冷榨油茶籽制备油茶籽粕蛋白及多肽的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以低温冷榨油茶籽粕为原料,对油茶籽粕蛋白提取工艺及其功能性质进行了研究。利用优化工艺提取的油茶籽粕蛋白,酶解制备油茶籽多肽及血管紧张素转化酶(angiotensin converting enzyme, ACE)抑制肽,优化了制备多肽及ACE抑制肽的工艺,利用高效液相色谱对多肽的分子量分布及氨基酸组成进行了测定和分析,通过体外模拟试验研究了油茶籽多肽对活性氧自由基清除的效果。主要研究结论如下:
     通过L9(34)正交实验,确定最佳提取参数为:料液比为1:25,pH值为10,浸提时间为80min,浸提温度为45℃,蛋白提取率达57.8%。
     以水解度为指标,采用四因子二次回归正交旋转组合试验,对中性蛋白酶酶解油茶籽粕蛋白的研究建立起的相关回归模型为:Y=-205.520625-0.000581*X1+2.240417*X2+46.334167*X3+0.261667*X4-0.000000177*X12+0.000012692*X1*X2-0.026592*X22+0.000233*X1*X3+0.004500*X2*X3-3.434167*X32+0.000265*X1*X4+0.027000*X2*X4+0.275000*X3*X4-0.649167*X42
     中性蛋白酶水解油茶籽蛋白的最佳反应条件是:酶解温度46.8℃,酶解时间4.3h,酶解pH7.2,底物浓度3.0%,加酶量8028.2u/g底物,水解度达到12.4%。
     油茶籽粕蛋白的氨基酸总量为43.38g/100g蛋白质,其中谷氨酸含量最高为9.67g/100g蛋白质,油茶籽粕蛋白大部分不溶于水,而溶于稀碱液。蛋白质的等电点在pH5左右。
     油茶籽多肽的分子量主要集中在3000Da以下,其中分子量1000Da以下所占面积最大,达到83.73%,肽链的平均长度PCL为8.4,平均相对分子质量Mw为942.3Da。超滤(Mw3000Da)后,分子量<1000Da的小分子肽所占的比率大幅度提高,上升到97.54%。肽链的平均长度PCL为8.06,平均相对分子质量Mw为905.1Da。
     采用三因素二次回归正交旋转组合试验,建立ACE抑制肽的抑制率与温度、底物浓度、酶与底物的质量比三因子的数学回归模型:Y=-700.499176+30.442000*X1+5.646534*X2-2.555909*X3-0.323605*X12+0.002000*X1*X2-0.698722*X22+0.236841*X1*X3+0.112727*X2*X3-1.124574*X32
     ACE抑制肽制备的最佳反应条件是:酶解温度48.6℃,底物浓度4.4%,酶与底物的质量比4.2%,酶解pH7.2,酶解时间3h,此时ACE抑制理论最大值为46.24%。
     通过采用脱氧核糖法、邻苯三酚白氧化法、分光光度法分别考察了油茶籽多肽清除羟基自由基、DPPH自由基、超氧阴离子自由基的能力,结果显示油茶籽多肽对·OH.DPPH.、O2-等自由基均有清除作用,且油茶籽多肽浓度增大清除能力增大。
In this paper, the extraction technology and the functional properties of cold pressing camellia seeds-cake protein were studied. The preparation techniques & the optimal extraction process of camellia seeds-cake peptides and ACE inhibitory peptide through hydrolyzing camellia seeds-cake protein by neutrase were studied, molecular weight distribution and amino acids composition of polypeptides were determined and analyzed by high performance liquid chromatography. The simulation experiments in vitro were used to determine the effects of camellia seeds-cake peptides on scavenging active oxygen free radicals. The main findings are as follows:
     Through orthogonal and optimization experiments, the optimal conditions for protein extraction were:The leaching solution pH value,10.0; extraction temperature, 45℃; grinding degree of teacake,80 mesh; feed-liquid ratio,1 :25; leaching,80 min and pH value of extracting solution,4.5.At this condition, protein extraction rate was 57.8%.
     Through four-factor quadratic regression orthogonal rotation experiments, a mathmatical model was set up as follow:
     Y=-205.520625-0.000581*X1+2.240417*X2+46.334167*X3+0.261667*X4-0.00 0000177*X1*X1+0.000012692*X1*X2-0.026592*X2*X2+0.000233*X1*X3+0.004500 *X2*X3-3.434167*X3*X3+0.000265*X1*X4+0.027000*X2*X4+0.275000*X3*X4-0.6 49167*X4*X4
     Based on this model, the optimal conditions for neutrase enzymolysis were: enzymolysis temperature 46.8℃, enzymolysis time 4.3 hours, enzymolysis pH value 7.2, substrate concentration 3.0%,and the amout of enzyme 8028.2 u/g substrate, the degree of hydrolysis was up to 12.4%.
     The total amino acids of camellia seeds-cake protein was 43.38 g/100g protein, and the glutamic acid was up to 9.67 g/100g protein. To the camellia seeds-cake protein, most of them was insoluble in water, but soluble in dilut alkali, and the isoelectric ponit was around pH5.
     The results indicated that MW of the most of camellia seeds-cake peptides were below 3000 Da, the oligopeptide(MW below 1000 Da) were predominated (83.73%). The MW of those components was 942.3; the average length of peptide chain(PCL) was 8.4. The oligopeptide was up to 97.54%, the MW changed into 905.1 and PCL to 8.06 after ultrafiltration.
     Through three-factor quadratic regression orthogonal rotation experiments, a mathmatical model was set up as follow: Y=-700.499176+30.442000*X1+5.646534*X2-2.555909*X3-0.323605*X1*X1+0.002 000*X1*X2-0.698722*X2*X2+0.236841*X1*X3+0.112727*X2*X3-1.124574*X3*X3
     Based on this model, the optimal conditions for ACE inhibitory peptides were: enzymolysis temperature 48.6℃, substrate concentration 4.4%,the ratio of enzyme and substrate concentration 4.2%, pH value7.2,and enzymolysis time 3 hours, ACE inhibitory rate was 46.24%.
     The simulation experiments in vitro were used to determine the effects of camellia seeds-cake peptides on scavenging active oxygen free radicals. The results indicated that camellia seeds-cake peptides can scaveng hydroxyl radical, superoxide anion radiacl and DPPH·radical.
引文
1.包怡红,盛和静.山核桃蛋白多肽的制备及对羟基自由基的清除作用[J].食品科学,2005,26(9):515-518
    2.程时,丁海勤.谷光甘肽及其抗氧化作用今日谈[J].生理科学进展,2002,33(1):85-90
    3.陈美珍,余杰,郭慧敏.大豆分离蛋白酶解物清除自由基作用的研究[J].食品科学,2002,23(1):43-46
    4.陈钦,郑清芳.油茶饼综合利用的研究.福建林学院学报,2000,20(2):97-100
    5.龚吉军,李忠海,钟海雁等.茶籽多肽的制备及抗氧化活性研究[J].食品研究与开发,2007,28(10):59-61
    6.国家统计局.中国统计摘要[M].北京:中国统计出版社,1993:67
    7.侯传记,马春等.肌肽在大鼠脑缺血再灌注损伤中的神经保护作用[J].中国老年学杂志,2001.21(7):282-283
    8.何东平,方立中,汤波等.浓香茶子油的研制.武汉食品工业学院学报[J],1997,(1):1-5
    9.纪建国,叶蕴华,邢其毅.植物多肽类化合物研究进展[J].天然产物研究与开发,1998,10(3):80-86
    10.K.霍斯泰特曼等著,赵维民等译,制备色谱技术在天然产物分离中的应用[M].北京:科学出版社,2000:265-267
    11.李干红,丁晓雯.芝麻蛋白酶解条件及其产物抗氧化研究[J].中国粮油学报,2006,21(1):104-108
    12.黎先胜.我国油茶资源的开发利用研究[J].湖南科技学院学报,2005,26(11):127-129
    13.卢阳,王凤翼.大豆蛋白酶水解物抗氧化性的研究[J].大连轻工业学院学报,2001,20(4):257-259
    14.李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000
    15.刘晓庚.油茶籽副产物的综合利用研究[J].实用技术,1992(1):20-24
    16.牟光庆,曹冬梅,张丽萍等.酪蛋白磷酸肽(CPP)促进铁吸收的研究[J].中 国食品学报,2003,23(1):12-16
    17.倪莉,陶冠军,戴军等.血管紧张素转化酶活性抑制剂—丝素肽的分离、化和结构鉴定[J].色谱,2001,19(3):222-225
    18.倪莉.食品蛋白新资源—废蚕丝蛋白的研究与开发[J].中国油脂,1999,24(6):22-25
    19.庞广昌,王秋楹,陈庆森.生物活性肽的研究进展理论基础与展望[J].食品科学,2001,22(2):80-84
    20.庞广昌,陈庆森.生物活性肽—酪蛋白磷酸肽(CPPs)的研究、应用及展望[J].食品科学,1999,6:25-29
    21.邱隽,王小雪,李琳等.乳蛋白活性肽的延缓水牢衰老最用研究[J].中国公共卫生,2002,18(3):312-313
    22.齐小健,彭瑞福.从油茶饼中提取皂素[J].化学世界,1989,(6):275-277
    23.荣建华,李小定,谢笔钧.大豆肽的理化性质及其对脂肪氧合酶活性的影响[J].食品工业科技,2002,23(8):19-21
    24.沈淑君.毛细管电色谱技术及应用的最新进展[J].漳州职业技术学院学报,2008,10(1):17-20
    25.邵佩兰,徐明.提取大豆分离蛋白的工艺研究[J].粮油加工与食品机械,2005(9):47-51
    26.沈蓓英.大豆蛋白抗氧化性肽的研究[J].中国油脂,1996,21(6):21-24
    27.唐易全.肽化学研究中的高效液相色谱[J].色谱,1990,8(6):368-372
    28.吴谋成.功能食品研究与应用[M].北京:化学工业出版社,2004
    29.王瑛瑶,夫俊刚,杜东平等.酪蛋白磷酸肽体外功能实验[J].无锡轻工大学学报,2001,20(3):243-247
    30.王进波.乳源蛋白种的活性肽及其生理作用[J].中国乳品工业,2000,28(4):7-9
    31.汪国权.保健食品中多肽化合物的分析[J].中国卫生检验杂志,1999,3(9):238-241
    32.王梅,谷文英.酶解玉米黄粉蛋白制备可溶性肽[J].粮油食品科技,1999,1(7):1-3
    33.王树英,吴苏喜,任国谱.粉末食品系统中酶解花生蛋白的抗氧化活性研究[J].食品与机械,1999,4:18-19
    34.吴建平,潘文彪.乳蛋白生物活性肽的研究概述[J].中国乳品工业,1999,27(1):12-15
    35.吴建平.日本生理活性肽的市场动态[J].食品工业,1998,3:8-9
    36.王梅.酶解玉米蛋白粉制备高F值寡肽混合物[J].中国油脂,1996,21(5):22-25
    37.徐志宏,谢笔钧,魏振承.蛋白副产物资源开发生物活性肽研究进展[J].广东农业科学,2006,11:9-12
    38.杨国玲,文永均.胸腺相关肽及其自旋标记类似物的抗氧化活性研究[J].生物化学和生物物理学报,1995,27(6):917-918
    39.张伟,徐志宏,孙智达等.酶解花生蛋白制备血管紧张素转化酶抑制肽[J].中国粮油学报,2008,23(1):146-151
    40.张伟,孙智达,徐志宏.花生多肽的制备及生理功能评价的研究发展[J].中国油脂,2007,32(1):74-76
    41.张宇昊,王强.酶水解花生蛋白制备花生短肽的研究[J].农业工程学报.2007,23(4):258-263
    42.章银良.食品检验教程[M].北京:化学工业出版社,2006:225-264
    43.赵思明.食品科学与工程中的计算机应用[M].北京:化学工业出版社,2005,5
    44.周雪松.水解蛋白来源的抗氧化肽研究进展[J].中国食品添加剂,2005,6:84-87
    45.周素梅,王强.我国茶籽资源的开发利用及前景分析[J].中国食物与营养,2004,(3):13-16
    46.赵永芳编.生物化学技术原理及其应用,第2版[M].武汉大学出版社,2000,122-155
    47.郑红发,黄亚辉.茶籽的综合利用[J].茶叶通讯,2000(3):43-45
    48.张晓楠,郭立安.超滤在蛋白质纯化中的应用[J].中国生化药物杂志,1999,20(2):97-98
    49.赵元藩,李贵明.从茶籽饼中提取茶皂素的生产工艺研究[J].云南化工1996,(1):51-53
    50.张庆华,黄文銮.福建省主要油茶产区油茶立地生产力研究[J].福建林学院学报,1984,4(2)7-16
    51. Eli Zahou,Hans Jrnval, Tomas Bergman. Amino Acid Analysis by Capillary Electrophoresis after Phenylthiocar bamylation[J].Analytical Biochemistry, 2000,281(1):115-122
    52. FuH, JinW,XiaoH, et a.l Peptides separation in hydrophilic interaction capillary electrochromatography[J]. Electrohoresis,2003,24(12-13):2084-2091
    53. F. W. David Deeslie, Munir Cheryan. Functional properties of soy protein hydrolysates from a continuous ultrafiltration reactor[J].J.Agric.Food Chem. 1988,36:26-31
    54. Gazit E,et al.[J].Biochem is try,1994,33(35):10681-10692
    55. Hiroyuki Moriyama,et al, Rapid separation of peptides and proteins on 2μm porous microspherical reversed-phase silica material[J].Journal of Chromatography A,1996,729:81-85
    56. Henderson DE,Mello JA.Physicochemical studies of biologically active peptide by low temperature reverse phase high performance liquid chromatography[J].J Chromatogr,1990,499:79
    57. Kai Zhang, Chao Yan, Chuan-yi Yao,et al Separation of basic drugs using pressurized capillary electrochromatography[J].Chin JChem,2003; 21(4):419
    58. Kevin L P, Melissa HB, Rober E W.Recombin ant DNA procedures for producing small antimicrobial cationic peptide in bacteria[J]. Gene.1993, 134:7-13
    59. K evin N,pearce and John Einsella, J.Aguic,Food Chem.1978,26,3
    60. Lockey T D,er al.[J].Eur J Biochem,1996,236(1):236-271
    61. Mariam E. et al.[J].International J of Antimicrobial Agents,1999,13:57-60
    62. M.C.Hughes,et al.Proteolysis of bovine F-actin by Cathepsin B[J].Food Chemistry 1999,64:525-530
    63. Marchini D, et al.[J].Insect Biochem Mol Biol,1993,23(5):591-598
    64. N.D.Alvise,C.Lesueur-Lambert,B.Fertin.Hydrolysis and large scale ultrafication study of alfalfa protein concentrate enzymatic hydrolysate[J]. Enzyme and Microbial Technology,2000,27:286-294
    65. Petra W.J.R.Caessens,et al.β-Lactoglobulin Hydrolysis.l.Peptide composition and functional properties of hydrolysates obtained by the action of plasmin,Trypsin, and Staphylococcus aureus V8 protease [J].J.Agric.Food Chem.l999,47(8):2973
    66. RusselJ,etal.Oxidative damage in the central nervous system:protection by melatonin[J]. Progress in Neurobiology,1998,56:359-383
    67. Rdde WA, Elzer PH, Enright FM, et al.Interleukin 2 promoer/enhance controlled expression of asyn the ticcecropin-classlyticc peptide in transgenicmice and subsequent resistance to Brucella Sabortus[J].Transgenic Research.1997,6:337-347
    68. Radermacher SW, et al.[J].Jneurosi Res,1993,36(6):657-662
    69. Sigrid C. Schucker, Gerhard K. E. Analysis of isomeric glutamyl peptides by capillary electro phoresis Application to stability studies[J]. J ChromatographyA, 2000,888(1-2):275-279
    70. S.S.Haileselassie,et al,Dairy food Purification and identification of potentially bioactive peptides from Enzyme-modified Cheese[J].1999,82(2):1612-1617
    71. Shahabuddin M, et al.[J].Experimental Parasitogy,1998,89(1):103-112
    72. Saberoal G, et al.[J].Biochem Biophys Acta,1994,1197(2):109-131
    73. T.Yasuyaki,M.Yoshikawa. Introduction of enterostatin (VPDPR) and a related sequence into soybean proglycinin AlaBlb subunit by site directed mutagenesis[J].Biotechnol.Biochem,2000,64(12):2731-2733
    74. T.Issaeva,et al,Super-high-speed liquid chromatography of proteins and peptides on non-porousMicra NPS-RP packings[J]. Journal of Chromatography A,1999, 846:13-23
    75. Wen-Dee Chiang,Chieh-Jen Shih,Yan-Hwa Chu.Functional properties of soy protein hydrolysates produced from a continuous membranereactor system[J]. Food Chem.1999,65:189-194
    76. Walz F,Wieser H,etal.In vitro hydrolysis of gliadin and casein peptides:secondary defect in celiac disease shown by organ culture[J].Scand J Gastroenterol,1996,31(3):240-246
    77. YeM, Zou H, Liu Z, et al Separation of peptides by strong cation-exchange capillary electro chromatography [J]. J Chromatogr,2000,869(1-2):385-394
    78. Yarus S, Rosen JM, Cole AM, et al. Production of active bovinetra-cheal antimicrobial.peptidein milk of transgenic mice[J]. Proc Natl Acad Sci USA. 1996,93:14118-14121
    79. Yoshiyuki S,Keiko W.Structure and zctivity of angiotensin I converting enzyme inhibitory peptides from sake and sakeless[J]. Biosci.Biotech.Biochem,1994,58 (10):1767-1771
    80. Yukio FURUUCHI et al,Nippon Shkuhin Xogyc Gakkaishi 1981,28:548-553
    81. Zhang L, Falla T, Wu M, et al. Determints of recombinant production of antimicrobial cationic peptides and creation of peptide variant inbacteria[J]. Biochem.Biophys. Res. Commun.1998,247:674-680