高导热绝缘高分子复合材料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
绝缘导热高分子材料对于高频微电子元器件散热,提高其精度、延长寿命具有愈来愈重要作用。本文以甲基乙烯基硅橡胶为基体,氧化铝和氮化铝无机粒子为主要导热填料制备出综合性能优良的导热弹性垫片。以三类聚乙烯(线性低密度聚乙烯、高度聚乙烯、超高分子量聚乙烯)为基体,氮化硼、氮化硅为主要填料,制备出高热导率电绝缘复合塑料。借助于自行研制出的高分子复合材料热导率及热阻测试仪器,以及示差扫描量热法、傅立叶红外光谱、热失重分析、扫描电镜等现代分析手段详细研究了填料种类、含量、粒径、制备工艺等因素对复合材料热导率、热阻、电绝缘性、介电、力学性能、结构及其它性能影响。实验研究发现:
     1.绝缘导热硅橡胶研究
     (1)硅橡胶热导率及热阻随氧化铝、氮化铝用量增加而分别升高和降低,填料用量达临界值后,热导率增加迅速。氮化铝加速了硅橡胶硫化,氧化铝对硫化影响不明显,两种填料均明显提高了硅橡胶热稳定性,降低了体系热膨胀系数。随填料用量增加,硅橡胶体积电阻率、表面电阻率、介电性能及介电强度性能均有所下降,但仍然保持良好的电学性能;力学性能随填料增加而下降。
     (2)大粒子填料形成导热通路能力强于小粒子,形成更稳定导热通路;小粒子填料更有利于提高硅橡胶力学性能。不同粒径填料粒子按照适宜比例混合组成混杂填料,所得硅橡胶具有最高热导率。对于二元混杂粒径填料,小粒子体积用量占总用量的20~35%之间时体系的热导率、拉伸强度、介电常数、热膨胀系数均能达到最佳值。氧化镁晶须和导热粒子混杂填料填充硅橡胶热导率优于等量单一粒子填充效果,力学性能有改善。
     (3)适宜成型压力和时间减少了材料内部空隙率,提高材料致密度,改善热导率和电学性能。偶联剂降低了材料界面处缺陷和孔洞,抑制了界面处声子散射现象,增大声子平均自由程,提高了热导率。然而,偶联剂过量降低体系热导率。偶联剂增强了两相界面粘接,提高了硅橡胶力学强度。
     (4)以电子级玻璃布为增强体制备出具有高热导率、良好电绝缘性、形变性能及一定力学强度的弹性热界面材料,作为一类很重要的热界面材料,弹性热垫片对于低功率芯片散热具有重要作用。
     (5)填充硅橡胶热导率范围介于Maxwell模型上、下限预测范围内;填料粒子形状参数愈大,体系热导率愈高;导热粒子与橡胶基体间的热阻大小决定着填料对体系热导率的影响。基于组合数学观点,推导出一新型热导率方程,经验证,该模型具有一定的适用性(k=k_1k_2/((1-C)k_1+Ck_2)=k_1k_2/((1-V_f~(1/3))k_1+V_f~(1/3)k_2)。
     2.绝缘导热聚乙烯研究
     (1)氮化物粒子和聚乙烯颗粒经粉末混合后,由于范德华力及静电作用力导热粒子在聚乙烯表面周围形成了包覆层;复合粒子热压成型后,在体系内部形成了以聚乙烯颗粒为中心的导热粒子环绕的“核-壳”结构的无规网状导热通路。和熔融共混相比,粉末法在较低填料含量下形成导热通路,热导率高。
     (2) 30wt.%氮化硼和氮化硅填充时复合塑料热导率达1.68 W/(m·K)和1.52W/(m·K),具有高的电绝缘性及低介电常数和介电损耗,但力学性能下降。随填料粒径下降,复合塑料热导率升高;随聚乙烯粒径增加,热导率升高。在氮化物填料粒子中加入少量氧化镁晶须或氧化铝短纤维,热导率增加缓慢,而力学性能提高明显。
     (3)适宜的成型压力和时间有助于提高热导率及电学性能。适量偶联剂提高了氮化物和聚乙烯颗粒间相容性,减少了体系内空隙,热导率升高,介电性能和力学强度和韧性得到改善。
     (4)导热粒子增强UHMWPE具有高热导率、一定力学强度、卓越的电学性能及高冲击性能。和普通聚乙烯相比复合UHMWPE具有优异的导热能力,是低温场合理想的电子封装及基板材料。
     (5)氮化物填料对聚乙烯熔融温度基本没有明显影响,但对其结晶度有影响。常规热导率模型低估粉末法制备的复合塑料热导率,以下两个方程适宜描述该类复合塑料热导率:logk=logk_p+(logk_(V_m)-logk_p)·(V_f/V_m)~N及k_c~a=(1-V_f)k_m~a+V_f·k_f~a。
The electrically insulating and thermally conductive polymer composites areincreasingly important for high reliability and long life of the micro-electronic devicesworking under high frequency. Methyl vinyl silicone rubber filled with electricallyinsulating and thermally conductive alumina (Al_2O_3) and aluminum nitride (AlN) wereinvestigated to be used as elastomeric thermal pads, a class of thermal interfacematerials (TIM). Moreover, the insulating heat conductive composite plastics wereobtained from three kinds of polyethylene (LLDPE, HDPE and UHMWPE) as matrixsand boron nitride (BN) and silicone nitride (Si_3N_4) as main fillers using powder mixingtechnology in this paper. The effects of fillers, content, particle sizes and processingtechnology on the thermal conductivity, thermal contact resistance, volume resistivity,surface resistivity, dielectric property, mechanical properties, structures and otherproperties of composite plastics were discussed detailedly by virtue of the apparatusmeasuring the thermal contact resistance and thermal conductivity of polymericmaterials, which were fabricated in our lab, and other modern analytical means, such asdifferential scanning calorimetry (DSC), fourier transform infrared spectrometer (FT-IR)thermogravimetric analyzer (TGA) and scanning electron microscopy (SEM). Thefollowing conclusions can be reached from the experiments.
     1. Thermal conductive silicone rubber
     (1) The addition of either Al_2O_3 or AlN filler particles into the silicone rubber increasesits thermal conductivity whereas decreases its thermal contact resistance. The thermalconductivity increases rapidly after the critical filler concentration. AlN filleraccelerates the vulcanization reaction of silicone rubber, whereas Al_2O_3 shows noobvious effect on the reaction. The both fillers strongly improve the thermal stabilityand remarkably reduce the coefficient of thermal expansion (CTE) of filled siliconerubber. As filler loading increases, the electrical properties of composite rubber, such asvolume and surface resistivity, dielectric properties and breakdown voltage decline,however, they still remain quite high values. The mechanical properties decrease withincreasing filler content.
     (2) The larger filler particles can easily form more stable conductive pathwayscompared with the smaller ones, whereas, the mechanical properties of smaller particles filled silicone rubber are superior to that filled with larger grain size. Silicone rubberincorporated with mixture of hybrid particles at a preferable mass ratio exhibits thehighest thermal conductivity compared with the cases where only filler with singleparticle size was used, furthermore, for the binary system of hybrid sizes, when thesmaller particles concentrate is 20~30 vol. % of total fillers the thermal conductivity,tensile strength, dielectric constant and CTE reach the peak values. The use of hybridMgO whisker and conductive particles provides composites with better thermalconductivity and mechanical property than the sole particles used.
     (3) The optimal molding pressure and time help to improving thermal conductivity andelectrical property of composites due to the improved compact structure inside materials.Optimal dosage coupling agent enhances thermal conductivity since it reduces theinterfacial voids and deflects, restrains the interracial phonon scatting and extends thephonon mean free path. In addition, coupling agent improves mechanical strength ofcomposites due to good interfacial bonding.
     (4) A new type of thermally conductive silicone rubber composites, possessing highthermal conductivity, good electrical insulation, mechanical properties and easydeformation under low pressure, was successfully developed using electrical glass clothas reinforcement, which serves as elastomeric thermal pads, a class of TIM, for heatdissipation purposes of low powder chip sets.
     (5) The thermal conductivity of Al_2O_3 or AlN filled silicone rubber lies between theupper and lower boundary of Maxwell model. The bigger particle shape factor of fillerleads to the higher thermal conductivity of composites. The thermal contact resistancebetween filler and rubber matrix poses a great impact on the thermal conductivity ofcomposite rubber. Based the combinatorics, the author proposed a new equationpredicting the thermal conductivity of filled silicone rubber. The results show theequation is in good agreement with experimental results at low filler content. (k=k_1k_2/(1-C)k_1+Ck_2=k_1k_2/(1-(V_f)~(1/3)k_1+(V_f)~(1/3)k_2).
     2. Thermal conductive composite polyethylene plastics
     (1) The powder mixing preparation condition allows the deformation of a randomdistribution of BN or Si_3N_4 particles on the surface of polyethylene (PE) matrix volumeand to create ordered shell structure in the BN/PE and Si_3N_4/PE systems due to theexisting Van der Waals and static interactions between small filler particles and larger PE particles. Thus, the reticulatal conductive channels from filler particles randomlysurrounding the larger PE particles, just like shell/kernel structure, were created after theprocess of hot pressing, which provide the composites with high thermal conductivity atlow filler concentration, compared to the composite plastics produced from the meltedmixing.
     (2) 30 wt. % of BN or Si_3N_4 filled PE exhibits thermal conductivity of 1.68 W/(m·K)and 1.52 W/(m·K), excellent volume and surface resistivity, dielectric properties anddeclined mechanical property. Thermal conductivity of the composites rises as filler sizeincreases, and descends as PE size decreases. The addition of a small quantity of MgOwhisker or Al_2O_3 short fiber into BN or Si_3N_4 filler particles increases obviously themechanical property, however, thermal conductivity only gets little rise.
     (3) The optimal molding pressure and time enhance thermal conductivity and electricalproperty of composites. Optimal dosage coupling agent improves thermal conductivity,dielectric property, strength and toughness of composite plastics because of theenhanced interfacial compatibility between filler and PE matrix due to the reducedinterfacial deflects and voids.
     (4) The BN/UHMWPE demonstrates high thermal conductivity, excellent electricallyinsulating property, good impact strength, and shows eminent heat conduction propertycompared with common PE materials. So, the heat conductive BN/UHMWPE is an ideakind of materials for electric packaging and substrate maerials used at lowertemperature.
     (5) BN and Si_3N_4 filler have no evident effect on melting temperature of PE, but affectthe crystallinity of PE. The most of used models predicting the thermal conductivity ofbinary composites underestimate the one of the developed composite plastics in thispaper. The following two equations can predict the thermal conductivity to a certaindegree. logk=logk_p+(logk_V_m-logk_p)·(V_f/V_m)~N and k_c~a=(1-V_f)k_m~a+V_f·k_f~a·
引文
[1] 储九荣,张晓辉,徐传骧.导热高分子材料的研究与应用[J].高分子材料科学与工程,2000,16(4):17-20.
    [2] 李侃社,王琪.导热高分子材料研究进展[J].功能材料,2002,33(2):136-141.
    [3] 周文英,齐暑华,涂春潮.导热绝缘高分子复合材料研究进展[J].塑料工业,2005,33(B5):99-102.
    [4] 马传国,容敏智,章明秋.导热高分子复合材料的研究与应用[J].材料工程,2002,(7):40-45.
    [5] 周文英,齐暑华,涂春潮.混杂填料填充导热硅橡胶性能研究[J].材料工程,2006,(8):15-19.
    [6] Sim L C, Ramanan S R, lsmail H. Thermal characterization of Al_2O_3 and ZnO reinforced si-rubber as thermal pads for heat dissipation purposes[J]. Therrnochimia Acta, 2005, 430(1-2): 155-165.
    [7] 张晓辉,徐传骧.新型电力电子器件封装用导热胶粘剂的研究[J].电力电子技术,1999(5):61-62.
    [8] http://www.bergquist.com
    [9] Warren M, Rohsenow H. Handbook of Heat Transfer[M]. Science Press, 1985.
    [10] 屠传经,沈珞婵,吴子静.热传导[M],北京:高等教育出版社,1992.
    [11] 王家俊.聚酰亚胺/氮化铝复合材料的导热性能[D].浙江大学博士论文,杭州.
    [12] Touloukian Y. S., Thermophysical Properties of Matter[M]., IFI/Plenum Press, New York-Washington, 1970,
    [13] 张晓辉.电工高分子材料导热性能和机理的研究[D].西安交通大学博士论文,西安.
    [14] 奚同庚.无机材料热物性学[M].上海科学技术出版社,1981.
    [15] 田荫棠.热物理学[M].西安:西北工业大学出版社,1991.
    [16] 张正荣.传热学[M].北京:高等教育出版社,1989.
    [17] 奥齐西克,俞昌铭.热传导[M].北京:高等教育出版社,1983.
    [18] 陈则韶,葛新石,顾沁.量热技术和热物理性测定[M].合肥:中国科学技术大学出版社,1990.
    [19] 翟海潮,李印柏,林新松.粘接与表面粘涂技术[M].北京:北京化学工业出版社,1993.
    [20] Cheng S. X., An accurate transient calorimeter for measuring the total hemispherical emissivity of metals and alloys[J]. High Temp High Press, 1984(6):459-468.
    [21] Watt D A., Theory of thermal diffusivity by pulse technique[J]. J Appl Phys, 1986, 37(5):231-240.
    [22] Hara S, Toshima N., Electrochemical polymerization of benzene using a composite electrolyte of aluminum chloride and copper chloride[J]. Chemistry letters, 1989, 28(4):1437-1440.
    [23] 徐龙,阎西林,贾宇明,等.材料物理导论[M].西安:西安电子科技大学出版社,1995.
    [24] 关振铎,张中太,焦金生.无机材料物理性能[M].北京:清华大学出版社,1992.
    [25] 刘静.微纳米尺度传热学[M].北京:科学出版社出版社,2001.
    [26] 师昌绪.材料大辞典[M].北京:化工出版社,1994.
    [27] 黄昆,韩汝琦.固体物理学[M].北京:高等教育出版社,1991.
    [28] 陈根座.胶粘剂应用手册[M].北京:北京电子工业出版社,1994.
    [29] 蔡永源.胶粘剂制备及应用[M].北京:北京化学工业部科学技术情报研究所,1989.
    [30] 陈树川,陈凌冰.材料物理性能[M].上海:上海交通大学出版社,1999.
    [31] 阎守胜.固体物理基础[M].北京:北京大学出版社,2003.
    [32] 马庆芳.实用热物理性质手册[M].北京:中国农业机械出版社,1986.
    [33] 博克里斯,卡恩.量子电化学[M].哈尔滨:哈尔滨工业大学出版社,1988.
    [34] 奚同庚.固体热物理性质导论[M].北京:中国计量出版社,1987.
    [35] 叶昌明.HDPE/弹性体/石墨复合材料力学和导热性能研究[D].浙江大学硕士论文,杭州,2004.
    [36] 利帕托夫.聚合物物理化学手册[M].北京:中国石化出版社,1996,314-337.
    [37] 范克雷维伦.聚合物的性质[M].北京:科学出版社,1981.
    [38] Yuli K, Godousky. Thermo Physiem Properties of Polymers[M]. NewYork: Springer-vertay, USA, 1992, 42-73.
    [39] Choy C. L., Thermal conductivity of polymer[J]. Polymer, 1977, 18(10):984-1004.
    [40] Choy C. L., Luk W. H., Chea F. C., Thermal conductivity of high oriented polyethylene [J]. Polymer, 1978, 19(2):155-189.
    [41] Choy C. L., Young K., Thermal conductivity of semicrystalline polymers em dash model[J]. Polymer, 1977, 18(8):769-776.
    [42] 罗森诺,齐欣.传热学基础手册[M].北京:科学出版社,1992.
    [43] 德婉棠,吴美凯.固体物理学[M].北京:北京师范大学出版社,1991.
    [44] Hunadi R., Wells R., Low outgassing, high thermal conductivity greases[C]. Proceedings of the 1998 International Symposium on Microelectronics, Nov. 1-4 1998, San Diego, CA, USA. SPIE
    [45] Efimov V. B., Makova M. K., Thermal conductivity of organic superconductors[C].Proceedings of the 199 7 International Conference on Materials and Mechanisms of Superconductivity High Temperature Superconductors, Feb. 28-Mar 4 1997, Beijing, China.
    [46] Nysten B, Gonry P., Issi J. E, Intra- and interchain conduction in polymer[J]. Synthetic Metals, 1995, 69(5:67-68.
    [47] Grishchenko A. E., Study of the mechanism of polyethylene deformation by the method of anisotropy of thermal conductivity[J]. VysokomolekuIyarnye Soedineniya Seriya B, 1994, 36(5): 872-874.
    [48] 蔡忠龙,黄远华.超拉伸聚乙稀弹性模量和导热性能[J].离分子学报,1997,6(3):331-333.
    [49] Choy C. L., Fei Y., Xi T. G., Thermal conductivity of gel-spun polyethylene fibers[J]. Journal of Polymer Science, Part B: Polymer Physics, 1993, 31 (3): 365-370.
    [50] Grishchenko A. E., Turkov V. K., Nesterov A. E., Anisotropy of thermal conductivity and its relation to the structure of oriented polyurethanes[J]. Vysokomolekularnye Soedineniya. Seriya A, 1993, 35(10):1674-1678.
    [51] Ochi Y., Nakamura T., Kato T., et al., Thermal conductive property depended on network structure of acryl resin aligned by rubbing method[C]. 54th SPSJ Annual Meeting 2005-Polymer Preprints, May 25-27 2005, Yokohama, Japan
    [52] Kurabayashi K. Anisotropic thermal properties of solid polymers[J]. International Journal of Thermophysics, 2001,22(1):277-284.
    [53] Pietralla M., High thermal conductivity of polymers: possibility or dream?[J]. Journal of Computer-Aided Materials Design, 1996, 3 (1-3): 273-280.
    [54] Takezawa Y., Akatsuka M., Farren C., High thermal conductive epoxy resins with controlled high order structure[C] Proceedings of the 7th International Conference on Properties and Applications of Dielectric Materials, 2003, Jun..3:1146-1149,Nagoya, Japan, IEEE.
    [55] Fukushima K., Yakahashi H., Takezawa Y., et al., High thermal conductive epoxy resins with controlled high-order structure[C]. Conference on Electrical Insulation and Dielectric Phenomena, Oct. 17-20 2004, Boulder, CO, United States, IEEE.
    [56] Akatsuka M., Takezawa Y., Ductive epoxy resins containing controlled high-order structures[J]. JAppl Polym Sci, 2003, 89(9):2464-2467.
    [57] Brostow W., D'Souza N.A., Gopalanarayanan B., et al, Thermal expansivity and thermal conductivity of amorphous thermoplastic polyimide and polymer liquid crystal blends[J]. Polymer Engineering and Science, 2000, 40(2):490-498.
    [58] Wong C. P., Bollampally R. S., Thermal conductivity, elastic modulus and coefficient of thermal expansion of polymer composites filled with ceramic particles for electronic packaging[J]. J Appl Polym Sci, 1999, 74(14):3396-3403.
    [59] Amesoder S. Ehrenstein G. W., Thermisch leitfahig modifizierte Funktionskunststoffe (Thermal conductive polymers) [J]. Zeitschrift fuer Metallkunde/Materials Research and Advanced Techniques, 2003, 94(5): 606-609.
    [60] Enlow L. R., Swanson D. W., Natio C. M., Development of test vehicles for evaluating plastic-encapsulant reliability and improving thermal conductivity of encapsulant materials[J]. Microelectronics and Reliability, 1999, 39(4):515-527.
    [61] 石彤非,李树忠,张万喜.填充导热塑料[J].高分子材料科学与工程,1993,5(3):8-10.
    [62] Maiti S. N., Ghosk K., Thermal characteristics of silver powder-filled polypropylene composites[J]. Journal of Applied Polymer Science, 1994, 52(8):1091-1103.
    [63] Xu Y., Chung D. D. L., Increasing the thermal conductivity of boron nitride and aluminum nitride particle epoxy-matrix composites by particle surface treatments[J]. Composite Intelface, 2000, 7(4):243-256.
    [64] Sugimoto Toshi, Kawaguchi Sadahiko. Phenolic resin composite with toughness and impact resistance [P]. Jpn Kokai Tokkyo Koho: JP05 112 629.07, May, 1993.
    [65] Freddy Y. C., Song X. L., Yue C. Y., et al. Comparative study of thermally conductive fillers in underfill for the electronic components[J]. J Mat Proce Tech, 1999, 89-90(19):437-439.
    [66] Hatsuo I, Saraunt R., Very high thermal conductivity obtained by boron nitride-filled polybenzoxaine[J]. Thermochimica Acta, 1998, 320:177-186.
    [67] Paine R. T., Russ E A., Wood G L, et al. ELID grinding characteristics and surface modifying effects of aluminum nitride (AlN) ceramics[J]. ACS Symp. Series, 2002, 804:27-38.
    [68] Kenneth E, Chen X. H., Marie-lsabere B., Mechanical investigation of the preparation of polymer/ceramic nanocomposites[J]. Nanostructured Materials, 1997, 9(9:181-184.
    [69] Bae J. W., Kim W. H., Cho S. H., The properties of AlN filled epoxy molding compounds by the effect of filler size distributi on[J]. J Mater Sci, 2000, 35 (3):5907-5913.
    [70] Xu Y. S., Chung D. D. L., Cathleen M., Thermal conductivity aluminium nitride polymer material composites[J]. Composites, Part A, 2001, 32(12):1749-1757.
    [71] Li L., Chung D. D. L., Thermally conducting polymer-matrix composites containing both AlN particles and SiC whiskers[C]. Proceedings of the 1993 38th International SAMPE Symposium and Exhibition. Part 1 (of 2), May. 10-13 1993, Anaheim, CA, USA.
    [72] 汪雨狄,周和平,乔梁,等.AlN/聚乙烯复合基板的导热性能[J].无机材料学报,2000,15(6):1030-1033.
    [73] 汪雨荻,周和平,乔梁,等.AlN/聚乙烯复合材料的介电性能[].金属学报,2001,37(1):109-112.
    [74] 刘道龙,刘鹏波,徐闻.γ射线辐照高密度聚乙烯/氧化铝共混体系的力学性能及导热性能[J].高分子材料科学与工程,2005,21(6):170-173.
    [75] 王家俊,益小苏.导热型高性能树脂微电子封装材料之二:封装材料的导热和热膨胀性能[J].包装工程,2003,24(3):46-9.
    [76] Wang J. J., Yi X. S., Preparation and the properties of PMR-type polyimide composites with aluminum nitride[J]. J Appl Polym Sci, 2003, 89(14): 3913-3917.
    [77] Xie S. H., Zhu B. K., Li J. B., Preparation and properties of polyimide/aluminum nitride composites[J]. Polymer Testing, 2004, 23(7): 797-801.
    [78] Giuseppe P., Ikuko K., Sadao M., Thermal conductivity of AlN/polystyrene interpenetrating networks[J]. J Eur Ceramic Soc, 2000, 20(8):1197-1203.
    [79] Yu S. Z., Hing P., Hu X., Thermal conductivity of polystyrene-aluminum-nitride composites[J]. Composites Part A, 2002, 33(2):289-292.
    [80] Zhou W. Y., Qi S. H. Li H. D., et al, Study on thermal conductivity of composite BN/HDPE plastics[J]. Thermochimica Acta, 2007, 452(1): 36~42.
    [81] Zhou W. Y., Qi S. H., An Q. L., et al, Thermal conductivity of boron nitride reinforced polyethylene composites[J]. Materials Research Bulletin, 2007, in press.
    [82] 傅仁利,杨克涛,李淑琴.BN纤维/Nylonl010复合电子基板材料的制备与性能[J].南京航空航天大学学报,2005,37(5):547-550.
    [83] Ito M., Yamanaka H., Hattori M., et al., Development of high thermal conductive laminates[C]. Proceedings of 2005 International Symposium on Electrical Insulating Materials, Jun 5-9 2005, Kitakyushu, Japan.
    [84] Sugaya Yasuhiro, Hirano Koichi, Highly thermal conductive multi-layered printed wiring board[C]. Proceedings of SPIE - The International Society for Optical Engineering, Apr 25-28 2000, Denver, CO, United States.
    [85] Eli C., Thermally conductive EMC (epoxy molding compound) for microelectronic encapsulation[J]. Polymr Eng Sci, 1999, 39(4):756~766.
    [86] 林晓丹,曾幸荣.PPS导热绝缘塑料的制备及性能研究[J].塑料工业,2006,34(3):65-67.
    [87] 林晓丹,曾幸荣.PA66导热绝缘塑料的制备与性能[J].工程塑料应用,2006,34(4):8-12.
    [88] Kondo Toshiki. Polyamide composition for housing of electric parts [P]. Jpn Kokai TokkyoKoho: JP 03 79 666, 04, Apr, 1991.
    [89] Fuj ii Takeshi. Polyoxyphenylene polyamide blends[P]. Eur Pat Appl:EP 682 084.15, Nov, 1995.
    [90] Zhao S., Zhang, J. Z., Zhao S. Q., Effect of inorganic organic interface adhesion on mechanical properties[J]. Composite Sci Tech, 2003, 63:1009-1014.
    [91] 苏林,李洁涛,项爱民.HDPE/Sic复合材料导热性能研究[J].广东塑料,2004,11(1-2):2-6.
    [92] Nathaniel C, Hassan M, Vijaya K. Fabrication and mechanical characterization of carbon/SiC epoxy nanocomposites[J]. Composites structures, 2004.(1):. 10-14.
    [93] Kikuma Shinji. Polyamide composition for housing of electronic parts [P]. Jpn. Kokai Tokkyo Koho:JP 02 110 125.23, Apr,1990.
    [94] Isaki Takeharu. Thermally conductive silicone rubber composition with good moldability [P]. Jpn Kokai Tokkyo Koho:JP 02 169 653.29, Jun,1990.
    [95] Ochiai H, Low shrinkage, unsaturated wet—type polyester resin composition having high thermal conductivity and molded circuit breaker[P]. Eur Pat App/:EP 531655, May. 1993.
    [96] Shiobara T. Heat-curable epoxy resin compositions and cured product[P]. Jpn Kokai Tokkyo Koho: P 02 265 953, 1990.
    [97] Sawa F., Tomimura, T., Tanimoto N., Properties of high-thermal conductive composite with two kinds of fillers[C]. Proceedings of the IEEE International Conference on Properties and Applications of Dielectric Materials, May 16-20, 2003, Chicago, United States.
    [98] Amesoder S., Markov., Alexander E., Material properties of thermal conductive thermoplastics for mold design and processing strategies[C]. Society of Plastics Engineers Annual Technical Conference 2005, May 1-5 2005, Boston, MA, United States.
    [99] Bujard R, Kuhnlein G., Ino S., Thermal conductivity of molding compounds for plastic packaging[J]. IEEE Transactions on Components, Packaging, and Manufacturing Technology Part A, 1994, 17(4):527-532.
    [100] Amesoder S., Kuhnlein G., Gottfried W., Propterties and processing of thermal conductive thermoplastics[C]. ANTEC 2004-Annual Technical Conference Proceedings, May 16-20 2004, Chicago, IL., United States, SPE.
    [101] 赵幸.塑料部件制造中的新型导热材料[J].化工新型材料,2002,20(2):25-26.
    [102] 周健,黄祖洪.高导热绝缘材料在高压电机上的应用意义及前景[J],绝缘材料通讯,1999,(6):27-32.
    [103] Mo Z. M., Reliability and applications of adhesives for microsystem packaging[J]. Doktorsavhandlingar rid Chalmers Tekniska Hogskola, 2005(2358):35-38.
    [104] Gektin V., Ankireddi S., Jones J., Characterizing Bulk Thermal Conductivity And Interface Contact Resistance Effects of Thermal Interface Materials in Electronic Cooling Applications[C]. 2003 International Electronic Packaging Technical Conference and Exhibition, Jul 6-11 2003, Maui, HI, United States.
    [105] Feger C., Gelorme, G. D., McGlashan-Powell M., Mixing, rheology, and stability of highly filled thermal pastes[J]. IBM Journal of Research and Development, 2005, 49(4-5): 699-707.
    [106] Murray C. T., Rudman R. L., Sabade M. B., Conductive adhesives for electronic assemblies[J]. MRS Bulletin, 2003, 28(6): 449-454.
    [107] Prakash V., Wang Y. R, Comparative thermo-mechanical study of thermally conducting adhesives[C]. Proceedings of the 1993 ASME International Electronics Packaging Conference, Sep 29-Oct 2 1993, Binghamton, NY, USA, ASME.
    [108] Latham C. A., Thermally conductive adhesives for electronic packaging[J]. Surface Mount Technology, 1991, 5(7):4-8.
    [109] Chin G. Y., Electronic packaging and interconnection[J]. Advanced Materials & Processes, 1990, 137(1):2-8.
    [110] Liu J., Recent advances in conductive adhesives for direct chip attach applications[]. Microsystem Technologies, 1998(5):72-80.
    [111] Kang S. K., Purushothaman S., Development of conducting adhesive materials for microelectronic applications[J]. Journal of Electronic Materials, 1999, 28(11): 1314-1318.
    [112] 胜庚义.用导热性半固化制造印制板[J].印制电路板信息,2002(5):3-7.
    [113] 周文英,齐暑华,涂春潮,等.高导热型铝基覆铜板研究[J],材料科学与工艺,in press
    [114] 刘阳,孟晓玲.高耐热性、高导热性铝基覆铜板的研制[C].第四届全国覆铜板技术-市场研讨报告,1998(3)79-81.
    [115] Zhang Z. Y., Xiao G. Z., LiuJ. R., Attaching planar waveguide dies to aluminum using low-stress thermal conductive adhesives[J]. Fiber and Integrated Optics, 2004, 23(4):311-326.
    [116] Bjorneklett A., Characterization of silver filled adhesives for attachment of microelectronic chips to substrates[J]. Polymers & Polymer Composites, 1993, 1 (4):275-282.
    [117] Xu Y. S., Chung D. D. L., Sodium silicate based thermal interface material for high thermal contact conductance[J]. Journal of Electronic Packaging, Transactions of the ASME, 2000, 122(2):128-131.
    [118] Lee W. S., Yu J., Comparative study of thermally conductive fillers in underfill for the elecroc components[J]. Diamond and Related Materials,2005,14(3): 1647-1653.
    [119] Wu J. L., Bhattarcharya S. K., Swapan K., Evaluation. and characterization of high-performance filling encapsulants for system chips application[C]. 50th Electronic Components and Technology Conference, 2000, Las Vegas, NV, USA.
    [120] Wang J. L., Characterizations of soft-gel thermal interface materials for flip chip package[C]. 24th International Conference on Microelectronics, May 16-19 2004, Nis, Serbia and Montenegro.
    [121] Bolger J. C., Prediction and measurement of thermal conductivity of diamond filled adhesives[C]. Proceedings of the 42nd Electronic Components and Technology Conference, May 18-20 1992, San Diego, CA, USA.
    [122] Hunadi R., High thermal conductivity greases[J]. Advanced Packaging, 1999, 8(4): 4-8.
    [123] 吴敏娟,周玲娟.导热电子灌封硅橡胶的研究进展[J].有机硅材料,2006,20(2):81-85.
    [124] 王政.用于集成电路封装的有机复合高导热灌封料[J].安徽化工,2001(1):41-46.
    [125] 章文捷,马静.绝缘导热有机硅灌封材料的研究与应用[J].电子工艺与发术,2004,25(1):30-32.
    [126] 陈元章.绝缘导热灌封硅橡胶的应用[J].航天工艺,1997(2):40-42.
    [127] Xu Y. S., Chung D. D. L., Cement of high specific heat and high thermal conductivity obtained by using silane and silica fume as admixture[J]. Cement Concrete Research, 2000, 30(7): 1175-1178.
    [128] 徐东什,张志阳,周军.用于功率集成电路封装的高导热灌封料[J].混合微电子技术,2004,10(1):27-34.
    [129] 郝玉龙.用于混合微电子电路的灌封料[J].混合微电子,2004,15(2):60-64.
    [130] 王铁如,唐国瑾.导热绝缘胶-Ⅱ型的研制[J].绝缘材料通讯,1996(2):1-3.
    [131] 王铁如,唐国瑾.导热绝缘胶的研制和应用方法[J].电子工程师,1998(8):37-40.
    [132] Shiobara Toshi. On the theory of heat conduction in micromorphic continua [P]. Jpn Kokai Tokkyo Koho:JP 02 265 953, 1990.
    [133] 周文英,齐暑华,赵红振.复合绝缘导热胶粘剂研究[J].中国胶粘剂,2006,15(11):22-25.
    [134] 谭茂林,陈建,张一峰.导热绝缘胶粘剂的研制[J].航空精密制造技术,2005,41(3)53~56.
    [135] 石红.空芯印制板导热绝缘胶接技术[J].粘结,1996,1(1):14-17.
    [136] Enlow, L. R., Thermally conductive adhesive for in line curing[J]. SMT Surface Mount Technology Magazine, 1999, 13(5):4~7.
    [137] Dietz R. L., Peck D., New high thermal conductivity thermoplastics for power applications[ J].Soldering & Surface Mount Technology, 1997(26):55-57.
    [138] Hermansen R. D., Lau S. E., Evolution of space qualified thermal transfer adhesive[C]. 92 SAMPE Conference, Baltimore, MD, USA.
    [139] 吴金林.低温导热绝缘胶粘剂研究[J].低温工程,1998,103(3):51-53.
    [140] Cross, R. P. T., In situ network structure, electrical and thermal properties of conductive epoxy resin-carbon black composites for electrical heater applications[C]. CEG, 1995, Anaheim, CA, USA.
    [141] Winson, S. W., Norris Ann. W., et al. Thermally conduvtive adhesive for high thermally stressed assembly[C]. REC, 1996, Anaheim, CA, USA.
    [142] 刘成章.导热绝缘胶[J].电子工业技术,2003(1):42-43.
    [143] 陈博丰.墙纸的胶粘工艺方法和保养[J].化学与粘合,1991(3):190-192.
    [144] Bolger, J. C., Prediction and measurement of thermal conductivity of diamond filled adhesives [C]. IEEE, 1992, San Diego, CA, USA.
    [145] Hahn Ortwin,, Meschut Gerson. Thermal conductive, strength and ageing behavior of adhesive bonded joints with filler modified adhesive[J]. Welding & Cutting, 1998, 50(7): 130-133.
    [146] Hahn R, Hoehne J, et al. Low thermal resistivity adhesive bnding of ceramic substrates to high performance coolers for the fabrication of power MCM's[J]. Int. J. Microelec. Pack. Mat. Techn. 1998, 1 (3):197-208.
    [147] Sheer ML. Potted Electrical Devices with Thermally Conduc-tive Surface [P]. EurPat Appl:EP 375851,1990.
    [148] 杨坤民,陈福林,岑兰.导热橡胶的研究进展[J].橡胶工业,2004,52(1):118-123.
    [149] 孙春雷.有源液晶显示器加固技术探讨[J].湖南轻工业高等专科学校学报,2002,14(4):20-24.
    [150] 涂春潮,齐暑华,周文英.导热硅橡胶研究进展[J].合成橡胶工业,2006,29(4):305-309.
    [151] 潘大海,刘梅,孟岩,等.导热绝缘室温硫化硅橡胶的研制[J].橡胶工业,2004,51(9):534-536.
    [152] Zhou W. Y., Qi S. H., Zhao H. Z., Thermally conductive silicone rubber reinforced with boron nitride particle[J]. Polymer composites, 2007,28(1):23-28.
    [153] Tajima H. Compositions of heat-releasing materials[P]. Jpn Kokai Tokkyo Koho:JP 05 016 296,1993-01-26.
    [154] 周文英,齐暑华,涂春潮.氧化铝对导热硅橡胶性能的影响[J].合成橡胶工业,2006,29(6):462-465.
    [155] Zhou W. Y., Qi S. H., Zhao H. Z., et al. Effect of particle size of Al_2O_3 on the properties of filled thermal conductive silicone rubber[J]. J Appl Polym Sci, 2007104(2): 1312-1318.
    [156] 潘大海,刘梅.刚玉粉对室温硫化导热硅橡胶性能的影响[J].有机硅材料,2004,18(6):9-12.
    [157] Meyer L, Jayaram S, Cherney E. Thermal conductivity of filled silicone rubber and its relationship to erosion resistance in the inclined plane test[J].IEEE Transactions on Dielectrics and Electrical Insulation, 2004,11 (4): 620-630.
    [158] Nakano A. Thermally conductive silicone rubber compositions with good moldability[P]. Jpn Kokai Tokkyo Koho:JP04 328 163.1992-11-17.
    [159] Funhashi H. Thermally conductive silicone rubber sheers and their manufacture[P]. Jpn Kokai Tokkyo Koho:JP 07 157 664,1995-06-20.
    [160] Sato M, Ikeda K, Nishikawa M, et al. Silicone rubber composition and its use[P]. Jpn Kokai Tokkyo Koho:JP:09 296 114,1997-11-18.
    [161] Watanabe, S. Heat-conductive silicone rubber composition[P].US Patent: 5. 424 352,1995-06-13.
    [162] Wang Q., Gao W., Xie Z. M., Highly thermally conductive room-temperature-vulcanized silicone rubber and silicone grease[J]. J Appl Polym Sci,2003,89(9):2397-2399.
    [163] 潘大海,刘梅.填料并用对双组分室温硫化导热硅橡胶性能的影响[J].有机硅材料,2005,19(5):15-17.
    [164] Kuramoto N. Production of vulcanized rubber[P]. Jpn Kokai Tokkyo Koho:P02 016 128,190-01-19.
    [165] Kuze K, Kato S, Nonami H. Cushioning material for liquid crytal display and its manufacture[P]. Jpn Kokai Tokkyo Koho:JP 10 034 759,1998-02-10.
    [166] Yasuno M. Fixing rolls in electro-photographic copying, silicone rubber compositions for the rolls, and manufacture of compositions[P]. Jpn Kokai Tokkyo Koho:JP03 221 982, 1991-09-30.
    [167] 唐明明,容敏智,马传国,等.Al_2O_3表面处理及粒子尺寸对SBR导热橡胶性能的影响[J].合成橡胶工业,2003,26(2)104-107.
    [168] Tantawy E. New double negative and positive temperature coefficients of conductive EPDM rubber TiC ceramic composites[J]. Euro Polym J, 2002, 38, (3):567-577.
    [169] Gwaily S, Badawy M, Hassan H, et al. Natural rubber composites as thermal neutaon radiation shields:I.B_4C/NR composites[J]. Polymer Testing, 2002, 21 (2): 129-133.
    [170] Minami K. Electrically insulative and thermally conductive vibration dampers and rubber and plastic composition for their manufacture[P]. Jpn Kokai Tokkyo Koho:JP 07 145 270, 1995-06-06.
    [171] Hirakawa Y. Rubber and/or plastic moldings with vibration damping and heat-conductive properties [P]: Jpn Kokai Tokkyo Koho:JP05 310 993, 1993-11-22.
    [172] Wilson S. W., Thermally conductive adhesives for high thermally stressed assembly[C]. Proceedings of the NEPCON WEST'96. Part 2 (of 3), Feb 27-29 1996, Anaheim, CA, USA.
    [173] 周文英,齐暑华,涂春潮,等.导热硅橡胶复合材料研究[J].航空材料学报,2007,27(1):33-36.
    [174] Zhou W. Y., Qi S. H., Zhao H. Z., et al, Study on novel heat conductive composite silicone rubber[J]. Journal of Applied Polymer Science, 2007, 28(1):23-28.
    [175] 雷海军,王曼丽.硅橡胶涂覆玻璃布导热绝缘垫片的研制[J].河南化工,2006,23(6):20-23.
    [176] Fletcher L. S., Lambert M. A., Marotta E. E., Thermal enhancement coatings for microelectronic systems[J]. Journal. of Electronic Packaging, Transactions of the ASME, 1998, 120(3):229-236.
    [177] Eriguchi F., Hotta Y., Development of novel thermal conductive film[C]. Proceedings of the 1999 International Symposium on Microelectronics, Oct 26-Oct 28 1999, Chicago, IL, USA. IMAPS.
    [178] Leivo E M, Kellberg Y H, Kolari M J. Structure and thermal conductivity of flame sprayed polyamide 11 coatings filled with AIN, Al_2O_3 ceramics[C]. Proceeding .Inter. Therm.. Spray. Conf, May. 28-30, 2001, Sinapore, Sinapore, 2001:327-330, ASM.
    [179] Lu X, Xu G., Hofstra EG., Moisture-absorption, dielectric relaxation, and thermal conductivity studies of polymer composites[J]. J Polym Sei, 1998, 36(13):2259-2265.
    [180] Ogawa Yoshiyuki. Ceramics-containing fluoropolymer coatings for cooking utensils or heating rolls of copying machines[P]. Jpn Kokai Tokkyo Koho:JP 01 236 255, 1989.
    [181] 周文英,齐暑华,王彩风.高温导热绝缘涂料[J].复合材料学报,2007,24(2):52-56.
    [182] 周文英,齐暑华,李国新.导热胶粘剂研究[J].材料导报,2005,19(5):26-29.
    [183] 周文英,寇静利,谷宏治.绝缘导热聚合物基复合材料[J].上海塑料,2005(2):19-24
    [184] Bigg D. M. Metal-filled polymers[M]. New York: Marcel Dekker; 1986.
    [185] 涂春潮.导热绝缘硅橡胶复合材料研究[D].西北工业大学硕士论文,2006,西安.
    [186] Iemd W., Michael H., Thermal conductivity, thermal diffusivity,and specific heat capacity of particle filled polypmlene[J]. Composites, Part A, 2004, 35:423-429.
    [187] Ravindra M., Saxena N. S., Saxena M. S., et al, Thermal properties of pineapple leaf fiber reinforced composites[J]. Materials Science and Enginering, 2003, A339:281-285.
    [188] Tavman J. H., Effect of metallic fillers on thermal conductivity of polymers[C]. Proceedings of the 2nd Biennial European Joint Conference on Engineering Systems Design and Analysis, Jul 4-7 1994, London, Engl., ASME.
    [189] Bujard Patrice. Filler for heat conductive plastics materials[P]. Eur Pat Appl:EP 0555 184, 1993-08-08.
    [190] Bujard Patrice. Filler for heat conductive thermosetting resin[P]. Eur Pat Appl:EP 0499 585, 1992-02-12.
    [191] Kato T., Nagahara T., Agari Y., Relation between thermal conductivity and molecular alignment direction of free-standing film aligned with rubbing method[J]. Journal of Polymer Science Part B: Polymer Physics, 2005, 43(24): 3591-3599.
    [192] 巴塔查里亚 S K.金属填充聚合物性能和应用[M].北京:中国石化出版社,1992.
    [193] Kondo Toshi. Heat conduction in heterogeneous materials and irregular boundaries-A computer graphics based algorithm for calculating effective thermal parameters[P]. Jpn Kokai Tokkyo Koho: JP 03 79 666.04, Apr, 1991.
    [194] Shiobara T. Heat-curable epoxy resin compositions and cured pr oduct[P]. Jpn Kokai Tokkyo Koho: JP 02 265 953, 1990.
    [195] 张猛,高彦芳,阜巍,等.液晶聚酯/氮化铝复合基板材料制备中偶联剂的应用[J],复合材料学报,1998,15(3):71-74.
    [196] 张志龙,吴昊.高导热绝缘复合材料的研究[J].舰船电子工程,2005,25(6):36~40.
    [197] Moeller D. K., Shkel Y. M., Microstructured polymer composites with enhanced thermal and electrical conduction capabilities[D]. Proceedings of SPIE-The International Society for Optical Engineering, Smart Structures and Materials 2004.
    [198] Sasaski T., Hisano K., akamoto T., Development of sheet type thermal conductive compound using AIN[C]. Proceedings of the 1995 IEEE/CPMT 18th International Electronic Manufacturing Technology, Dec 4-6 1995, Omiya, Jpn. IEEE.
    [199] 李侃社.聚合物基复合材料导热性能的研究[J].高分子材料科学与工程,2002,28(4):10-13.
    [200] Agari Y, Ueda A, Nagai S, et al. Thermal conductivity of a polymer composites [J]. J Appl Polym Sci, 1993, 49(9):1 625-1 634.
    [201] Agari Y, Ueda A, Nagai S, et al. Thermal conductivity of a polyethylene filled with disoriented short-cut carbon fibers [J]. JAppl Polym Sci, 1991,43 (6):1117-1124.
    [202] Agari Y, UedaA, Nagai S, et al. Thermal conductivity of composites in several types of dispersion systems [J]. JAppl Polym Sci, 1991,42(6):1665-1669.
    [203] Rong M. Z., Zhang M. Q., Zheng Y. X., et al., Improvement of tensile properities of nano-SiO_2/PP composite in relation to percolation mechanisam[J]. Polymer, 2001,42:3301-3304.
    [204] Rong M. Z., Zhang M. Q., Zheng Y. X., et al., Structure-property relationship of irradiation grafted nano inorgnic particle filled polypropylene composites[J].Polymer,2001,42:167-183
    [205] Wu C. G., Liu Y. C., Sheng S., Assembly of conducting polymer/Metal oxide multilayer in one step[J]. Synthesis Metals, 1999,102:1268-1269.
    [206] Ye R Mamunya V. V., Davydenko,P Pissis, et al.Electrical and thermal conductive of polymers filled with metal powders [J]. Eur Polym J, 2002,38(9): 1887-1897.
    [207] Tavman I. H., Effective thermal conductivity of isotropic polymer composites[J]. Int Commu Heat Mass Transfer, 1998,25(5):723-732.
    [208] 丁峰.导热树脂基复合材料[J].复合材料学报,1993,10(3):19-23.
    [209] Sugimoto Toshi, Kawaguchi Sadahiko. Castable epoxy compositions and their cured products[P]. Jpn Kokai Tokkyo Koho:JP06 157 718.07, Jul, 1994.
    [210] Kalaprasasd G., Pradeep P., Thermal conductivity and thermal diffusivity analyses of low-density polyethylene composites reinforced with sisal,glass and intimately mixed with sisal/glass fibers[J]. Composites Science and Technology,2000,89(2):2967-2977.
    [211] Murata M. Electrically conductive plastics[P].Jpn Kokai TokkyoKoho:JP05 25 253. 02, Feb,1993.
    [211] Sugimoto Toshi, Kawaguchi Sadahiko. Epoxy resin composite with toughness and impact resistance [P].Jpn Kokai Tokkyo Koho:JP05 112 629.07,May, 1993.
    [212] Murata Tasaya. Thermally conductive elastomer containing Alumna platelets [P].Jpn Kokai Tokkyo Koho:JP05 17 618.26,Jan,1993.
    [213] 井新利,李立匣.石墨.环氧树脂导热复合材料的研究[J].西安交通大学学报,2000,34(10):107-110.
    [214] 钱欣,濮阳楠,金扬福.酚醛树脂/石墨导热塑料性能研究[J].工程塑料应用.1997,25(3):10-13.
    [215] 张舜喜.低压注塑[J].金陵石油化工,1998(1):25-27.
    [216] Chert Y. M., Ting J.M., Cross substructural method for modal synthesis[J]. Carbon.2002, 40:359-362.
    [217] Yoshida Yasuo. Graphite-plastic composite [P]. Jpn Kokai Tokkyo Koho:JP 03 181 532.07, Aug, 1991.
    [218] Angura Satoru. Heat conductive phenolic resins containing fired kaolin, [P]. Jpn Kokai Tokkyo Koho:JP 07 11 103.13, Jan, 1995.
    [219] Heiser Jessica A, King Julia A, Konell Jeremiah P, et al.Tensile and impact properties of carbon filled Nylon-66 based resins [J]. J Appl Polym Sci, 2004, 91 (5): 2881-2893.
    [220] James K Gaier, Yvonne Yoder Vandenberg, Steven Berkebiu. Durability of intercalated graphite epoxy composites in low Earth orbit [J]. J Carbon, 2003, 41:2187-2193.
    [221] Kondo Toshi. Heat conduction in heterogeneous materials and irregular boundaries A computer graphics based algorithm for calculating effective thermal parameters [P]. Jpn Kokai Tokkyo Koho:JP 03 79 666.04, Apr, 1991.
    [222] Kang S. K. Purushothaman.S. Development of conducting adhesive materials for microelectronic applications[J]. Journal of Electronic Materials, 1999, 28(11): 1314-1318.
    [223] Bolger, Justin C. Prediction and measurement of thermal conductivity of diamond filled adhesives [C]. IEEE, 1992, San Diego, CA, USA.
    [224] Hahn Ortwin,, Meschut G., Thermal conductive, strength and ageing behavior of adhesive bonded joints with filler modified adhesive[J]. Welding & Cutting, 1998, 50(7): 130-133.
    [225] Hahn R, Hoehne J, et al. Low thermal resistivity adhesive bnding of ceramic substrates to high performance coolers for the fabrication of power MCM's[J]. Int. J. Microelec. Pack. Mat. Techn. 1998, 1 (3): 197-208.
    [226] Subramanian S, Kustas F, Rawal S, et al. Fabrication testing and analysis of carbon varbon/aluminum bonded joints with high thermal conductivity[C]. AIAA, 1998, Long Beach, CA, USA.
    [227] Nguyen, My N. Edwards, Carl S. et al. Ultra low moisture polymer adhesive for microelectronic packing[C]. IEEE, 1998, Anaheim, CA, USA.
    [228] Bromen Jim. Thermal conductivity of polypyromellitimide film with alumina filler particles from 4.2 to 300 K[C]. SAMPE, 2000, Long Beach, CA, USA.
    [229] 李素,贾兰琴.TM型导热胶粘剂的研制[J].中国胶粘剂,1996,5(2):39-40.
    [230] 林关涛.导热胶粘剂的研究[J].上海代工.1991(4):15-16.
    [231] 储九荣,张晓辉,徐传骧.偶联剂对正温度系数高分子材料性能的影响[J].高分子材料科学与工程,2002,16(4):17-20.
    [232] Sheer M. L., Potted Electrical Devices with Thermally Conduc-tive Surface [P]. EurPat Appl:EP 375851, 1990.
    [233] Vinod V, Varghese S, Kuriakose B, et al. Aluminium powder filled nitrile rubber composites: Effect of bondinig agents[J]. KGK Kautschuk Gurnmi Kunststoffe, 2004, 57(12): 641-644.
    [234] Nakano A. Heat conductive silicone rubber of compositions with good fire resistance[P].JPN :JP 05 140 456,1993-06-08.
    [235] Nasr G, Badawy M, Gwaily S, et al. Thermophysical properties of butyl rubber loaded with different types of carbon black[J]. Polym Degr and Stab, 1995,48 (2):237-241.
    [236] Gwaily S, Hassen H, Badawy M, et al. Natural rubber composites as thermal neutron radiation shields: Ⅱ. H3BO3/NR composites[J]. Polymer testing 2002,21 (5):513-517.
    [237] Hatanaka T, Oshige J, Okazaki N. Heat-conductive rubber composition[p].JPN: JP 2002-003 670,2002-01-09.
    [238] Fujii M., Rubber compositions containing elastic graphite[P].JPN :JP02 292 344,1990-12-03.
    [239] Block J., Thermally conductive elastomer containing alumina platelets[P].USA:USP 5 137 959,1992-08-11.
    [240] Kio R. Rubber-carbon fiber compositions with anisotropic heat conductivity[P].JPN:JP04 173 235,1992-06-19.
    [241] Gwaily S, Nasr G. Thermal properties of ceramic-loaded conductive butyl rubber composites[J]. Polymer degradation and stability, 1995,47(3):391-395.
    [242] Ansu I. Silicone rubber compositions with fire resistance and thermal conductive[P].JPN:JP06 289 352,1994-10-18.
    [243] Inoe K. Oriented particles-containing rubber sheets[P].JPN:JP06 200 079,1994-07-19.
    [244] James R G, Yvonne Y V, Steven B. The electrical and thermal conductivity of woven pristine and intercalated graphite fiber-polymer composites[J]. Carbon, 2003,41.:2187-2193.
    [245] Ervin Vincent J., Klett James W., Mundt Chad M., Estimation of the thermal conductivity of composites[J]. Journal.of Materials Science, 1999, 34(14):3545-3553.
    [246] Katsube N., Hiroyasu T., Estimation of effective thermal conductivity for two-phase composite materials[D]. American Society of Mechanical Engineers, 1993, 160, 65-72.
    [247] Nan C. W., Birringer R., Effective thermal conductivity of particulate composites with interfacial thermal resistance [J]. Journal of Applied Physics, 1997, 81 (10):6692-6699.
    [248] Olson James R., Thermal conductivity of fibrous insulating materials[J]. American Ceramic Society Bulletin, 1997, 76(3): 81-84.
    [249] Raghavan V. R., Martin H., Modelling of two-phase thermal conductivity[J]. Chemical Engineering and Processing, 1995,34(5):439-446.
    [250] Martin R., Synergistic combinations of thermally conductive fillers in polymer matrices[C]. Proceedings of the NEPCON WEST'96. Feb 25-29 1996, Anaheim, CA, USA.
    [251] Okamoto S., Ishida H., New theoretical equation for thermal conductivity of two-phase systems[J]. JAppl Polym Sci, 1999, 72(13): 1689-1697.
    [252] Carson J. K., Lovatt S. J., Tanner D. J., et al., Predicting the effective conductivity of unfrozen, porous foods[]. Journal of Food Engineering, 2006,75(3):297~307.
    [253] Kohout M., Collier A. R, Stepanek F., Effective thermal conductivity of wet particle assemblies[J]. International Journal of Heat and Mass Transfer, 2004,47(25):5565-5574.
    [254] Chen C. H., Wang Y. C., Effective thermal conductivity of misoriented short-fiber reinforced thermoplastics[J], Mechanics of Materials, 1996,23(3):217-228.
    [255] Carson J. K., Lovatt S. J., Tanner D. J., et al., Thermal conductivity bounds for isotropic, porous materials[J], International Journal of Heat and Mass Transfer, 2005,48(11):2150~2158
    [256] Agari Y, Uno T. Estimation on thermal conductivities of filled polymer[J]. J Appl Polym Sci, 1986,32(5):705-709.
    [257] Plast O H. Thermal conductive of composite materials[J]. Rubber Process, 1981 (1):9-11.
    [258] Every A. G., Tzou Y., Hassehnan D. P. H., The effect ofparticle size on the thermal conductivity of ZnS/diamond composites[J]. Acta Metall Mater, 1992,40(4): 123~125.
    [259] Tsao G. T-N. Thermal conductivity of two-phase materials[J]. Ind. Engng. Chem,. 1961,53(2):395-398.
    [260] Cheng S C, Vachon R I. Thermal conductivity of two and three-phase soild hererogeneous mixtures[J]. Int. J. Heat Mass Transfer, 1969,12(4):249-251.
    [261] Russsell H W. Heat flow in insulators[J]. J Am Cerem Soc,1935,18:1~3.
    [262] Lewis T, Nielsen L. Dynamic mechanic properties of particulate-filled composites[J]. J Appl Polym Sci, 1970,14:1449-1451.
    [263] Tavman I H, Akmet H. Transverse thermal conductivity of fiber reinforce polymer composites[J], Int. Comm. Heat Mass Transfer,2000,27(2):253-261.
    [264] Hatta H, Taya M, Kuiacki F A. Thermal diffusivities of composites with various types of fiber[J]. J Compos Mater, 1992,26(6):621-625.
    [265] Agari Y, Tanaka M, Nagai S, Uno T. Thermal conductivity of a polymer composite filled with mixtures of particles[J]. J Appl Polym Sci,1987,34:1429-1433.
    [266] Privalko V P. Model treatments of the heat conductivity of isotropic polymer composites[J]. Advances in Polymer Science, 1995,119:33-74.
    [267] Yavman I H. Thermal and mechanical properties of aluminum power-filled high-density polyethylene composites[J]. J Appl Polym Sci, 1996,62(2): 161-164.
    [268] Sundstorm D W, Lee Y D. Thermal conductivity of polymers filled with particulate solids[J]. J Appl Polym Sci, 1972,16:3159-1362.
    [269] Lin F, Bhatia G. S., Ford J. D., Thermal conductivities of power-filled epoxy resins[J]. J Appl Polym Sci,1993,49:1901-1905.
    [270] Zhou H., Zhang S. M., Yang M. S., The effect of heat-transfer passages on the effective thermal conductivity of high filler loading composite materials[J]. Composites Science and Technology, 2006, doi:10.1016/j.compscitech.2006.06.004.
    [271] 王亮亮,陶国良.导热聚四氟乙烯复合材料研究[J].中国塑料,2004,18(4):26-28.
    [272] Xue Q. Z., Model for thermal conductivity of carbon nanotube-based composites[J]. Physica B, 2005, 368(1-4):302-307.
    [273] Kurabayashi K., Asheghi M., Touzelbaev M. N., Thermal characterization of anisotropic polymer films for electronic systems[C]. Proceedings of the 1998 ASME International Mechanical Engineering Congress and Exposition, Nov 15-20 1998, Anaheim, CA, USA, ASME.
    [274] Kurabayashi K., Touzelbaev M. N., Asheghi M., Measurement of the anisotropic thermal conductivity in polymer[C]. Proceedings of the 1998 7th AIAA/ASME Joint Thermophysics andHeat Transfer Conference. Jun 14-18 1998, Albuquerque, NM, USA, ASME.
    [276] Miller M. G., Keith J. M., King J., Measuring thermal conductivities of anisotropic synthetic graphite-liquid crystal polymer composites[J]. Polymer Composites, 2006, 27(4): 388-394
    [277] Zhu D. S., Wang L. J., Tan Y. K., Investigation on enhancement thermal conductivity of adsorbent by using polymerization[J]. J Chem Ind Eng, 1999, 50(2):235-241.
    [278] Roberts J. C., Luesse M. H., Magee T. C., Technique for locally increasing surface heat spreading and through-thickness thermal conductivity of graphite/epoxy laminates[J]. Journal of Composite Materials, 1996, 30(2):231-247.
    [279] Yilbas B. S., Akcakoyun A. K., Akcakoyun N., Measurement and prediction of heat transfer coefficient between the thermally conducting paint and material surface for CO_2 laser-cutting process[J]. Mechanical Incorporated Engineer, 1991, 3(2):27-29, 32-33.
    [280] Eihusen J. A., Alexander P. R., Characterization of the transverse thermal conductivity of intraply hybrid composite laminates[C]. Proceedings of the 1999 31st International SAMPE Technical Conference: Oct 26-Oct 30 1999, Chicago, IL, USA.
    [281] Brostow W., D'Souza N.A., Gopalanarayanan B., Thermal conductivity of thermoplastic polyimide molecular composites[C]. Proceedings of the 1997 55th Annual Technical Conference, ANTEC, Apr 27-May 2 1997, Toronto, Can.
    [282] Taylor R. E., Thermal conductivity determinations of thermal barrier coatings[C]. Proceedings of the 1997 Thermal Barrier Coating Workshop, May 19-21 1997, Cincinnati, OH, USA.
    [283] Nemzer Vladilen G., emzer, Leonid V., ugach, Valeriy V., Thermal conductivity of poly(ethylsiloxane) liquids at high pressures[J]. Journal of Chemical and Engineering Data, 996, 41(4): 848-851.
    [284] Morgan, V. T., The thermal conductivity of crosslinked polyethylene insulation in aerial bundled cables[J]. IEEE Transactions on Electrical Insulation, 1991, 26(6):1153-1158.
    [285] Aduda, B.O., Effective thermal conductivity of loose paniculate systems[J]. Journal of Materials Science, 1996, 31(24): 6441-6448.
    [286] Jagota, A ., Hui, C.Y., Effective thermal conductivity of a packing of spheres[J]. Journal of Applied Mechanics, Transactions ASME, 1990, 57(3):789-791.
    [287] Song L., Evans James W., Measurements of the thermal conductivity of lithium polymer battery composite cathodes[J]. J Electro Soc, 1999, 1146(3): 869-871.
    [288] Zhang X.., Fujii M., Measurement of the thermal conductivity and thermal diffusivity of polymers[J]. Polymer Eng Sci, 200343(11): 1755-1764.
    [289] Dong H., Fan L. H., Wong C. P., Effect of interface on thermal conductivity of polymer composite[C]. 55" electronic components and technology conference, May 31-Jun 4, 2005,FL, USA, IEEE.
    [290] Han S. H., Effect of inorganic filler on thermal conductivity of PMMA composites[C]. 54~(th) SPS symposium on macromolecules, Sep. 20-22 2005, Yamagata, Japan.
    [291] Camirand C. P., Measurement of thermal conductivity by differential scanning calorimetry[J].Thermochimica Acta, 2004,417(1):1-4.
    [292] Merzlyakov M., Schick C, Thermal conductivity from dynamic response of DSC[J].Thermocjimica Acta, 2001,377(1-2): 183-191.
    [293] Fischer H., Quantitative determination of heat conductivities by scanning thermal microscopy[J]. Thermochimica acta, 2005,425(l-2):69-74.
    [294] Kurabayashi K., Asheghi M., Touzelbaev M., Measurement of the thermal conductivity anisotropy in polyimide films[J]. Journal of Microelectromechanical Systems, 1999,8(2):180-191.
    [295] Abdel-Aziz A. A., Abdel-Salam M. M., El-Shazly K. M., Measurement of effective thermal conductivity of insulating material using a transient technique[J]. Journal of Engineering and Applied Science, 1997,44(6):1135-1153.
    [296] Ma X. S., Chen J. J., Characteristic prediction of high efficient thermal conductivity of filled polymer composites[J]. Journal of Vibration, Measurement and Diagnosis,2004,24(sup.):22~26
    [297] Phelan P. E., Niemann R. C, Effective thermal conductivity of a thin , random oriented composite material[J]. J Heat Transfer, Transactions ASME, 1998,120(4):971~976.
    [298] De Jesus M. E. P., Imhof R. E., Thermal diffusivity measurement of thermally conducting films on insulating substrates[J]. Applied Physics A, 1995, 60(6): 613-617.
    
    [299] Xu Y. B., Yagi K., Automatic FEM model generation for evaluating thermal conductivity of composite with random materials arrangement[J]. Computational Materials Science,2004,30(6):242~250.
    [300] Wetherhold R. C., Wang J. Z., Difficulties in the theories for predicting transverse thermal conductivity of continuous fiber composites[J]. Journal of Composite Materials, 1994, 28(15): 1491-1498.
    [301] 李腾,刘静.芯片冷却技术中的微/纳米材料与结构的研究进展[J].微纳电子技术,2004(8):23-27.
    [302] 任红艳,胡金刚.接触热阻与接触导热填料[J].宇航材料与工艺,1999(6):11-15.
    [303] Gwinn J. P., Webb R. L., Performance and testing of thermal interface materials[J]. Microelectronics Journal, 2003, 34:215-222.
    [304] Viswannath R., Nair R., Wakharkar V., The real performance challenges from silicon to systems[J]. Intel Technology Journal, 2000(3): 1-16.
    [305] 王健石.国内外导热衬垫综述[J].电子工艺技术,1993(3):32-35.
    [306] 冯圣玉,张洁.有机硅高分子及其应用[M].北京:化学工业出版社,2004.
    [307] 李郁忠.橡胶材料与模塑工艺[M].西安:西北工业大学出版社,1988.
    [308] 李胜方.导热硅橡胶的性能与应用[J].化工新型材料,2002,30(12):11-13
    [309] 郑水林,粉体表面改性[M].北京:中国建材工业出版社,2003
    [310] 高濂,孙静,刘阳桥.纳米粉体的分散及表面改性[M].北京:化学工业出版社,2003.
    [311] 马祥元,彭金辉,张利波.氮化铝粉体制备方法的研究进展[J].材料导报,2005,19(11):314-317.
    [312] 林健凉.AIN陶瓷粉末制备方法特点和进展[J].功能材料,2001,32(6):576-579.
    [313] 周和平,刘耀诚,吴音.氮化铝陶瓷的研究与应用[J].硅酸盐学报,1998,26(4):517-522-.
    [314] 李凝芳,周毅.氮化铝粉末的合成与高热导率AlN基片的研制[J].材料导报,1994(2):38-43
    [315] 匡加才,张长瑞.AlN陶瓷热导率影响因素的研究[J].材料导报,2003,17(4):28-31.
    [316] Prasher R. S., Koning R, Shipley J., et al., Effect of particle volume fraction on the thermal conductivity and mechanical rigidity of particle-laden polymeric thermal interface material[C]. 2001 ASME International Mechanical Engineering Congress and Exposition, Nov. 11-16, 2001, NY, US, ASME.
    [317] Maiti S. N., Mahapatro P. K., Thermal properties of nickel powder filled polypropylene composites[J]. Polymer Composites, 1990,11 (4): 223-228.
    [318] 阎军锋,王雪文,张志勇.关于晶体材料表面导热性质的研究[J].西北大学学报(自然科学版),2005,35(5):552-544.
    [319] Chen X. B., Conductive characterization of composites filled by conducting polymer particles[J]. Acta Materiae Compositae Sinica, 1996, 13(4): 1-7.
    [320] Srivastava S., Singh R. P., Thermal behaviour of high performance conducting composites[J]. Journal of Materials Science Letters, 1997, 16(4):276-277.
    [321] Agari Y., Thermal conductivity of polymer filled with carbon materials: Effect of conductive particle chains on thermal conductivity[J]. J Appl Polym Sci, 1995, 30(5) 2225-2235.
    [322] Boudenne A., Ibos L., Thermophysical properties of polypropylene/aluminum composites[J]. Journal of Polymer Science Part B: Polymer Physics, 2004, 42(4): 722-732.
    [323] 王清正.硅氮聚合物交联剂交联的室温硫化硅橡胶的热稳定性[J].高分子学报,1994(5):573-577.
    [324] 林修勇.硅橡胶在电气绝缘方面的应用进展[J].特种橡胶制品,2003.24(5):7-9
    [325] Volodin V. P., Zakharov S. K., Kenunen I. g., Analysis of stress-strain curves of filled polymer composites[J]. Mekhanika Kompozitnykh Materialov, 1992(4): 446-452.
    [326] Tekce H. S., Kumlutas D., Tavman I. H., Effect of particle shape on thermal conductivity of Copper reinforced polymer composites[J]. Journal of Reinforced Plastics and Composites, 2007, 26(1): 113-121.
    [327] Yung K. C., Wu J., Size effect of AIN on the performance of printed circuit board (PCB) material-brominated epoxy resin[J]. J Composites Materials, 2006, 40 (7): 567-581
    [328] Cumberland D. J., Crawford R. J., Handbook of Powder Technology[M]. Amsterdam: Elsevier Science Punlishers, Vol. 6, Chap. 4, 1987.
    [329] 刘安中,谢新平.分形理论在材料科学方面的研究进展与应用[J].安徽建筑工业学院学报,2005,13(3):1-3.
    [330] 于广庶,王富耻,成志方.Al/Ni-YPSZ复合材料涂层力学性能及分形维数关系[J].新技术新工艺,2002(5):29-31
    [331] 王晓平,吴白勤.多重分形谱及其在材料中的应用[J].物理,1999,28(6):342-347.
    [332] WC、ZrO_2、CrO、Al_2O_3陶瓷颗粒/镍合金复合涂层微观组织结构的分形[J].复合材料学报,2005,22(3)85-91.
    [333] 孙前芳,李玲.分形在纳米材料科学中的应用及发展趋势[J].材料导报,2005,19(10):4-7.
    [334] 唐明,潘吉.水泥基粉体颗粒群分形几何密集效应模型[J].沈阳建筑大学学报(自然科学版),2005,21(5):515-518.
    [335] 戈明亮.分形理论在高聚物科学中的应用[J].合成材料与老化,2005,34(1):30-32.
    [336] 杨华明 张华介空材料分形表征的研究进展[J].功能材料,2005,36(4):495-498.
    [337] 袁莉,马晓燕.分形理论在聚合物中的应用进展[J].材料导报,200317(F09):151-153.
    [338] 赵振国.吸附法研究固体表面的分形性质[J].大学化学,2005,20(4)22-28.
    [339] 王补宣,周乐平,彭晓峰.纳米颗粒悬浮液有效导热系数的分形模型[J].自然科学进展 2003,13(9):838~842.
    [340] 赵兰,萍徐烈.固体界面间接触导热的分形模型[J].同济大学学报,2003,31(3):296~299.
    [341] Kochetkov V. A., Thermal conductivity of unidirectionally reinforced hybrid composites[J]. Mechanics of Composite Materials, 1991, 26(5): 593-597.
    [342] Lee G. W., Parka M., Kim J. Y., Enhanced thermal conductivity of polymer composites filled with hybrid filler[J]. Composites, Part A, 2006, 37:727-734.
    [343] Liang G. Z., Hu X. L., Lu T. L., Inorganic whiskers reinforced bismaleimide composites-Part Ⅱ-The tribological behavior of BMI/potassium[J]. J Materials Science, 2005, 40 (7): 1743-1748.
    [344] He D., Ekere N. N., Effect of particle size ratio on the conducting percolation threshold of granular conductive-insulating composites[J]. J Physics D- Appl Physics, 2004, 37 (13): 1848-1852.
    [345] Arakawa M., Sukata K., Shimada M., Organic-inorganic hybrid materials. Ⅱ. Preparation and properties of higher silica containing polycarbonate-silica hybrid materials[J]. J Appl Polyrn Sci, 2006, 100(6): 4273-4279
    [346] 徐国财,张立德.纳米复合材料[M].北京:化学工业出版社,2002.
    [347] 刘岚,罗远芳,贾德民.橡胶纳米复合材料制备与性能[J].特种橡胶制品,2002,23(3):8-11
    [348] 张彦奇,华幼卿.LLDPE/纳米SiO2复合材料的力学性能和光学性能研究[J].高分子学报,2003(5):683-687.
    [349] 吴唯,徐种德.纳米刚性微粒同时增强增韧聚丙烯的研究[J].高分子学报,2000(1):99-104
    [350] 张立德.纳米材料[M].北京:化学工业出版社,2001.
    [351] 张立德,牟季美.纳米材料与纳米结构[M].北京:科学出版社,2001.
    [352] 马家举,徐国财.聚合物纳米复合材料的制备方法[J].现代化工,2001,21(1):15-17.
    [353] 李凤生,杨毅.微米/纳米复合技术及应用[M].北京:国防工业出版社,2002.
    [354] 陆厚根.粉体技术导论[M].上海:同济大学出版社,1997.
    [355] 李凤生.超细粉体技术[M].北京:国防工业出版社,2000.
    [356] Mathis N., Pytel J., Lee-Sullivan E, Resin cure monitoring using thermal conductivity measurements[C]. Proceedings of the 1997 55th Annual Technical Conference, ANTEC. Part 1 (of 3), Apr 27-May 2 1997, Toronto, Can..
    [357] 张利萍.电器外绝缘用硅橡胶的研制和应用[J],电器工业材料专辑,2002(12):14-16.
    [358] 林修勇.氢氧化铝对电器绝缘材料用硅橡胶性能的影响[J],特种橡胶制品,2003,24(5):9-17.
    [359] Furgel I. A., Molin O. V., Borshch V.E., Thermal conductivity of polymer composites with a dispersed filler[J]. Inzhenerno-Fizicheskii Zhurnal, 1992, 62(3):453-459.
    [360] Agari Y., Ueda A., Omura Y., Thermal diffusivity and conductivity of PMMA/PC blends[J]. Polymer, 1997, 38(4):801-807.
    [361] Kim J. K., Kim M. I., Song M. S.,Thermal conductivity and adhesion properties of thermally conductive pressure-sensitive adhesives[J]. Macromolecular Research, 2006, 14 (5): 517-523.
    [362] 赵玉庭,姚希曾.复合材料基体与界面[M].上海:华东化工学院出版社.1995.
    [363] 郭广生,戴恒,薛春余.无机粉体表面处理技术及应用[J].化工新型材料,1997,25(11):21-23.
    [364] 刘建科.分形介质中导热问题中的声子的作用[J].陕西科技大学学报,2003,21(5):49-52.
    [365] King Julia A., Tucker Kenneth W., Vogt Bryan D., Electrically and thermally conductive nylon 6,6[J]. Polymer Composites, 1999, 20(5):643-654.
    [366] Lu X., Xu G., Thermally conductive polymer composites for electronic packaging[J]. J Appl Polym Sci, 1997,65(13): 2733-2738
    [367] 何燕,马连湘,黄素逸.轮胎橡胶材料热导率的测定及分析[J].橡胶工业,2004,51(6):366-368
    [368] 孙明亭.以沉淀法白炭黑作补强填料的硅橡胶混炼胶制备工艺及性能[J].有机硅材料及应用,1996(4):9-13
    [369] 董鸿第,李飒.用新型白炭黑提高硅橡胶的性能[J].合成橡胶工业,1996,19(5):295-296.
    [370] 郑俊萍,苏正涛.白炭黑对硅橡胶耐热性能的影响[J].橡胶工业,1997,44(8):468-471
    [371] Thomas J. R., Hasselman D. P. H., Effective thermal conductivity of continuous matrix-spherical dispersed phase composite with single-point interfacial thermal contact: Continuum regime gas conduction in the gap[J]. J Composites Materials,2006, 40 (11): 1023-1035.
    [372] Liu Y, Wang Y. F., Gerasimov T. G., Thermal analysis of novel underfill materials with optimum processing characteristics[J]. JAppl Polym Sci,2005, 98 (3): 1300-1307.
    [373] Baudot A., Mazuer J., Odin J., Thermal conductivity of a RTV silicone elastomer between 1.2 and 300K[J]. Cryogenics, 1998,38(2):227-230.
    [374] Geiger A. L., Hasselman D. P. H., Welch P., Electrical and thermal conductivity of discontinuously reinforced aluminum composites at sub-ambient temperature[J]. Acta Mater,1997,45(9):3911-3914.
    [375] Dashora P., Gupta G., On the temperature dependence of the thermal conductivity of linear amorphous polymers[J]. Polymer, 1996, 37(2):231-234.
    [376] Lunn B. A., Unsworth J., Booth N. G., Determination of the thermal conductivity of polypyrrole over the temperature range 280-335 K[C]. J Mater Sci, 1993, 28(18): 5092-5098.
    [377] Liu Y. W., Oshima K. J., Yamauchi T. S., Temperature-conductivity characteristics of the composites consisting of fractionated poly(3-hexylthiophene) and conducting particles[J]. J Appl Polym Sci, 2000, 77(14):3069-3076.
    [378] Kalaprasad G. A., Pradeep P. B., Mathew G., Thermal conductivity and thermal diffusivity analyses of low-density polyethylene composites reinforced with sisal, glass and intimately mixed sisal/glass fibres[J]. Composites Science and Technology,2000,60:2967-2977.
    [379] Hartenstein R. R., Guidelines for optimum results with thermally conductive paste or liquid materials[J]. Sensors,2000, 17(12):44-45.
    [380] Kumlutas D., Tavmana I. H., Thermal conductivity of particle filled polyethylene composite materials[J]. Composites Science and Technology,2003,63:113-117.
    [381] Ganapathy D., Singh K., Phelan P. E., An effective unit cell approach to compute the thermal conductivity of composites with cylindrical particles[J]. Journal of Heat Transfer-Transaction of the ASME, 2005, 127 (6): 553-559.
    [382] Okamoto S., Ishida H., A new theoretical equation for thermal conductivity of two-phase systems[J]. J Appl Polym Sci, 1999,72(3): 1689-1697.
    [383] 张强,陈国钦,江龙涛.两种粒径颗粒混合增强铝基复合材料的导热性能[J].复合材料学报,2005,22(1):47-51.
    [384] 张海峰.预测复合材料导热系数的热阻网络法[J].功能材料,2005,36(5):757-759.
    [385] 程新广,夏再忠,李志信.导热优化:热耗散与最优化导热系数场[J].工程热物理学报,2002,23(6):715-717.
    [386] Osman A. F., Mariatti M., Properties of aluminum filled polypropylene composites [J]. Polymer & Polymer Composites,2006, 14 (6): 623-633.
    [387] 桂祝桐,谢建玲.聚乙烯树脂及其应用[M].北京:化学工业出版社,2002.
    [388] Yue M., El-Rafey E., Wood A. K., Thermo-physical characterization of polyethylene[C]. Proceedings of the 3rd Arab International Conference on Materials Science "Degradation and Stabilization of Materials", Sep. 26-30 1992, Alexandria, Egypt.
    [389] 解孝林.硅烷交联超高分子量聚乙烯[J].高分子材料科学与工程,2003,19(4):208-211.
    [390] Chaboki A., Kneer M., Langlie S., Experimental and numerical results for thermophysical properties and thermal response of a fire-retardant polymer[C]. 28th National Heat Transfer Conference, Jul. 28-31 1991, Minneapolis, MN, USA.
    [391] Chung D D L, Materials for thermal conduction[J]. Applied thermal Engineering, 2001,21:1593-1605.
    [392] 孙坤,雍岐龙,裴和中.高导热电绝缘陶瓷的研究方向及应用前景[J].昆明理工大学学报,2002,27(6):22-27.
    [393] Procter P., Solc J., Improved thermal conductivity in microelectronic encapsulants[C].41st Electronics Components and Technology Conference - ECTC, Ma. 11-15 1991, Atlanta, GA, USA.
    [394] 沈烈,张稚燕,王家俊.填充型聚合物基复合材料的导电和导热性能[J].高分子材料科学与工程,2006,22(4):107-109.
    [395] 黄勇.氮化硅粉体的表面化学性质和水中的胶体特性[J].硅酸盐通报,2000(2):35-39
    [396] 武七德,王浩,王苹.表面包覆改性技术在陶瓷技术中的应用[J].现代技术陶瓷,2000,21(4):18-21.
    [397] 周文英,齐暑华.糠醛脱羰制呋喃催化剂研究[C].第久届全国化学工艺学年会:北京,2005.872-877
    [398] 周文英,齐暑华.氮化硼/聚乙烯复合导热塑料研究[J].台成树脂及塑料,2007,24(1):68-71.
    [399] 李凤生.特种超细粉体技术[M].北京:国防工业出版社,2002.
    [400] Honda H. Preparation of monolayer particle coated powder by the dry impact blending process utilizing mechanico-chemical treatment[J]. Colloids and Surfaces A." Physico-chemical and Engineering Aspects, 1994,82:117-128.
    [401] Aloson M. The effect of random positioning on the packing of particles adhering to the surface of a central particle[J]. Powder Technology, 1990,62:35-40.
    [402] Goyal R. K., Negi Y. S., Tiwari A. N., Preparation of high performance composites based on aluminum nitride/poly(ether-ether-ketone) and their properties[J]. European Polymer Journal, 2005, 41 (9): 2034-2044
    [403] Yu S. Z., Hing p, Dynamic mechanical properties of polystyrene-aluminum nitride composite[J]. JAppl Polym Sci, 2000, 78(7): 1348-135.
    [404] Agari Y., Shimada M., Ueda A., Thermal diffusivity and conductivity of PS/PPO blends[J]. Polymer, 1997, 38 (11):2649-2655.
    [405] Agari Y., Ueda A., Omura Y., Thermal diffusivity and conductivity of PMMA/PC blends[J]. Polymer, 1997,38(4):801-807.
    [406] Hsieh C. Y., Chung S. L .,High thermal conductivity epoxy molding compound filled with a combustion synthesized AIN powder[J]. JAppl Polym Sci, 2006, 102 (5): 4734-4740.
    [407] Hunt M., Electronics packaging[J]. Materials Engineering (Cleveland), 1991, 108(2):25-28.
    [408] Razzaq M. Y., Anhalt M., Frormann L, Thermal, electrical and magnetic studies of-magnetite filled polyurethane shape memory polymers[J]. Mater Sci Eng A, 2007,444:227-235.
    [409] Nahid M., Ali T. R., Karthikeyan K. R., Thedrmal conductivity of ammonia borane complex and its composites with aluminum powder[J]. Thermochimica Acta, 2006,452(6):28-30.
    [410] Lebovka N., Lisunova M., Mamunya Y. P., Scaling in percolation behaviour in conductive-insulating composites with particles of different size[J]. JPhysics D-Appl Physics,2006, 39 (10): 2264-2271.
    [411] Goyanes S. N., Beccar Varela M. P., Mariani M. C., Influence of carbon black dispersion on the thermal diffusivity of an SBR vulcanizate[J]. J Appl Polym Sci,1999,72(11): 1379-1385.
    [412] Heiser J. A., King J., Thermally conductive carbon filled nylon, 6,6[J]. Polymer Composites,2004,25(2): 186-193.
    [413] Lin F., Bhatia G. S., Ford J. D., Thermal conductivities of powder-filled epoxy resins[J]. J Appl Polym Sci, 1993,49(11): 1901-1908.
    [414] 吕维洁,谢佑卿,王志法.粉末粒度对低膨胀高导热高导电材料导电性能影响[J].材料科学与工艺,1997,5(4):74~77.
    [415] Agari Y., Tanaka M., Nagai S., Thermal conductivity of a polymer filled with particles in the wide range from low to super-high volume content[J]. J Appl Polym Sci, 1990,40(5-6): 929-941.
    [416] Ng H. Y., Lu X. H., Lau S. K., Thermal conductivity of boron nitride-filled thermoplastics: Effect of filler characteristics and composite processing conditions[J]. Polymer Composites,2005, 26 (6): 778-790.
    [417] Dong Q. Q., Zheng Q., Zhang M. Q., Studies on the morphology and the thermal properties of high-density polyethylene filled with graphite[J]. J Materials Science,2006, 41 (10): 3175-3178.
    [418] Ye C. M., Shen B. Q., Weng Z. X., Thermal conductivity of high density polyethylene filled with graphite[J]. J Appl Polym Sci,2006,101(6): 3806-3810.
    [419] Maiti S. N., Ghosh K., Thermal characteristics of silver powder-filled polypropylene composites[J]. JAppl Polym Sci, 1994,52(8): 1091-1103.
    [420] Ng H. Y., Lu X. H., Lau S. K., Thermal conductivity, electrical resistivity, mechanical, and rheological properties of thermoplastic composites filled with boron nitride and carbon fiber[J]. Polymer Composites,2005, 26 (1): 66-73.
    [421] Goyal R. K., Negi Y. S., Tiwari A. N.,High performance polymer composites on PEEK reinforced with aluminum oxide[J]. J Appl Polym Sci,2006, 100 (6): 4623-4631.
    [422] Tavman I.H., Thermal and mechanical properties of copper powder filled poly(ethylene) composites[J]. Powder Technology, 1997,91:63-67.
    [423] Teters G., Kregers A., Effective thermal properties of spatially reinforced composite materials[C]. Proceedings of the Second Baltic Heat Transfer Conference, Aug. 21-23 1995, Jurmala, Latvia.
    [424] Agari Y., Tanaka M., Nagai S., Electrical and thermal conductivities of polyethylene composites filled with biaxial oriented short-cut carbon fibers[J]. J Appl Polym Sci,1994,52(9): 1223-1231.
    [425] Gordaninejad F., Directional thermal conductivity enhancement of fiber reinforced composite materials[C]. Winter Annual Meeting of the American Society of Mechanical Engineers, Dec. 1-6 1991, Atlanta, GA, USA, ASME.
    [426] Kumlutas D, Tavman IH, A numerical and experimental study on thermal conductivity of particle filled polymer composites[J]. J Thermoplastic Comp Mater,2006, 19 (4): 441-455.
    [427] 景茂祥,沈湘黔.氧化铝纤维的研究现状与发展趋势[J].矿冶工程,2004,24(2):69-71.
    [428] Hill R.F., Suppancic P. H., Thermal conductivity of platelet-filled polymer composites[]. J Amer Ceramic Soc, 2002,85(4):851-857.
    [429] Gojny F. H., Wichmann M. H. G., Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotubes/epoxy composites[J]. Polymer, 2006, 47(6-8):2036-2045
    [430] Droval G., Feller J. F., Salagnac P., Thermal conductivity enhancement of electrically insulating syndiotactic poly(styrene) matrix for diphasic conductive polymer composites[J]. Polymers for Advanced Technologies, 2006,17 (9-10): 732-745.
    [431] Kato T., Nagahara T., Agari Y., High thermal conductivity of polymerizable liquid-crystal acrylic film having a twisted molecular orientation[J]. Journal of Polymer.Science Part B: Polymer Physics, 2006,44(10); 1419-1425.
    [432] King J. A., Tucker K. W., Vogt,B. D., Electrically and thermally conductive nylon 6,6[J]. Polymer Composites, 1999,20(5): 643-654.
    [433] 江平开,汪根林,朱子康.氢氧化铝高填充聚乙烯材料的界面和力学性能[J].合成树脂及塑料,2001,18(5):35-38.
    [444] 刘广建.超高分子量聚乙烯[M].北京:化学工业出版社,2001.
    [445] 明艳,贾润礼.超高分子量聚乙烯成型加工及改性[J].合成树脂及塑料,2002,19(4):68-72.
    [446] 黄丽,郑旖旎,吕亚非.不同混合方式对超高分子量聚乙烯复合材料中填料粒子分散性的影响[J].北京化工大学学报,2006,33(1):105-109.
    [447] Bahattin A., Teoman T., Radiation grafting of various water-soluble monomers on ultra-high molecular weight polyethylene powder[J]. Radiation Physics and Chemistry,2001,60:237-243.
    [448] Kwon O. H., Young C. N., Radiation-induced grafting of methylmethacrylate onto ultra-high molecular weight polyethylene and its adhesive characteristics[J]. Materials in Medicine,2000,11:593-600.
    [449] 王超英,黄承亚.纳米填料在超高分子量聚乙烯改性中的应用[J].合成材料老化与应用,2006,35(2):33-37.
    [450] 向东,崔小明.超高分子量聚乙烯改性研究进展[J].工程塑料应用,2005,33(11):74-78.
    [451] Kanako K., Yoshinori A., Masaki M., Radiation-grafting of acrylic acid onto ultra-high molecular high-strength polyethylene fibers[J]. J Appl Polym Sci,, 1993,47:1427-1438.
    [452] 郭建梅,曾心苗,陆永俊.超高分子量聚乙烯改性研究进展[J].塑料,2005,34(3):24-26.
    [453] 曹民干,陶梦山.粉煤灰玻璃微珠对UHMWPE性能的影响[J].塑料,2004,33(2):76-79.
    [454] 闫久林,马云海,佟金.铜粉增强UHMWPE基复合材料的拉伸和冲击性能研究[J].电子显微学报,200625(sup):146-147.
    [455] 张多默,李启厚,刘志宏.超高分子量聚乙烯热降解行为与冲击性能[J].高分子材料科学与工程,2000,16(2):144-147.
    [456] 解云川,张乾,范晓东.DSC法测定聚乙烯结晶度的研究[J].高分子材料科学与工程,2004,20(3):73-76.
    [457] 解云川,张乾,范晓东.热分级及退火控制聚乙烯结晶度的研究[J].中国塑料,2003,17(2):20-24.
    [458] Weidenfeller B., Hofer M., Schilling F. R., Thermal conductivity, thermal diffusivity, and specific heat capacity of particle filled polypropylene[J]. Composites. Part A, 2004,35: 423-429.