J]. Chem. Phys. Lett.,2005,416(4–6):246-250.
    [175] Yao Q, Arachchige IU, Brock SL. Expanding the Repertoire of Chalcogenide NanocrystalNetworks: Ag2Se Gels and Aerogels by Cation Exchange Reactions [J]. J. Am. Chem.Soc.,2009,131(8):2800-2801.
    [176] Jang SY, Song YM, Kim HS, et al. Three Synthetic Routes to Single-Crystalline PbSNanowires with Controlled Growth Direction and Their Electrical Transport Properties[J]. ACS Nano,2010,4(4):2391-2401.
    [177] Jeong U, Camargo PHC, Lee YH, et al. Chemical transformation: a powerful route tometal chalcogenide nanowires [J]. J. Mater. Chem.,2006,16(40):3893-3897.
    [178] Park WI, Kim HS, Jang SY, et al. Transformation of ZnTe nanowires to CdTe nanowiresthrough the formation of ZnCdTe-CdTe core-shell structure by vapor transport [J]. J.Mater. Chem.,2008,18(8):875-880.
    [179] Shevchenko EV, Bodnarchuk MI, Kovalenko MV, et al. Gold/Iron OxideCore/Hollow-Shell Nanoparticles [J]. Adv. Mater.,2008,20(22):4323-4329.
    [180] Lee Y, Garcia MA, Frey Huls NA, et al. Synthetic Tuning of the Catalytic Properties ofAu-Fe3O4Nanoparticles [J]. Angew. Chem. Int. Ed.,2010,49(7):1271-1274.
    [181] Buonsanti R, Grillo V, Carlino E, et al. Architectural Control of Seeded-GrownMagnetic Semicondutor Iron Oxide TiO2Nanorod Heterostructures: The Role of Seedsin Topology Selection[J]. J. Am. Chem. Soc.,2010,132(7):2437-2464.
    [182] Wang L-L, Johnson DD. Predicted Trends of Core Shell Preferences for132LateTransition-Metal Binary-Alloy Nanoparticles [J]. J. Am. Chem. Soc.,2009,131(39):14023-14029.
    [183] Xu C, Wang B, Sun S. Dumbbell-like Au Fe3O4Nanoparticles for Target-Specific PlatinDelivery [J]. J. Am. Chem. Soc.,2009,131(12):4216-4217.
    [184] Cable RE, Schaak RE. Reacting the Unreactive: A Toolbox of Low-TemperatureSolution-Mediated Reactions for the Facile Interconversion of NanocrystallineIntermetallic Compounds [J]. J. Am. Chem. Soc.,2006,128(30):9588-9589.
    [185] Yu H, Chen M, Rice PM, et al. Dumbbell-like Bifunctional Au Fe3O4Nanoparticles [J].Nano Lett.,2005,5(2):379-382.
    [186] Hongwei Gu, Zhimou Yang, Jinhao Gao, et al. Heterodimers of Nanoparticles: Formationat a Liquid Liquid Interface and Particle-Specific Surface Modification by FunctionalMolecules [J]. J. Am. Chem. Soc.,2005,127(1):34-35.
    [187] He R, Law M, Fan R, et al. Functional Bimorph Composite Nanotapes [J]. Nano Lett.,2002,2(10):1109-1112.
    [188] C.K. Erdonmez, Yin Y. Functional Nanomaterials: A Chemistry and EngineeringPerspective [M]. The Press of the University ofScience and Technology of China,2009.
    [189] Yin Y, Lu Y, Sun Y, et al. Silver Nanowires Can Be Directly Coated with AmorphousSilica To Generate Well-Controlled Coaxial Nanocables of Silver/Silica [J]. Nano Lett.,2002,2(4):427-430.
    [190] Mayers B, Jiang X, Sunderland D, et al. Hollow Nanostructures of Platinum withControllable Dimensions Can Be Synthesized by Templating Against SeleniumNanowires and Colloids [J]. J. Am. Chem. Soc.,2003,125(44):13364-13365.
    [191] Martin CR. Nanomaterials: A Membrane-Based Synthetic Approach [J]. Science,1994,266(5193):1961-1966.
    [192] Steinhart M, Jia Z, Schaper AK, et al. Palladium Nanotubes with Tailored WallMorphologies [J]. Adv. Mater.,2003,15(9):706-709.
    [193] Jeong U, Xia Y. Photonic Crystals with Thermally Switchable Stop Bands Fabricatedfrom Se@Ag2Se Spherical Colloids [J]. Angew. Chem. Int. Ed.,2005,44:3099-3103.
    [194] Park J, Zheng H, Jun Y-w, et al. Hetero-Epitaxial Anion Exchange YieldsSingle-Crystalline Hollow Nanoparticles [J]. J. Am. Chem. Soc.,2009,131(39):13943-13945.
    [195] Zhang Q, Xie J, Lee JY, et al. Synthesis of Ag@AgAu Metal Core/Alloy Shell BimetallicNanoparticles with Tunable Shell Compositions by a Galvanic Replacement Reaction[J].Small,2008,4(8):1067-1071.
    [196] Xianmao Lu, Hsing-Yu Tuan, Jingyi Chen, et al. Mechanistic Studies on the GalvanicReplacement Reaction between Multiply Twinned Particles of Ag and HAuCl4in anOrganic Medium[J]. J. Am. Chem. Soc.,2007,129:1733-1742.
    [197] Xuezhong Gong, Yun Yang, Huang S. A Novel Side-Selective Galvanic Reaction andSynthesis of Hollow Nanoparticles with an Alloy Core [J]. J. Phys. Chem. C,2010,114:18073–18080.
    [198] Yang J, Lee JY, Too H-P. Core Shell Ag Au Nanoparticles from Replacement Reactionin Organic Medium [J]. J. Phys. Chem. B,2005,109(41):19208-19212.
    [199] Xiaowei Teng, Qi Wang, Ping Liu, et al. Formation of PdAu Nanostructures from PdNanowires via Galvanic Replacement Reaction [J]. J. Am. Chem. Soc.,2008,130:1093-1101.
    [200] Zheng N, Fan J, Stucky GD. One-Step One-Phase Synthesis of MonodisperseNoble-Metallic Nanoparticles and Their Colloidal Crystals [J]. J. Am. Chem. Soc.,2006,128(20):6550-6551.
    [201] Seung Uk Son, Youngjin Jang, Jongnam Park, et al. Designed Synthesis ofAtom-Economical Pd/Ni Bimetallic Nanoparticle-Based Catalysts for SonogashiraCoupling Reactions [J]. J. Am. Chem. Soc.,2004,126:5026-5027.
    [202] Li F, Josephson DP, Stein A. Colloidal Assembly: The Road from Particles to ColloidalMolecules and Crystals [J]. Angew. Chem. Int. Ed.,2011,50(2):360-388.
    [203] Cozzoli PD, Pellegrino T, Manna L. Synthesis, properties and perspectives of hybridnanocrystal structures [J]. Chem. Soc. Rev.,2006,35(11):1195.
    [204] Chen T, Chen G, Xing SX, et al. Scalable Routes to Janus Au SiO2and TernaryAg Au SiO2Nanoparticles [J]. Chem. Mater.,2010,22(13):3826-3828.
    [205] Xing SX, Feng YH, Tay YY, et al. Reducing the Symmetry of Bimetallic Au@AgNanoparticles by Exploiting Eccentric Polymer Shells [J]. J. Am. Chem. Soc.,2010,132(28):9537-9539.
    [206] Carbone L, Cozzoli PD. Colloidal heterostructured nanocrystals: Synthesis and growthmechanisms [J]. Nano Today,2010,5(5):449-493.
    [207] Wang C, Tian WD, Ding Y, et al. Rational Synthesis of Heterostructured Nanoparticleswith Morphology Control [J]. J. Am. Chem. Soc.,2010,132(18):6524-6529.
    [208] Chen T, Chen G, Xing S, et al. Scalable Routes to Janus Au SiO2and TernaryAg Au SiO2Nanoparticles [J]. Chem. Mater.,2010,22(13):3826-3828.
    [209] Wu B, Zhang H, Chen C, et al. Interfacial activation of catalytically inert Au (6.7nm)-Fe3O4dumbbell nanoparticles for CO oxidation [J]. Nano Res.,2010,2(12):975-983.
    [210] Hausmann J, Klingele MH, Lozan V, et al. Realization of Unusual Ligand Binding Motifsin Metalated Container Molecules: Synthesis, Structures, and Magnetic Properties of theComplexes [(LMe)Ni2(μ-L′)]n+with L′=NO3, NO2, N3, N2H4, Pyridazine, Phthalazine,Pyrazolate, and Benzoate[J]. Chem. Eur. J.,2004,10(7):1716-1728.
    [211] Usher A, McPhail DC, Brugger J. A spectrophotometric study of aqueous Au (III)halide–hydroxide complexes at25–80°C [J]. Geochim. Cosmochim. Acta.2009,73(11):3359-3380.
    [212] Grunder Y, Ho HLT, Mosselmans JFW, et al. Inhibited and enhanced nucleation of goldnanoparticles at the water1,2-dichloroethane interface[J]. Phys. Chem. Chem. Phys.,2011,13(34):15681-15689.
    [213] Jana NR, Peng XG. Single-Phase and Gram-Scale Routes toward Nearly MonodisperseAu and Other Noble Metal Nanocrystals [J]. J. Am. Chem. Soc.,2003,125(47):14280-14281.