斑马鱼缺氧诱导因子-3α的克隆、表达和功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
缺氧在胚胎发育、生理和病理反应中起着重要作用。机体和细胞为应对缺氧胁迫,形成了大量蛋白参与的,精巧、复杂的反应机制。在整个应答体系中,缺氧诱导因子(HIF)是最关键的调控者,居于核心位置。HIF家族包括HIF一1,一2和一3三个成员;每个成员都含有受氧调控的a亚基(HIF一1a,一2a和一3a)和组成性表达的B亚基。目前,我们对HIF家族的认识主要来自HIF—la和HIF一2a,对HIF一3a却知之甚少。本研究克隆得到斑马鱼,通过体内、体外实验,首次证实H_f-3a是转录因子,同时发现一个不受氧气调控的Hif-3a转录本(H3—513)并研究它的活性位点和体内功能。
     本研究从模式生物斑马鱼中克隆得到-3A基因,它位于15号染色体,cDNA全长2,196 bp,ORF为l,881 bp,含15个外显子,编码626个氨基酸。与HIF—la相比,Hif-3a含有N一端保守结构域(bHLH和PAS)和氧应答结构域0DD,缺失C一端C—TAD结构域,新增LZIP结构域。斑马鱼呈现全身性表达模式,在胚胎发育初期含量很低,从4 hpf开始有明显表达,随后逐渐升高并维持在稳定水平;在成鱼肾脏和卵巢中3a表达最高,脑、鳃、脾脏、心脏、肠胃和精巢都有明显表达。转录水平, 3amRNA的表达受氧气浓度调控,成鱼或胚胎经过缺氧处理后, 3amRNA显著升高。翻译水平,Hif-3a也受氧气调控,0DD结构域中两个保守脯氨酸基序介导了I{if-3 a常氧条件下的降解,点突变该基序核心氨基酸后,斑马鱼Hif-3a的蛋白水平和活性都显著提高。
     亚细胞定位显示Hif_3a是核蛋白,说明H.f_3 a具有作为转录因子的特征。本研究从体外和体内两个层面,证明Hif_3Ⅱ是转录因子。首先,利用荧光素酶报告体系,发现斑马鱼Hif_3d能显著促进报告基因p2.1的表达;Hif-3a与dominam netive Hif_3a( 3a)共转染,则抑制报告基因的表达,这说明Hif.3a在体外细胞系中具有转录活性。向胚胎显微注射Hif-3amRNA,能显著上调报告基因,同时发现,内源基因igfbp一16和rtp801的表达水平也明显上升;将dnI-{if_3 a与Hif.3a共注射胚胎,则检测不到-b和rtp801的变化;注射dnt{if_3a能抑制缺氧对bp一6和rtpS01的上调作用;这表明Hif_3a能够作为转录因子调节内源基因的表达,是转录因子。此外,实验显示Hif-3a具有独立的转录活性,且不影响Hif.1a活性。
     本研究还克隆得到斑马鱼Hif-3a一个新的转录本H3—513。它的ORF长513 bp,含5个外显子,编码170个氨基酸,包括TAD和LZIP两个结构域,在时空表达模式上与Hif.3a类似。qRT.PCR检测发现,缺氧处理成鱼和胚胎,不影响h3一513 mRNA的表达;常氧下H3—513的蛋白稳定存在,表明H3.513的mRNA和蛋白部不受氧气调控。无论在细胞系还是活体胚胎细胞,H3.513都定位在细胞核中。体外转染不同细胞系,H3—513均能促进报告基因表达;胚胎注射H3—513mRNA显著增强内源基因igfbp一-la的表达,说明H3—513具有转录活性;通过删除突变证实,TAD结构域中保守的脯氨酸残基(Pr037)决定着H3—513的活性。过量表达H3.513导致胚胎出现一系列畸形,这说明它在体内具有重要作用。本研究克隆得到斑马鱼Hif_3a并证明它是转录因子:首次发现不受氧气调控的HIF—a蛋白.H3—513。这些结果为深入研究Hif:3a的功能奠定基础,对全面认识和理解HIF一a家族具有重要价值。
Hypoxia,low oxygen tension,not only Occurs during normal emb~onic development and plays an important role in physiological progress,but also associates with a variety of pathological conditions.Animals and cells have developed elaborate mechanisms that allow adaptation to hypoxic environments.Hypoxia—inducible factors(HIFs)are key regulators of the physiological responses to hypoxia The HIF family consists of three members,i.e.,HIF-1,- 2 and·3.Each of them is composed of a unique oxygen—dependent a subunit(i.e.,HIF - 1a,-2a and - 3a)and a constitutively expressed B subunit.Knowledge about this important family is mostly derived from studies on HIF.1ct and to a tess degree on HIF- 2ct.However,our understanding of HIF - 3u is still limited.Here we cloned the zebrafish h/f-3a,and firstly confirmed its transcriptional factor role in vitro and in vivo.We also found a new transcript of Hif-3ct(H3—5 1 3),which was not regulated by oxygen.
     In this thesis,we cloned zebrafish h/f-3a gene.The full-len~h h/f-3a cDNA was 2,196 bp,which contained complete open reading frame of 1,881 bp(15 exons), encoding a protein of 626 amino acids In comparison with HIF—l a , Hif-3a had the conserved N . terminal domains(bHLH and PAS)and oxygen—dependent domain (ODD),but lacked the C—TAD.In addition,Hif-3ct had a new motif LZIP.During early development,zebrafish hif-3a mRNA was hardly detected until 4 hpf.The hif-3a mRNA levels gradually increased after 4 hpf and maintained at relatively high levels thereafter.In adult fish,the highest levels were observed in ovary and kidney, h/f-3a mRNA was also easily detected in testes,intestine and stomach,brain,gills, spleen,and heart.In the transcriptional level,hypoxia treatment could significantly increase h/f-3a mRNA in adult and embryos.In protein level,the fast degradation of Hif-3a was induced by two conserved Pro motifs in the ODD.When the Pro were mutated to Ala,the stabilty and activity ofHif-3ct were enhanced.
     The subcellular localization indicated that h/f-3a encoded a nuclear protein, which lead us to surmise that Hif-3et acted as a transcriptional factor in the nucleas So we designed experiments to confirm this hypothesis.First,we found zebrafish Hif-3a could upregulate the reporter gene p2.1.The activity of reporter gene was absent when co-transfection Hif-3a with dominant negative Hif-3a(dnHif-3a).These results indicated that Hif-3a had transcriptional activity in vitro.Next,significantly enhancement of p2.1 and endogenous genes(igflop—lb and rtp801)were detected in zebrafish embryos when we overexpressed the hif-3a mRNA.Co-injection of dnltif-3a and Hif-3a could restrain the upregulation of ig/bp—1b and rtp801.And dnHif-3a could inhibit the hypoxia inducible expression of igg,p-lb and rtp801. These results indicated that Hif-3a had transcriptional activity in vivo.In addition,we also found that Hif-3ct and Hif-l u did not exhibit additive or inhibitory effect. tt3—513,a new transcript of Hif-3a,was cloned in this thesis.The ORF of H3—513 was 5 1 3 bp,which contained 5 exons,encoding a protein of 1 70 amino acids.In comparison with Hif-3~t,E13—5 1 3 had only two domains:TAD and LZIP.The temporal and spatial expression patterns of H3—5 1 3 were similar to Hif-3a.Both the mRNA and protein levels Of H3-5 1 3 were not changed under different oygen concentration . which indicated that 1-13—5 1 3 was a consistent expression HIF—a.H3—5 1 3 encoded a nuclear protein in both cell lines(in vitro)and embryo cells(in vivo).H3—5 1 3 had HRE-dependent transcriptionalactivity in different cell lines ; in vivo , force-expression of H3—5 I 3 could upregulate the expression of endogenous gene(igfbp-la).These results disclosed that H3—5 1 3 also has transcriptional activity.Furthermore,we found the Pr037,a conserved residue in TAD domain,determined the activity of H3—513.In addition,the embryos displayed multi—abnormality when overexpression of H3—513.This finding suggested that H3-513 may play an important role in zebrafish embryogenesis.In this study,we cloned zebrafish Hif-3a and confirmed its transcriptional factor role.And we discovered a new HIF.a member which could exist under normoxia.These results will provide new information about HIF-a family and lay the foundations for the research of HIF - 3a
引文
[1] Adelman, D.M., M. Gertsenstein, A. Nagy, M.C. Simon, and E. Maltepe. 2000. Placental cell fates are regulated in vivo by HIF-mediated hypoxia responses. Genes Dev. 14:3191-3203.
    [2] Adelman, D.M., E. Maltepe, and M.C. Simon. 1999. Multilineage embryonic hematopoiesis requires hypoxic ARNT activity. Genes Dev. 13:2478-2483.
    [3] Anderson, L.L., X. Mao, B.A. Scott, and C.M. Crowder. 2009. Survival from hypoxia in C. elegans by inactivation of aminoacyl-tRNA synthetases. Science. 323:630-633.
    [4] Augstein, A., D.M. Poitz, R.C. Braun-Dullaeus, R.H. Strasser, and A. Schmeisser. 2010. Cell-specific and hypoxia-dependent regulation of human HIF-3alpha: inhibition of the expression of HIF target genes in vascular cells. Cell Mol Life Sci.
    [5] Baek, D., J. Villen, C. Shin, F.D. Camargo, S.P. Gygi, and D.P. Bartel. 2008. The impact of microRNAs on protein output. Nature. 455:64-71.
    [6] Baek, J.H., Y.V. Liu, K.R. McDonald, J.B. Wesley, M.E. Hubbi, H. Byun, and G.L. Semenza. 2007. Spermidine/spermine-N1-acetyltransferase 2 is an essential component of the ubiquitin ligase complex that regulates hypoxia-inducible factor 1alpha. J Biol Chem. 282:23572-23580.
    [7] Baldewijns, M.M., I.J. van Vlodrop, P.B. Vermeulen, P.M. Soetekouw, M. van Engeland, and A.P. de Bruine. 2010. VHL and HIF signalling in renal cell carcinogenesis. J Pathol. 221:125-138.
    [8] Beall, C.M., M.J. Decker, G.M. Brittenham, I. Kushner, A. Gebremedhin, and K.P. Strohl. 2002. An Ethiopian pattern of human adaptation to high-altitude hypoxia. Proc Natl Acad Sci U S A. 99:17215-17218.
    [9] Bergeron, M., A.Y. Yu, K.E. Solway, G.L. Semenza, and F.R. Sharp. 1999. Induction of hypoxia-inducible factor-1 (HIF-1) and its target genes following focal ischaemia in rat brain. Eur J Neurosci. 11:4159-4170.
    [10] Bern, H.A. 1967. Hormones and endocrine glands of fishes. Studies of fish endocrinology reveal major physiologic and evolutionary problems. Science. 158:455-462.
    [11] Bertout, J.A., S.A. Patel, and M.C. Simon. 2008. The impact of O2 availability on human cancer. Nat Rev Cancer. 8:967-975.
    [12] Bickler, P.E., and L.T. Buck. 2007. Hypoxia tolerance in reptiles, amphibians, and fishes: life with variable oxygen availability. Annu Rev Physiol. 69:145-170.
    [13] Bilton, R., N. Mazure, E. Trottier, M. Hattab, M.A. Dery, D.E. Richard, J. Pouyssegur, and M.C. Brahimi-Horn. 2005. Arrest-defective-1 protein, an acetyltransferase, does not alter stability of hypoxia-inducible factor (HIF)-1alpha and is not induced by hypoxia or HIF. JBiol Chem. 280:31132-31140.
    [14] Bracken, C.P., M.L. Whitelaw, and D.J. Peet. 2003. The hypoxia-inducible factors: key transcriptional regulators of hypoxic responses. Cell Mol Life Sci. 60:1376-1393.
    [15] Bruick, R.K. 2003. Oxygen sensing in the hypoxic response pathway: regulation of the hypoxia-inducible transcription factor. Genes Dev. 17:2614-2623.
    [16] Bruick, R.K., and S.L. McKnight. 2001. A conserved family of prolyl-4-hydroxylases that modify HIF. Science. 294:1337-1340.
    [17] Bruick, R.K., and S.L. McKnight. 2002. Transcription. Oxygen sensing gets a second wind. Science. 295:807-808.
    [18] Cao, R., L.D. Jensen, I. Soll, G. Hauptmann, and Y. Cao. 2008. Hypoxia-induced retinal angiogenesis in zebrafish as a model to study retinopathy. PloS one. 3:e2748.
    [19] Cao, Z., L.D. Jensen, P. Rouhi, K. Hosaka, T. Lanne, J.F. Steffensen, E. Wahlberg, and Y. Cao. 2010. Hypoxia-induced retinopathy model in adult zebrafish. Nat Protoc. 5:1903-1910.
    [20] Carbia-Nagashima, A., J. Gerez, C. Perez-Castro, M. Paez-Pereda, S. Silberstein, G.K. Stalla, F. Holsboer, and E. Arzt. 2007. RSUME, a small RWD-containing protein, enhances SUMO conjugation and stabilizes HIF-1alpha during hypoxia. Cell. 131:309-323.
    [21] Chen, C., N. Pore, A. Behrooz, F. Ismail-Beigi, and A. Maity. 2001. Regulation of glut1 mRNA by hypoxia-inducible factor-1. Interaction between H-ras and hypoxia. J Biol Chem. 276:9519-9525.
    [22] Cheng, J., X. Kang, S. Zhang, and E.T. Yeh. 2007. SUMO-specific protease 1 is essential for stabilization of HIF1alpha during hypoxia. Cell. 131:584-595.
    [23] Chi, J.T., Z. Wang, D.S. Nuyten, E.H. Rodriguez, M.E. Schaner, A. Salim, Y. Wang, G.B. Kristensen, A. Helland, A.L. Borresen-Dale, A. Giaccia, M.T. Longaker, T. Hastie, G.P. Yang, M.J. van de Vijver, and P.O. Brown. 2006. Gene expression programs in response to hypoxia: cell type specificity and prognostic significance in human cancers. PLoS Med. 3:e47.
    [24] Colgan, S.P., and C.T. Taylor. 2010. Hypoxia: an alarm signal during intestinal inflammation. Nat Rev Gastroenterol Hepatol. 7:281-287.
    [25] Compernolle, V., K. Brusselmans, T. Acker, P. Hoet, M. Tjwa, H. Beck, S. Plaisance, Y. Dor, E. Keshet, F. Lupu, B. Nemery, M. Dewerchin, P. Van Veldhoven, K. Plate, L. Moons, D. Collen, and P. Carmeliet. 2002. Loss of HIF-2alpha and inhibition of VEGF impair fetal lung maturation, whereas treatment with VEGF prevents fatal respiratory distress in premature mice. Nat Med. 8:702-710.
    [26] Compernolle, V., K. Brusselmans, D. Franco, A. Moorman, M. Dewerchin, D. Collen, and P. Carmeliet. 2003. Cardia bifida, defective heart development and abnormal neural crest migration in embryos lacking hypoxia-inducible factor-1alpha. Cardiovasc Res. 60:569-579.
    [27] Cowden, K.D., and M.C. Simon. 2002. The bHLH/PAS factor MOP3 does not participate in hypoxia responses. Biochemical and biophysical research communications. 290:1228-1236.
    [28] Denko, N.C., L.A. Fontana, K.M. Hudson, P.D. Sutphin, S. Raychaudhuri, R. Altman, and A.J. Giaccia. 2003. Investigating hypoxic tumor physiology through gene expression patterns. Oncogene. 22:5907-5914.
    [29] Depping, R., A. Steinhoff, S.G. Schindler, B. Friedrich, R. Fagerlund, E. Metzen, E. Hartmann, and M. Kohler. 2008. Nuclear translocation of hypoxia-inducible factors (HIFs): involvement of the classical importin alpha/beta pathway. Biochim Biophys Acta. 1783:394-404.
    [30] Devlin, C., S. Greco, F. Martelli, and M. Ivan. 2011. miR-210: More than a silent player in hypoxia. IUBMB Life. 63:94-100.
    [31] Duan, C., J. Ding, Q. Li, W. Tsai, and K. Pozios. 1999. Insulin-like growth factor binding protein 2 is a growth inhibitory protein conserved in zebrafish. Proc Natl Acad Sci U S A. 96:15274-15279.
    [32] Dunwoodie, S.L. 2009. The role of hypoxia in development of the Mammalian embryo. Dev Cell. 17:755-773.
    [33] Ellisen, L.W., K.D. Ramsayer, C.M. Johannessen, A. Yang, H. Beppu, K. Minda, J.D. Oliner, F.McKeon, and D.A. Haber. 2002. REDD1, a developmentally regulated transcriptional target of p63 and p53, links p63 to regulation of reactive oxygen species. Mol Cell. 10:995-1005.
    [34] Elvidge, G.P., L. Glenny, R.J. Appelhoff, P.J. Ratcliffe, J. Ragoussis, and J.M. Gleadle. 2006. Concordant regulation of gene expression by hypoxia and 2-oxoglutarate-dependent dioxygenase inhibition: the role of HIF-1alpha, HIF-2alpha, and other pathways. J Biol Chem. 281:15215-15226.
    [35] Ema, M., S. Taya, N. Yokotani, K. Sogawa, Y. Matsuda, and Y. Fujii-Kuriyama. 1997. A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1alpha regulates the VEGF expression and is potentially involved in lung and vascular development. Proc Natl Acad Sci U S A. 94:4273-4278.
    [36] Epstein, A.C., J.M. Gleadle, L.A. McNeill, K.S. Hewitson, J. O'Rourke, D.R. Mole, M. Mukherji, E. Metzen, M.I. Wilson, A. Dhanda, Y.M. Tian, N. Masson, D.L. Hamilton, P. Jaakkola, R. Barstead, J. Hodgkin, P.H. Maxwell, C.W. Pugh, C.J. Schofield, and P.J. Ratcliffe. 2001. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell. 107:43-54.
    [37] Flamme, I., T. Frohlich, M. von Reutern, A. Kappel, A. Damert, and W. Risau. 1997. HRF, a putative basic helix-loop-helix-PAS-domain transcription factor is closely related to hypoxia-inducible factor-1 alpha and developmentally expressed in blood vessels. Mech Dev. 63:51-60.
    [38] Galban, S., Y. Kuwano, R. Pullmann, Jr., J.L. Martindale, H.H. Kim, A. Lal, K. Abdelmohsen, X. Yang, Y. Dang, J.O. Liu, S.M. Lewis, M. Holcik, and M. Gorospe. 2008. RNA-binding proteins HuR and PTB promote the translation of hypoxia-inducible factor 1alpha. Mol Cell Biol. 28:93-107.
    [39] Gordan, J.D., J.A. Bertout, C.J. Hu, J.A. Diehl, and M.C. Simon. 2007. HIF-2alpha promotes hypoxic cell proliferation by enhancing c-myc transcriptional activity. Cancer Cell. 11:335-347.
    [40] Gordan, J.D., and M.C. Simon. 2007. Hypoxia-inducible factors: central regulators of the tumor phenotype. Curr Opin Genet Dev. 17:71-77.
    [41] Gradin, K., J. McGuire, R.H. Wenger, I. Kvietikova, M.L. fhitelaw, R. Toftgard, L. Tora, M. Gassmann, and L. Poellinger. 1996. Functional interference between hypoxia and dioxin signal transduction pathways: competition for recruitment of the Arnt transcription factor. Mol Cell Biol. 16:5221-5231.
    [42] Grunwald, D.J., and J.S. Eisen. 2002. Headwaters of the zebrafish -- emergence of a new model vertebrate. Nature reviews. 3:717-724.
    [43] Gu, Y.Z., J.B. Hogenesch, and C.A. Bradfield. 2000. The PAS superfamily: sensors of environmental and developmental signals. Annual review of pharmacology and toxicology. 40:519-561.
    [44] Gu, Y.Z., S.M. Moran, J.B. Hogenesch, L. Wartman, and C.A. Bradfield. 1998. Molecular characterization and chromosomal localization of a third alpha-class hypoxia inducible factor subunit, HIF3alpha. Gene expression. 7:205-213.
    [45] Gustafsson, M.V., X. Zheng, T. Pereira, K. Gradin, S. Jin, J. Lundkvist, J.L. Ruas, L. Poellinger, U. Lendahl, and M. Bondesson. 2005. Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev Cell. 9:617-628.
    [46] Hankinson, O. 2008. Why does ARNT2 behave differently from ARNT? Toxicol Sci. 103:1-3.
    [47] Hara, S., J. Hamada, C. Kobayashi, Y. Kondo, and N. Imura. 2001. Expression and characterization of hypoxia-inducible factor (HIF)-3alpha in human kidney: suppression of HIF-mediated gene expression by HIF-3alpha. Biochem Biophys Res Commun. 287:808-813.
    [48] Harrison, L.R., D. Micha, M. Brandenburg, K.L. Simpson, C.J. Morrow, O. Denneny, C. Hodgkinson, Z. Yunus, C. Dempsey, D. Roberts, F. Blackhall, G. Makin, and C. Dive. 2011. Hypoxic human cancer cells are sensitized to BH-3 mimetic-induced apoptosis via downregulation of the Bcl-2 protein Mcl-1. J Clin Invest.
    [49] Hatanaka, M., S. Shimba, M. Sakaue, Y. Kondo, H. Kagechika, K. Kokame, T. Miyata, and S. Hara. 2009. Hypoxia-inducible factor-3alpha functions as an accelerator of 3T3-L1 adipose differentiation. Biol Pharm Bull. 32:1166-1172.
    [50] Heidbreder, M., F. Frohlich, O. Johren, A. Dendorfer, F. Qadri, and P. Dominiak. 2003. Hypoxia rapidly activates HIF-3alpha mRNA expression. Faseb J. 17:1541-1543.
    [51] Heidbreder, M., F. Qadri, O. Johren, A. Dendorfer, R. Depping, F. Frohlich, K.F. Wagner, and P. Dominiak. 2007. Non-hypoxic induction of HIF-3alpha by 2-deoxy-D-glucose and insulin. Biochem Biophys Res Commun. 352:437-443.
    [52] Heikkila, M., A. Pasanen, K.I. Kivirikko, and J. Myllyharju. 2011. Roles of the human hypoxia-inducible factor (HIF)-3alpha variants in the hypoxia response. Cell Mol Life Sci.
    [53] Hirose, K., M. Morita, M. Ema, J. Mimura, H. Hamada, H. Fujii, Y. Saijo, O. Gotoh, K. Sogawa, and Y. Fujii-Kuriyama. 1996. cDNA cloning and tissue-specific expression of a novel basic helix-loop-helix/PAS factor (Arnt2) with close sequence similarity to the aryl hydrocarbon receptor nuclear translocator (Arnt). Mol Cell Biol. 16:1706-1713.
    [54] Hogenesch, J.B., W.K. Chan, V.H. Jackiw, R.C. Brown, Y.Z. Gu, M. Pray-Grant, G.H. Perdew, and C.A. Bradfield. 1997. Characterization of a subset of the basic-helix-loop-helix-PAS superfamily that interacts with components of the dioxin signaling pathway. J Biol Chem. 272:8581-8593.
    [55] Hogenesch, J.B., Y.Z. Gu, S. Jain, and C.A. Bradfield. 1998. The basic-helix-loop-helix-PAS orphan MOP3 forms transcriptionally active complexes with circadian and hypoxia factors. Proc Natl Acad Sci U S A. 95:5474-5479.
    [56] Hu, C.J., S. Iyer, A. Sataur, K.L. Covello, L.A. Chodosh, and M.C. Simon. 2006. Differential regulation of the transcriptional activities of hypoxia-inducible factor 1 alpha (HIF-1alpha) and HIF-2alpha in stem cells. Mol Cell Biol. 26:3514-3526.
    [57] Huang, L.E., and H.F. Bunn. 2003. Hypoxia-inducible factor and its biomedical relevance. JBiol Chem. 278:19575-19578.
    [58] Huang, X., L. Ding, K.L. Bennewith, R.T. Tong, S.M. Welford, K.K. Ang, M. Story, Q.T. Le, and A.J. Giaccia. 2009. Hypoxia-inducible mir-210 regulates normoxic gene expression involved in tumor initiation. Mol Cell. 35:856-867.
    [59] Imtiyaz, H.Z., and M.C. Simon. 2010. Hypoxia-inducible factors as essential regulators of inflammation. Curr Top Microbiol Immunol. 345:105-120.
    [60] Isaacs, J.S., Y.J. Jung, E.G. Mimnaugh, A. Martinez, F. Cuttitta, and L.M. Neckers. 2002. Hsp90 regulates a von Hippel Lindau-independent hypoxia-inducible factor-1alpha-degradative pathway. J Biol Chem. 277:29936-29944.
    [61] Ivan, M., K. Kondo, H. Yang, W. Kim, J. Valiando, M. Ohh, A. Salic, J.M. Asara, W.S. Lane, and W.G. Kaelin, Jr. 2001. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science. 292:464-468.
    [62] Iyer, N.V., L.E. Kotch, F. Agani, S.W. Leung, E. Laughner, R.H. Wenger, M. Gassmann, J.D. Gearhart, A.M. Lawler, A.Y. Yu, and G.L. Semenza. 1998. Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev. 12:149-162.
    [63] Jaakkola, P., D.R. Mole, Y.M. Tian, M.I. Wilson, J. Gielbert, S.J. Gaskell, A. Kriegsheim, H.F. Hebestreit, M. Mukherji, C.J. Schofield, P.H. Maxwell, C.W. Pugh, and P.J. Ratcliffe. 2001. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 292:468-472.
    [64] Jain, S., E. Maltepe, M.M. Lu, C. Simon, and C.A. Bradfield. 1998. Expression of ARNT, ARNT2, HIF1 alpha, HIF2 alpha and Ah receptor mRNAs in the developing mouse. Mech Dev. 73:117-123.
    [65] Jewell, U.R., I. Kvietikova, A. Scheid, C. Bauer, R.H. Wenger, and M. Gassmann. 2001. Induction of HIF-1alpha in response to hypoxia is instantaneous. Faseb J. 15:1312-1314.
    [66] Jiang, B.H., E. Rue, G.L. Wang, R. Roe, and G.L. Semenza. 1996. Dimerization, DNA binding, and transactivation properties of hypoxia-inducible factor 1. J Biol Chem. 271:17771-17778.
    [67] Jiang, B.H., J.Z. Zheng, S.W. Leung, R. Roe, and G.L. Semenza. 1997. Transactivation and inhibitory domains of hypoxia-inducible factor 1alpha. Modulation of transcriptional activity by oxygen tension. J Biol Chem. 272:19253-19260.
    [68] Kaelin, W.G. 2007. Von Hippel-Lindau disease. Annu Rev Pathol. 2:145-173.
    [69] Kaelin, W.G., Jr. 2008. The von Hippel-Lindau tumour suppressor protein: O2 sensing and cancer. Nat Rev Cancer. 8:865-873.
    [70] Kaelin, W.G., Jr., and P.J. Ratcliffe. 2008. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell. 30:393-402.
    [71] Kageyama, Y., M. Koshiji, K.K. To, Y.M. Tian, P.J. Ratcliffe, and L.E. Huang. 2004. Leu-574 of human HIF-1alpha is a molecular determinant of prolyl hydroxylation. Faseb J. 18:1028-1030.
    [72] Kajimura, S., K. Aida, and C. Duan. 2005. Insulin-like growth factor-binding protein-1(IGFBP-1) mediates hypoxia-induced embryonic growth and developmental retardation. Proc Natl Acad Sci U S A. 102:1240-1245.
    [73] Kajimura, S., K. Aida, and C. Duan. 2006. Understanding hypoxia-induced gene expression in early development: in vitro and in vivo analysis of hypoxia-inducible factor 1-regulated zebra fish insulin-like growth factor binding protein 1 gene expression. Mol Cell Biol. 26:1142-1155.
    [74] Kallio, P.J., K. Okamoto, S. O'Brien, P. Carrero, Y. Makino, H. Tanaka, and L. Poellinger. 1998. Signal transduction in hypoxic cells: inducible nuclear translocation and recruitment of the CBP/p300 coactivator by the hypoxia-inducible factor-1alpha. Embo J. 17:6573-6586.
    [75] Kamei, H., Y. Ding, S. Kajimura, M. Wells, P. Chiang, and C. Duan. 2011. Role of IGF signaling in catch-up growth and accelerated temporal development in zebrafish embryos in response to oxygen availability. Development. 138:777-786.
    [76] Kamei, H., L. Lu, S. Jiao, Y. Li, C. Gyrup, L.S. Laursen, C. Oxvig, J. Zhou, and C. Duan. 2008. Duplication and diversification of the hypoxia-inducible IGFBP-1 gene in zebrafish. PloS one. 3:e3091.
    [77] Kewley, R.J., M.L. Whitelaw, and A. Chapman-Smith. 2004. The mammalian basic helix-loop-helix/PAS family of transcriptional regulators. Int J Biochem Cell Biol. 36:189-204.
    [78] Kimmel, C.B., W.W. Ballard, S.R. Kimmel, B. Ullmann, and T.F. Schilling. 1995. Stages ofembryonic development of the zebrafish. Dev Dyn. 203:253-310.
    [79] Koshiji, M., Y. Kageyama, E.A. Pete, I. Horikawa, J.C. Barrett, and L.E. Huang. 2004. HIF-1alpha induces cell cycle arrest by functionally counteracting Myc. Embo J. 23:1949-1956.
    [80] Kozak, K.R., B. Abbott, and O. Hankinson. 1997. ARNT-deficient mice and placental differentiation. Dev Biol. 191:297-305.
    [81] Krishnamachary, B., D. Zagzag, H. Nagasawa, K. Rainey, H. Okuyama, J.H. Baek, and G.L. Semenza. 2006. Hypoxia-inducible factor-1-dependent repression of E-cadherin in von Hippel-Lindau tumor suppressor-null renal cell carcinoma mediated by TCF3, ZFHX1A, and ZFHX1B. Cancer Res. 66:2725-2731.
    [82] Kulshreshtha, R., M. Ferracin, S.E. Wojcik, R. Garzon, H. Alder, F.J. Agosto-Perez, R. Davuluri, C.G. Liu, C.M. Croce, M. Negrini, G.A. Calin, and M. Ivan. 2007. A microRNA signature of hypoxia. Mol Cell Biol. 27:1859-1867.
    [83] Kumar, S., M. Nei, J. Dudley, and K. Tamura. 2008. MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Briefings in bioinformatics. 9:299-306.
    [84] Lando, D., D.J. Peet, J.J. Gorman, D.A. Whelan, M.L. Whitelaw, and R.K. Bruick. 2002. FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev. 16:1466-1471.
    [85] Landschulz, W.H., P.F. Johnson, and S.L. McKnight. 1988. The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science. 240:1759-1764.
    [86] Lang, K.J., A. Kappel, and G.J. Goodall. 2002. Hypoxia-inducible factor-1alpha mRNA contains an internal ribosome entry site that allows efficient translation during normoxia and hypoxia. Mol Biol Cell. 13:1792-1801.
    [87] Latchman, D.S. 1997. Transcription factors: an overview. Int J Biochem Cell Biol. 29:1305-1312.
    [88] Laughner, E., P. Taghavi, K. Chiles, P.C. Mahon, and G.L. Semenza. 2001. HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1alpha (HIF-1alpha) synthesis: novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. Mol Cell Biol. 21:3995-4004.
    [89] Law, S.H., R.S. Wu, P.K. Ng, R.M. Yu, and R.Y. Kong. 2006. Cloning and expression analysis of two distinct HIF-alpha isoforms--gcHIF-1alpha and gcHIF-4alpha--from the hypoxia-tolerant grass carp, Ctenopharyngodon idellus. BMC molecular biology. 7:15.
    [90] Lee, F.S., and M.J. Percy. 2011. The HIF pathway and erythrocytosis. Annu Rev Pathol. 6:165-192.
    [91] Lee, S.L., P. Rouhi, L. Dahl Jensen, D. Zhang, H. Ji, G. Hauptmann, P. Ingham, and Y. Cao. 2009. Hypoxia-induced pathological angiogenesis mediates tumor cell dissemination, invasion, and metastasis in a zebrafish tumor model. Proc Natl Acad Sci U S A. 106:19485-19490.
    [92] Li, D., J.D. Marks, P.T. Schumacker, R.M. Young, and J.R. Brorson. 2005a. Physiological hypoxia promotes survival of cultured cortical neurons. Eur J Neurosci. 22:1319-1326.
    [93] Li, Q.F., X.R. Wang, Y.W. Yang, and H. Lin. 2006. Hypoxia upregulates hypoxia inducible factor (HIF)-3alpha expression in lung epithelial cells: characterization and comparison with HIF-1alpha. Cell research. 16:548-558.
    [94] Li, Y., J. Xiang, and C. Duan. 2005b. Insulin-like growth factor-binding protein-3 plays an important role in regulating pharyngeal skeleton and inner ear formation and differentiation. JBiol Chem. 280:3613-3620.
    [95] Li, Z., D. Wang, E.M. Messing, and G. Wu. 2005c. VHL protein-interacting deubiquitinating enzyme 2 deubiquitinates and stabilizes HIF-1alpha. EMBO Rep. 6:373-378.
    [96] Lisy, K., and D.J. Peet. 2008. Turn me on: regulating HIF transcriptional activity. Cell Death Differ. 15:642-649.
    [97] Liu, Y.V., J.H. Baek, H. Zhang, R. Diez, R.N. Cole, and G.L. Semenza. 2007a. RACK1 competes with HSP90 for binding to HIF-1alpha and is required for O(2)-independent and HSP90 inhibitor-induced degradation of HIF-1alpha. Mol Cell. 25:207-217.
    [98] Liu, Y.V., M.E. Hubbi, F. Pan, K.R. McDonald, M. Mansharamani, R.N. Cole, J.O. Liu, and G.L. Semenza. 2007b. Calcineurin promotes hypoxia-inducible factor 1alpha expression by dephosphorylating RACK1 and blocking RACK1 dimerization. J Biol Chem. 282:37064-37073.
    [99] Livak, K.J., and T.D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods (San Diego, Calif. 25:402-408.
    [100] Lu, X., C.H. Yan, M. Yuan, Y. Wei, G. Hu, and Y. Kang. 2010. In vivo dynamics and distinct functions of hypoxia in primary tumor growth and organotropic metastasis of breast cancer. Cancer Res. 70:3905-3914.
    [101] Luo, J.C., and M. Shibuya. 2001. A variant of nuclear localization signal of bipartite-type is required for the nuclear translocation of hypoxia inducible factors (1alpha, 2alpha and 3alpha). Oncogene. 20:1435-1444.
    [102] Mahon, P.C., K. Hirota, and G.L. Semenza. 2001. FIH-1: a novel protein that interacts with HIF-1alpha and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev. 15:2675-2686.
    [103] Majmundar, A.J., W.J. Wong, and M.C. Simon. 2010. Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell. 40:294-309.
    [104] Makino, Y., R. Cao, K. Svensson, G. Bertilsson, M. Asman, H. Tanaka, Y. Cao, A. Berkenstam, and L. Poellinger. 2001. Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression. Nature. 414:550-554.
    [105] Makino, Y., A. Kanopka, W.J. Wilson, H. Tanaka, and L. Poellinger. 2002. Inhibitory PAS domain protein (IPAS) is a hypoxia-inducible splicing variant of the hypoxia-inducible factor-3alpha locus. J Biol Chem. 277:32405-32408.
    [106] Makino, Y., R. Uenishi, K. Okamoto, T. Isoe, O. Hosono, H. Tanaka, A. Kanopka, L. Poellinger, M. Haneda, and C. Morimoto. 2007. Transcriptional up-regulation of inhibitoryPAS domain protein gene expression by hypoxia-inducible factor 1 (HIF-1): a negative feedback regulatory circuit in HIF-1-mediated signaling in hypoxic cells. J Biol Chem. 282:14073-14082.
    [107] Maltepe, E., B. Keith, A.M. Arsham, J.R. Brorson, and M.C. Simon. 2000. The role of ARNT2 in tumor angiogenesis and the neural response to hypoxia. Biochem Biophys Res Commun. 273:231-238.
    [108] Maltepe, E., and O.D. Saugstad. 2009. Oxygen in health and disease: regulation of oxygen homeostasis--clinical implications. Pediatric research. 65:261-268.
    [109] Maltepe, E., J.V. Schmidt, D. Baunoch, C.A. Bradfield, and M.C. Simon. 1997. Abnormal angiogenesis and responses to glucose and oxygen deprivation in mice lacking the proteinARNT. Nature. 386:403-407.
    [110] Maures, T.J., and C. Duan. 2002. Structure, developmental expression, and physiological regulation of zebrafish IGF binding protein-1. Endocrinology. 143:2722-2731.
    [111] Maynard, M.A., A.J. Evans, T. Hosomi, S. Hara, M.A. Jewett, and M. Ohh. 2005. Human HIF-3alpha4 is a dominant-negative regulator of HIF-1 and is down-regulated in renal cell carcinoma. Faseb J. 19:1396-1406.
    [112] Maynard, M.A., A.J. Evans, W. Shi, W.Y. Kim, F.F. Liu, and M. Ohh. 2007. Dominant-negative HIF-3 alpha 4 suppresses VHL-null renal cell carcinoma progression. Cell Cycle. 6:2810-2816.
    [113] Maynard, M.A., H. Qi, J. Chung, E.H. Lee, Y. Kondo, S. Hara, R.C. Conaway, J.W. Conaway, and M. Ohh. 2003. Multiple splice variants of the human HIF-3 alpha locus are targets of the von Hippel-Lindau E3 ubiquitin ligase complex. J Biol Chem. 278:11032-11040.
    [114] McMullin, M.F. 2010. HIF pathway mutations and erythrocytosis. Expert Rev Hematol. 3:93-101.
    [115] Mehta, R., K.A. Steinkraus, G.L. Sutphin, F.J. Ramos, L.S. Shamieh, A. Huh, C. Davis, D. Chandler-Brown, and M. Kaeberlein. 2009. Proteasomal regulation of the hypoxic response modulates aging in C. elegans. Science. 324:1196-1198.
    [116] Mendelsohn, B.A., B.L. Kassebaum, and J.D. Gitlin. 2008. The zebrafish embryo as a dynamic model of anoxia tolerance. Dev Dyn. 237:1780-1788.
    [117] Mimura, I., and M. Nangaku. 2010. The suffocating kidney: tubulointerstitial hypoxia in end-stage renal disease. Nat Rev Nephrol. 6:667-678.
    [118] Min, J.H., H. Yang, M. Ivan, F. Gertler, W.G. Kaelin, Jr., and N.P. Pavletich. 2002. Structure of an HIF-1alpha -pVHL complex: hydroxyproline recognition in signaling. Science. 296:1886-1889.
    [119] Minet, E., D. Mottet, G. Michel, I. Roland, M. Raes, J. Remacle, and C. Michiels. 1999. Hypoxia-induced activation of HIF-1: role of HIF-1alpha-Hsp90 interaction. FEBS letters. 460:251-256.
    [120] Moroianu, J. 1999. Nuclear import and export pathways. J Cell Biochem. Suppl 32-33:76-83.
    [121] Nardinocchi, L., R. Puca, and G. D'Orazi. 2011. HIF-1alpha antagonizes p53-mediated apoptosis by triggering HIPK2 degradation. Aging (Albany NY). 3:33-43.
    [122] Nikinmaa, M., and B.B. Rees. 2005. Oxygen-dependent gene expression in fishes. American journal of physiology. 288:R1079-1090.
    [123] Oehme, F., P. Ellinghaus, P. Kolkhof, T.J. Smith, S. Ramakrishnan, J. Hutter, M. Schramm, and I. Flamme. 2002. Overexpression of PH-4, a novel putative proline 4-hydroxylase, modulates activity of hypoxia-inducible transcription factors. Biochem Biophys Res Commun. 296:343-349.
    [124] Oh, M.K., H.J. Park, N.H. Kim, S.J. Park, I.Y. Park, and I.S. Kim. 2011. Hypoxia-inducible factor-1{alpha} (HIF-1{alpha}) enhances haptoglobin gene expression by improving binding of STAT3 to the promoter. J Biol Chem.
    [125] Padilla, P.A., and M.B. Roth. 2001. Oxygen deprivation causes suspended animation in the zebrafish embryo. Proc Natl Acad Sci U S A. 98:7331-7335.
    [126] Pan, Y., K.D. Mansfield, C.C. Bertozzi, V. Rudenko, D.A. Chan, A.J. Giaccia, and M.C. Simon. 2007. Multiple factors affecting cellular redox status and energy metabolism modulate hypoxia-inducible factor prolyl hydroxylase activity in vivo and in vitro. Mol Cell Biol.27:912-925.
    [127] Pasanen, A., M. Heikkila, K. Rautavuoma, M. Hirsila, K.I. Kivirikko, and J. Myllyharju. 2010. Hypoxia-inducible factor (HIF)-3alpha is subject to extensive alternative splicing in human tissues and cancer cells and is regulated by HIF-1 but not HIF-2. Int J Biochem Cell Biol. 42:1189-1200.
    [128] Patel, J., K. Landers, R.H. Mortimer, and K. Richard. 2010. Regulation of hypoxia inducible factors (HIF) in hypoxia and normoxia during placental development. Placenta. 31:951-957.
    [129] Patel, S.A., and M.C. Simon. 2008. Biology of hypoxia-inducible factor-2alpha in development and disease. Cell Death Differ. 15:628-634.
    [130] Peng, J., L. Zhang, L. Drysdale, and G.H. Fong. 2000. The transcription factor EPAS-1/hypoxia-inducible factor 2alpha plays an important role in vascular remodeling. Proc Natl Acad Sci U S A. 97:8386-8391.
    [131] Plevin, M.J., M.M. Mills, and M. Ikura. 2005. The LxxLL motif: a multifunctional binding sequence in transcriptional regulation. Trends Biochem Sci. 30:66-69.
    [132] Pugh, C.W., J.F. O'Rourke, M. Nagao, J.M. Gleadle, and P.J. Ratcliffe. 1997. Activation of hypoxia-inducible factor-1; definition of regulatory domains within the alpha subunit. J Biol Chem. 272:11205-11214.
    [133] Rane, S., M. He, D. Sayed, H. Vashistha, A. Malhotra, J. Sadoshima, D.E. Vatner, S.F. Vatner, and M. Abdellatif. 2009. Downregulation of miR-199a derepresses hypoxia-inducible factor-1alpha and Sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes. Circ Res. 104:879-886.
    [134] Rankin, E.B., and A.J. Giaccia. 2008. The role of hypoxia-inducible factors in tumorigenesis. Cell Death Differ. 15:678-685.
    [135] Ren, H., D. Accili, and C. Duan. 2010. Hypoxia converts the myogenic action of insulin-like growth factors into mitogenic action by differentially regulating multiple signaling pathways. Proc Natl Acad Sci U S A. 107:5857-5862.
    [136] Reyes, H., S. Reisz-Porszasz, and O. Hankinson. 1992. Identification of the Ah receptor nuclear translocator protein (Arnt) as a component of the DNA binding form of the Ah receptor. Science. 256:1193-1195.
    [137] Rius, J., M. Guma, C. Schachtrup, K. Akassoglou, A.S. Zinkernagel, V. Nizet, R.S. Johnson, G.G. Haddad, and M. Karin. 2008. NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature. 453:807-811.
    [138] Rojas, D.A., D.A. Perez-Munizaga, L. Centanin, M. Antonelli, P. Wappner, M.L. Allende, and A.E. Reyes. 2007. Cloning of hif-1alpha and hif-2alpha and mRNA expression pattern during development in zebrafish. Gene Expr Patterns. 7:339-345.
    [139] Romero, N.M., M. Irisarri, P. Roth, A. Cauerhff, C. Samakovlis, and P. Wappner. 2008. Regulation of the Drosophila hypoxia-inducible factor alpha Sima by CRM1-dependent nuclear export. Mol Cell Biol. 28:3410-3423.
    [140] Rouhi, P., L.D. Jensen, Z. Cao, K. Hosaka, T. Lanne, E. Wahlberg, J.F. Steffensen, and Y. Cao. 2010. Hypoxia-induced metastasis model in embryonic zebrafish. Nat Protoc. 5:1911-1918.
    [141] Ryan, H.E., J. Lo, and R.S. Johnson. 1998. HIF-1 alpha is required for solid tumor formation and embryonic vascularization. Embo J. 17:3005-3015.
    [142] Sanchez, M., B. Galy, M.U. Muckenthaler, and M.W. Hentze. 2007. Iron-regulatory proteins limit hypoxia-inducible factor-2alpha expression in iron deficiency. Nat Struct Mol Biol.14:420-426.
    [143] Schepens, B., S.A. Tinton, Y. Bruynooghe, R. Beyaert, and S. Cornelis. 2005. The polypyrimidine tract-binding protein stimulates HIF-1alpha IRES-mediated translation during hypoxia. Nucleic Acids Res. 33:6884-6894.
    [144] Schipani, E., H.E. Ryan, S. Didrickson, T. Kobayashi, M. Knight, and R.S. Johnson. 2001. Hypoxia in cartilage: HIF-1alpha is essential for chondrocyte growth arrest and survival. Genes Dev. 15:2865-2876.
    [145] Scortegagna, M., K. Ding, Y. Oktay, A. Gaur, F. Thurmond, L.J. Yan, B.T. Marck, A.M. Matsumoto, J.M. Shelton, J.A. Richardson, M.J. Bennett, and J.A. Garcia. 2003. Multiple organ pathology, metabolic abnormalities and impaired homeostasis of reactive oxygen species in Epas1-/- mice. Nat Genet. 35:331-340.
    [146] Selbach, M., B. Schwanhausser, N. Thierfelder, Z. Fang, R. Khanin, and N. Rajewsky. 2008. Widespread changes in protein synthesis induced by microRNAs. Nature. 455:58-63.
    [147] Semenza, G.L. 2001. HIF-1, O(2), and the 3 PHDs: how animal cells signal hypoxia to the nucleus. Cell. 107:1-3.
    [148] Semenza, G.L. 2007a. Hypoxia-inducible factor 1 (HIF-1) pathway. Sci STKE. 2007:cm8.
    [149] Semenza, G.L. 2007b. Life with oxygen. Science. 318:62-64.
    [150] Semenza, G.L. 2009. Regulation of oxygen homeostasis by hypoxia-inducible factor 1. Physiology (Bethesda, Md. 24:97-106.
    [151] Semenza, G.L. 2010a. HIF-1: upstream and downstream of cancer metabolism. Curr Opin Genet Dev. 20:51-56.
    [152] Semenza, G.L. 2010b. Oxygen homeostasis. Wiley Interdiscip Rev Syst Biol Med. 2:336-361.
    [153] Semenza, G.L., F. Agani, G. Booth, J. Forsythe, N. Iyer, B.H. Jiang, S. Leung, R. Roe, C. Wiener, and A. Yu. 1997. Structural and functional analysis of hypoxia-inducible factor 1. Kidney Int. 51:553-555.
    [154] Semenza, G.L., B.H. Jiang, S.W. Leung, R. Passantino, J.P. Concordet, P. Maire, and A. Giallongo. 1996. Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J Biol Chem. 271:32529-32537.
    [155] Semenza, G.L., and G.L. Wang. 1992. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol. 12:5447-5454.
    [156] Shen, R.J., X.Y. Jiang, J.W. Pu, and S.M. Zou. 2010. HIF-1alpha and -2alpha genes in a hypoxia-sensitive teleost species Megalobrama amblycephala: cDNA cloning, expression and different responses to hypoxia. Comp Biochem Physiol B Biochem Mol Biol. 157:273-280.
    [157] Shoshani, T., A. Faerman, I. Mett, E. Zelin, T. Tenne, S. Gorodin, Y. Moshel, S. Elbaz, A. Budanov, A. Chajut, H. Kalinski, I. Kamer, A. Rozen, O. Mor, E. Keshet, D. Leshkowitz, P. Einat, R. Skaliter, and E. Feinstein. 2002. Identification of a novel hypoxia-inducible factor 1-responsive gene, RTP801, involved in apoptosis. Mol Cell Biol. 22:2283-2293.
    [158] Simon, M.C., and B. Keith. 2008. The role of oxygen availability in embryonic development and stem cell function. Nat Rev Mol Cell Biol. 9:285-296.
    [159] Simonson, T.S., Y. Yang, C.D. Huff, H. Yun, G. Qin, D.J. Witherspoon, Z. Bai, F.R. Lorenzo, J. Xing, L.B. Jorde, J.T. Prchal, and R. Ge. 2010. Genetic evidence for high-altitude adaptation in Tibet. Science. 329:72-75.
    [160] Smith, H. 1998. The Congress of Molecular Medicine: a truly modern meeting. J Mol Med. 76:291-292.
    [161] Streisinger, G., C. Walker, N. Dower, D. Knauber, and F. Singer. 1981. Production of clones of homozygous diploid zebra fish (Brachydanio rerio). Nature. 291:293-296.
    [162] Stroka, D.M., T. Burkhardt, I. Desbaillets, R.H. Wenger, D.A. Neil, C. Bauer, M. Gassmann, and D. Candinas. 2001. HIF-1 is expressed in normoxic tissue and displays an organ-specific regulation under systemic hypoxia. Faseb J. 15:2445-2453.
    [163] Taguchi, A., K. Yanagisawa, M. Tanaka, K. Cao, Y. Matsuyama, H. Goto, and T. Takahashi. 2008. Identification of hypoxia-inducible factor-1 alpha as a novel target for miR-17-92microRNA cluster. Cancer Res. 68:5540-5545.
    [164] Tanaka, T., M. Wiesener, W. Bernhardt, K.U. Eckardt, and C. Warnecke. 2009. The human HIF (hypoxia-inducible factor)-3alpha gene is a HIF-1 target gene and may modulate hypoxic gene induction. Biochem J. 424:143-151.
    [165] Thomas, J.D., and G.J. Johannes. 2007. Identification of mRNAs that continue to associate with polysomes during hypoxia. RNA. 13:1116-1131.
    [166] Tian, H., R.E. Hammer, A.M. Matsumoto, D.W. Russell, and S.L. McKnight. 1998. The hypoxia-responsive transcription factor EPAS1 is essential for catecholamine homeostasis and protection against heart failure during embryonic development. Genes Dev. 12:3320-3324.
    [167] Tian, H., S.L. McKnight, and D.W. Russell. 1997. Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev. 11:72-82.
    [168] Ton, C., D. Stamatiou, and C.C. Liew. 2003. Gene expression profile of zebrafish exposed to hypoxia during development. Physiological genomics. 13:97-106.
    [169] van den Beucken, T., M. Koritzinsky, and B.G. Wouters. 2006. Translational control of gene expression during hypoxia. Cancer Biol Ther. 5:749-755.
    [170] van Rooijen, E., E.E. Voest, I. Logister, J. Korving, T. Schwerte, S. Schulte-Merker, R.H. Giles, and F.J. van Eeden. 2009. Zebrafish mutants in the von Hippel-Lindau tumor suppressor display a hypoxic response and recapitulate key aspects of Chuvash polycythemia. Blood. 113:6449-6460.
    [171] van Uden, P., N.S. Kenneth, and S. Rocha. 2008. Regulation of hypoxia-inducible factor-1alpha by NF-kappaB. Biochem J. 412:477-484.
    [172] Wan, C., J. Shao, S.R. Gilbert, R.C. Riddle, F. Long, R.S. Johnson, E. Schipani, and T.L. Clemens. 2010. Role of HIF-1alpha in skeletal development. Ann N Y Acad Sci. 1192:322-326.
    [173] Wang, G.L., B.H. Jiang, E.A. Rue, and G.L. Semenza. 1995. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A. 92:5510-5514.
    [174] Wang, G.L., and G.L. Semenza. 1993. General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc Natl Acad Sci U S A. 90:4304-4308.
    [175] Wang, G.L., and G.L. Semenza. 1995. Purification and characterization of hypoxia-inducible factor 1. J Biol Chem. 270:1230-1237.
    [176] Wang, V., D.A. Davis, M. Haque, L.E. Huang, and R. Yarchoan. 2005. Differential gene up-regulation by hypoxia-inducible factor-1alpha and hypoxia-inducible factor-2alpha in HEK293T cells. Cancer Res. 65:3299-3306.
    [177] Weidemann, A., and R.S. Johnson. 2008. Biology of HIF-1alpha. Cell Death Differ. 15:621-627.
    [178] Westerfield, M. The zebrafish book. In. University of Oregon Press, Eugene, 2000, Vol.:
    [179] Xu, Q., S. Li, Y. Zhao, T.J. Maures, P. Yin, and C. Duan. 2004. Evidence that IGF bindingprotein-5 functions as a ligand-independent transcriptional regulator in vascular smoothmuscle cells. Circ Res. 94:E46-54.
    [180] Yamashita, T., O. Ohneda, M. Nagano, M. Iemitsu, Y. Makino, H. Tanaka, T. Miyauchi, K.Goto, K. Ohneda, Y. Fujii-Kuriyama, L. Poellinger, and M. Yamamoto. 2008. Abnormal heartdevelopment and lung remodeling in mice lacking the hypoxia-inducible factor-related basichelix-loop-helix PAS protein NEPAS. Mol Cell Biol. 28:1285-1297.
    [181] Yi, X., Y. Liang, E. Huerta-Sanchez, X. Jin, Z.X. Cuo, J.E. Pool, X. Xu, H. Jiang, N.Vinckenbosch, T.S. Korneliussen, H. Zheng, T. Liu, W. He, K. Li, R. Luo, X. Nie, H. Wu, M.Zhao, H. Cao, J. Zou, Y. Shan, S. Li, Q. Yang, Asan, P. Ni, G. Tian, J. Xu, X. Liu, T. Jiang, R.Wu, G. Zhou, M. Tang, J. Qin, T. Wang, S. Feng, G. Li, Huasang, J. Luosang, W. Wang, F.Chen, Y. Wang, X. Zheng, Z. Li, Z. Bianba, G. Yang, X. Wang, S. Tang, G. Gao, Y. Chen, Z.Luo, L. Gusang, Z. Cao, Q. Zhang, W. Ouyang, X. Ren, H. Liang, Y. Huang, J. Li, L. Bolund,K. Kristiansen, Y. Li, Y. Zhang, X. Zhang, R. Li, H. Yang, R. Nielsen, and J. Wang. 2010.Sequencing of 50 human exomes reveals adaptation to high altitude. Science. 329:75-78.
    [182] Young, R.M., S.J. Wang, J.D. Gordan, X. Ji, S.A. Liebhaber, and M.C. Simon. 2008.Hypoxia-mediated selective mRNA translation by an internal ribosome entry site-independentmechanism. J Biol Chem. 283:16309-16319.
    [183] Yu, A.Y., M.G. Frid, L.A. Shimoda, C.M. Wiener, K. Stenmark, and G.L. Semenza. 1998.Temporal, spatial, and oxygen-regulated expression of hypoxia-inducible factor-1 in the lung.Am J Physiol. 275:L818-826.
    [184] Yu, F., S.B. White, Q. Zhao, and F.S. Lee. 2001. Dynamic, site-specific interaction ofhypoxia-inducible factor-1alpha with the von Hippel-Lindau tumor suppressor protein. CancerRes. 61:4136-4142.
    [185]李明宇.硬骨鱼类IGF信号通路两个重要基因的结构和功能研究.青岛:中国海洋大学博士论文,2009
    [186]张玉静。分子遗传学。北京:科学出版社, 2000. 269-279
    [187]钟英兵。类胰岛素生长因子结合蛋白3(ICGBE-3)的作用机制及功能进化研究。青岛:中国海洋大学博士论文。