排气门密封面等离子弧堆焊铁基合金涂层的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
排气门是发动机的重要部件,由于它长期工作在高温、承受冲击载荷、环境气氛腐蚀等恶劣的工况条件下,因此要求它具有优良的高温性能、耐磨损性能和耐腐蚀性能。为了提高发动机排气门密封面的性能,目前国内外在高品质的排气门密封锥面上大多进行堆焊钴基合金的强化处理,以满足排气门苛刻的工作条件要求。钴基合金在热稳定性、耐磨性、耐蚀性等方面均有突出的优势,但价格昂贵,成本太高。本课题旨在研制一种适用于排气门密封面强化的铁基合金粉末材料,以降低排气门的生产成本。
     本课题设计了适合于排气门密封面强化的铁基合金粉末(Fe38)的成分,采用雾化法制备该合金粉末;并研究了其物理特性和结构;探讨了等离子弧堆焊工艺参数对Fe38堆焊层质量的影响,确定了最佳堆焊工艺参数;分析和测试了Fe38合金等离子堆焊层的微观组织和结构,耐高温性能,摩擦磨损性能和耐腐蚀性能,并与钴基合金涂层进行了对比。最终通过台架试验模拟了实际工况下涂层的耐磨性。
     实验结果表明,设计制备的Fe38合金粉末由γ固溶体和(Cr,Fe)7C3碳化物组成,粉末的尺寸均匀,结构致密,成球性良好;该铁基合金等离子堆焊层具有优良的抗高温氧化性、耐磨性和耐蚀性。当工作温度低于800℃时,该堆焊层可满足工件的硬度要求。当工作温度高于800℃时,由于基体中第二相颗粒的析出和粗化使材料的硬度明显降低。
     与钴基合金Co02相比,等离子弧堆焊铁基合金Fe38在800℃以下使用时,其使用性能基本达到了Co02的水平,同时具有突出的经济性能。因此,该项研究为等离子堆焊强化气门密封锥面提供了一种新的合金粉末材料,同时该材料也可用于要求相近的其他机械零件的表面强化,具有较大的应用价值。
Air outlet valve is an important part in the engine. Since the valve always works under the inclement conditions, such as high temperature, impact load, corrosion media, etc., it is necessary to have the excellent high temperature behavior, wear resistance and corrosion resistance. In order to increase the properties of the air outlet valve sealing face, at present, a cobalt-based alloy coating is employed because of its outstanding properties. But the expensive price of the cobalt coating will enhance the valve’s cost. This research aims to obtain a kind of iron-based alloy powder for strengthening the air outlet valve with a lower price.
     The composition of the iron-based alloy powder (Fe38) for strengthening coating has been designed and prepared using the atomization technique; the effects of the plasma arc build-up welding parameters on the Fe38 coating quality have been investigated, and the optimal technology parameters are suggested; the microstructure,the thermal and wear resistence as well as the corrosion resistence of the Fe38 coating have been tested and analysed; the comparison tests with the cobalt coating have been accepted. At last, the bench test of the valve has been made to simulate the working condition.
     The experimental result shows that the microstructure of iron-based alloy powder consists of theγsolid solution and the (Cr,Fe)7C3 carbide. The prepared powders have round shape, even particle size and compact structure; the plasma arc welding coating exhibits the good oxidation resistance properties at elevated temperature, wear resistance and anti-corrosive capacity. The coating can keep required hardness up to 800℃working temperature. When the temperature is higher than 800℃, the precipitation will separate from the solid solution and coarsen resulting in the hardness decreasing obviously.
     The iron-based alloy (Fe38) coating by plasma arc welding has similar properties below 800℃compared with cobalt-based alloy, which exhibits the economical advantage. Therefore, this issue has provided a new alloy powders for strengthening the air outlet valve. And also, the powders can be used for surface-strengthening of other machine elements requiring similar properties.
引文
[1]孙希泰,材料表面强化技术,北京:化学工业出版社,2005
    [2]王娟,表面堆焊与热喷涂技术,北京:化学工业出版社,2004
    [3]赵唯,柳林,张海鸥等,等离子堆焊技术的研究进展,材料导报,2005,19(5):216-221
    [4] Yan M , Zhu W.Z, Surface treatment of 45 steel by plasma-arc melting, Surface and Coatings Technology, 1997, 91(3):183-191(9)
    [5] Liu, Z.J., Chen, H., Liu, C., Cheng, J.B., Su, Y.H., Liu, D, Application of agnetic field control technology in plasma arc surfacing, Surface Engineering, 2006, 22(3), 173-176(4)
    [6]赵书远,等离子弧粉末堆焊在石油钻杆接头修复中的应用研究,硕士学位论文,天津大学,2005
    [7]高荣发,热喷涂,北京:化学工业出版社,1992,82-100
    [8]高捷,胡远银,等离子粉末喷焊技术在阀门密封面上的应用,阀门,2006,1:17-19
    [9]徐滨士,朱绍华,刘世参,材料表面工程,哈尔滨:哈尔滨工业大学出版社, 2005,8
    [10] Hyung-Jun Kima , Byoung-Hyun Yoon , Chang-Hee Lee,Wear performance of the Fe-based alloy coatings produced by plasma transferred arc weld-surfacing process,Wear,2002,249:846-852
    [11]高清宝,王德权,阀门堆焊技术,北京:机械工业出版社,1994,75-79
    [12] Leylavergne M., Chartier T., Denoirjean A., Grimaud A., Abelard P., Fauchais P, Cast iron substrates reclamation by tape casting of NiCu treated by plasma transferred arc: optimization of the tape and its plasma treatment, Thin Solid Films, 2001, 391(1): 1-10(10)
    [13]王惜宝,铁基B4C等离子弧堆焊层及其纤维增韧的研究,硕士学位论文,天津大学,1996
    [14] Bourithis E., Tazedakis A., Papadimitriou G, A study on the surface treatment of ''Calmax'' tool steel by a plasma transferred arc (PTA) process, Journal of Materials Processing Technology, 2002 ,128, (1): 169-177(9)
    [15] DuPont, J, On optimization of the powder plasma arc surfacing process, Metallurgical and Materials Transactions B, Springer, 1998, 29(4): 932-934(3)
    [16]董丽虹,朱胜,徐滨士等,耐磨损耐腐蚀粉末等离子弧堆焊技术的研究进展,焊接,2004,7:6-9
    [17] Xibao W., Hua L, Metal powder thermal behaviour during the plasma transferred-arc surfacing process, Surface and Coatings Technology, 1998 ,106(2): 156-161(6)
    [18] Kim H.-J., Yoon B.-H., Lee C.-H.,Wear performance of the Fe-based alloy coatings produced by plasma transferred arc weld-surfacing process, Wear,2001 ,249(10):846-852(7)
    [19]傅迎庆,Cr-B-W-V系多元复合强化铁基高温耐磨堆焊合金的优化设计,硕士学位论文,沈阳工业大学,2003
    [20] Wang X B,Zhang W Y,Lu T L,The microstructrue and properties of Fe+B4C plasma arc powder surfacing coatings,China Welding,1997,6:102-107
    [21] Kim H.-J., Yoon B.-H., Lee C.-H.,Sliding wear performance in molten Zn-Al bath of cobalt-based overlayers produced by plasma-transferred arc weld-surfacing, Wear, 2003 ,254(5):408-414(7)
    [22] Kim H.-J., Kim, Y.J.,Wear and corrosion resistance of PTA weld surfaced Ni and CO based alloy layers, Surface Engineering, 1999,15(6): 495-501(7)
    [23]贾文,表面热喷涂技术的发展与应用,昆明冶金高等专科学校学报,2003,19(2):32-35
    [24] Iakovou R., Bourithis L., Papadimitriou G, Synthesis of boride coatings on steel using plasma transferred arc (PTA) process and its wear performance, Wear, 2002 ,252(11):1007-1015(9)
    [25] deuis R.L., Subramanian C.,Dry sliding wear behaviour at ambient and elevated temperatures of plasma transferred arc deposited aluminium, omposite coatings, Materials Science and Technology, 2000 ,16(2):209-219(11)
    [26] Deuis R.L., Yellup J.M., Subramanian C., Metal-Matrix Composite Coatings by PTA Surfacing, Composites Science and Technology, 1998 ,58(2):299-309(11)
    [27] Darabara, M., Papadimitriou, G.D., Bourithis, L.,Synthesis of TiB2 metal matrix composite on plain steel substrate: microstructure and wear properties, Materials Science and Technology, 2007 ,23(7): 839-846(8)
    [28]董丽红,粉末等离子弧堆焊枪体及耐磨合金的研究,硕士学位论文,天津大学,2003
    [29]张艳玲,气门与气门座损坏原因和维修方法,河南农业,2005,4:35-36
    [30] Shojaefard, M.H., Noorpoor, A.R., Bozchaloe, D.A., Ghaffarpour, M., Transient thermal analysis of engine exhaust valve, Numerical Heat Transfer; Part A: Applications, 2005, 48(7): 627-644
    [31] Wang, Y.S.,Narasimhan,S., Larson, J.M., Schaefer,S.K.,Wear and wear mechanism simulation of heavy-duty engine intake valve and seat inserts, Journal of Materials Engineering and Performance, 1998, 7(1):53-65
    [32]徐光明,深度解析气门与气门座圈漏气的原因及排除方法,内燃机,2006,8:59-61
    [33]徐自立,高温金属材料的性能、强度设计及工程应用,北京:化学工业出版社,2005
    [34]王大勇,杨鑫华,气门锻造工艺工装设计及质量控制,大连铁道学院学报,2006,27 (6):87-89
    [35]孙建强,潘邻,陶锡麒等,机车气门密封面激光熔覆钴基合金的应用研究,材料保护,2003, 4
    [36]大野丈博,三奈木羲博,野原努等,低Ni高强度排气门材料的开发,国外内燃机,2000,6:58-61
    [37]陈文,梁生,颜晓刚等,堆焊排气门盘部延时裂纹分析,焊接与切割,2005,11:34-35
    [38]周小伟,排气门堆焊开裂探因,内燃机配件,2006,4:55-57
    [39] A.Klimpel, L.A.Dobrzanski, A.Lisiecki, D.Janicki,The study of the technology of laser and plasma surfacing of engine valves face made of X40CrSiMo10-2steel using cobalt-based powders,Materials Processing technology, 2006,175:251-256
    [40]罗天友,宁志坚,蒋涛等,超薄基体气门等离子喷焊T400合金层的试验研究,热加工工艺,2006,35(7):6-8
    [41]张富邦,胡春莲,侯尚林等,气门密封面两种熔焊工艺焊层的组织、性能比较,材料保护,2005,38 (8):59-66
    [42]戴华,潘春旭,激光熔覆工艺对钴基合金气门密封面覆层组织的影响,机械工程材料,2002,26 (6):25-39
    [43]罗天友,宁志坚,揭晓华等,气门锥面等离子喷焊钴基合金层的高温磨损特性研究,汽车工艺与材料,2006,10:5-8
    [44] ISO3954-1977,粉末冶金用粉末—取样,1977
    [45] ISO3923-1979,金属粉末-表观密度的测定—第1部分:漏斗法,1979
    [46] ISO4490-2001,金属粉末-用校准漏斗(霍尔流量计)测定流动性,2001
    [47]陈俐,谢长生,胡木林等,激光熔覆用铁基合金工艺性研究,焊接技术,2001,30(3):2-4
    [48]唐英,邸宝永,杨杰,自熔性合金粉末冶炼工艺探讨,天津轻工业学院学报,2001,2:47-49
    [49]宋守今,粉末冶金工艺学,北京:科学普及出版社,1987,50-55
    [50]常国威,王建中,金属凝固过程中晶体生长与控制,北京:冶金工业出版社,2002,87-92
    [51]斯松华,何宜柱,离子堆焊合金层组织及腐蚀磨损性能,焊接学报,2002,23(2):40-42
    [52]肖银生,袁世伟,Stellitel合金的阀门堆焊,泸天化科技,2002,2:130-132
    [53]周小伟,排气门堆焊开裂探因,内燃机配件,2006,4:34-35
    [54]钱应平,张海鸥,王桂兰,等离子激光复合熔积高温合金粉末的工艺研究,中国机械工程,2006,2:315-317
    [55]苏志东,王德权,核级阀门堆焊钴基合金工艺的研究,阀门,2000,5:15-19
    [56]许四祥,等离子束熔覆结晶过程及热影响区的研究,硕士学位论文,山东科技大学, 2004
    [57]侯清宇,高甲生,Co-Cr-W系等离子弧堆焊合金层显微结构的研究,稀有金属材料与工程,2004,33(11):1199-1202
    [58]侯增寿,陶岚琴,实用三元相图,上海:上海科学技术出版社,1983