亚毒性微小剂量方法对卡铂耐药性的鉴定、预测及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     铂类药物广泛应用于临床抗多种类型肿瘤的化学治疗。其中,卡铂属于第二代铂类药物,以其低毒性且与顺铂具有几乎相同效能谱的优势,成为目前临床化疗中最为常用的抗肿瘤药物之一。以铂药为基础的联合化疗是非小细胞肺癌及膀胱移行细胞癌的标准疗法。然而,化学耐药性的存在使部分患者的病情难以从化疗中得到改善;同时,在化疗前对药物化学耐药性的鉴定未能达到医疗需要。DNA是铂药抗肿瘤作用的主要靶点,DNA损伤即Pt-DNA加合物形成,是肿瘤细胞对铂药化疗产生反应的关键环节。假设铂类药物诱导低水平DNA损伤可预测化学耐药性,即肿瘤细胞基因组DNA未形成或形成低水平的DNA损伤预示其对铂类药物具有潜在的治疗抵抗。加速质谱测定法(AMS)是检测碳-14超灵敏方法,当14C标记的卡铂诱导Pt-DNA单加合物形成时,带有14C的卡铂会与DNA共价结合。通过AMS检测基因组DNA上14C含量,可量化卡铂-DNA加合物水平。此外,检测某些相关参数,如药物摄取/排出、细胞内药物失活及DNA修复,可揭示化学耐药性的机制。超灵敏AMS可在患者或肿瘤细胞接受亚毒性微小剂量14C标记的卡铂时完成上述研究,以期建立亚毒性微小剂量方法对卡铂耐药的鉴定及预测。预测肿瘤对特定化疗方案的反应性实用性强,使个体化治疗达到最佳疗效,最小化毒副作用的危险率,避免有效治疗期的延误。本研究检测人肿瘤细胞系及肿瘤患者卡铂-DNA加合物形成及修复,以鉴定化学耐药性及探讨耐药性的潜在机制,为患者接受化学治疗前制定具有高度针对性的个体化治疗方案。
     方法及结果:
     本研究开展六种肺癌细胞系及五种膀胱癌细胞系的体外实验,采用AMS对放射性14C标记的卡铂亚毒性微小剂量与临床治疗剂量在不同时间点诱导的DNA单加合物水平及DNA修复水平进行检测,以及对二者相关性进行分析。结果显示,14C标记的卡铂微小剂量在放射性强度为50,000 dpm/ml、治疗剂量的1%用量时可诱导DNA损伤(治疗剂量卡铂的生理学靶标),且两个剂量下诱导的DNA单加合物形成水平呈高度相关(r2=0.95,p<0.0001肺癌与膀胱癌)。MTT法检测肿瘤细胞对卡铂的耐药水平,并通过计算半数抑制浓度IC50加以反映;同时,通过比较每种细胞DNA单加合物形成水平与IC50的相关性,揭示DNA损伤程度与肿瘤细胞对卡铂耐药之间的相互关系。结果显示,经卡铂微小剂量与临床治疗剂量分别诱导的DNA单加合物水平(r2=0.77,p=0.022微小剂量;r2=0.83,p=0.011治疗剂量)及AUC(r2=0.77,p=0.022微小剂量;r2=0.83,p=0.011治疗剂量)与六种NSCLC细胞系IC50值呈直线相关,提示微小剂量卡铂诱导的DNA单加合物水平可潜在性鉴定及预测卡铂耐药性。经两个剂量分别诱导的DNA单加合物修复率与五种膀胱癌细胞系IC50值呈直线相关(r2=0.80,p=0.04微小剂量;r2=0.82,p=0.03治疗剂量),提示DNA单加合物水平可潜在性鉴定膀胱癌细胞对卡铂耐药的部分机制。此外,采用电感耦合等离子体质谱测定法(ICP-MS),检测五种膀胱癌细胞系经治疗剂量卡铂诱导DNA加合物中的总铂含量及其修复率,结果显示,ICP-MS检测结果与AMS检测单加合物水平呈直线相关(r2=0.85,p<0.0001),提示卡铂诱导单加合物水平亦可替代DNA总加合物水平对膀胱癌卡铂耐药进行鉴定及预测。此外,采用实时定量PCR检测六种肺癌细胞系及五种膀胱癌细胞系中以铂药为基础的化疗效果指示剂ERCC1及RRM1 mRNA表达,结果表明,采用AMS检测微小剂量或治疗剂量诱导的Pt-DNA单加合物水平及其修复率明显优于ERCC1及RRM1 mRNA表达水平与卡铂耐药性之间的相关性。
     在分子水平探讨影响DNA损伤及铂药耐药的潜在机制。检测药物摄取/排出及细胞内药物失活深入探讨耐药机制。与铂药敏感细胞系H23比较,耐药细胞系A549的DNA损伤水平低、IC50高(p<0.001),液体闪烁计数法(LSC)检测两种细胞系具有相同的药物吸收水平,而H23细胞表现出较强的药物外排能力,说明此机制不是两种细胞系耐药差异的影响因素。此外,细胞内谷胱甘肽(GSH)水平参与铂药在A549细胞内的失活作用。结果显示,A549细胞总GSH水平较H23高(p<0.001),使用γ-谷氨酰半胱氨酸合成酶抑制剂BSO抑制GSH的生物合成,明显增强A549细胞对卡铂的敏感性,即IC50降低(p<0.01),单加合物水平升高(p<0.05)。研究中通过卡铂长期诱导获得膀胱癌5637耐药细胞,检测耐药细胞较亲代敏感细胞GSH水平增高(p<0.05)。
     探讨DNA修复机制是否参与铂药化学耐药性的形成。检测DNA修复方式核苷酸切除修复(NER)体系中的关键蛋白ERCC1。应用siRNA下调耐药细胞A549中该基因的表达,可明显升高DNA单加合物水平(p<0.01)及增强A549对卡铂的敏感性,即IC50降低(p<0.001)。此外,采用PCR阵列及Western blot检测5637亲代细胞及耐药细胞之间DNA修复基因的表达差异,耐药细胞MGMT mRNA及蛋白表达水平均明显升高(p<0.05)。提示多种潜在机制共同参与卡铂化学耐药性。
     为验证微小剂量方法在临床应用的可行性,本研究开展了在体实验。经小鼠及荷瘤裸鼠尾静脉注射微小剂量或治疗剂量卡铂(2或200mg/m2,其中14C标记的卡铂50,000dpm/g),LSC检测血液样本14C含量,以计算药代动力学参数;AMS检测PBMC与荷瘤组织DNA单加合物水平。结果显示,卡铂微小剂量与治疗剂量的药代动力学相同,二者DNA单加合物水平呈直线相关(r2=0.94,p<0.001),荷瘤组织DNA单加合物水平对卡铂耐药性的鉴定与体外实验结果一致,提示在体内亚毒性微小剂量卡铂亦是其治疗剂量理想的替代方式。基于上述结果,本研究首次开展了微小剂量临床0期试验。试验初期结果显示,四位肿瘤患者接受一亚毒性微小剂量卡铂(14C标记的卡铂为10×106dpm/kg,14C非标记的卡铂为临床治疗剂量1%用量),半衰期为1.5-2h,与治疗剂量一致。PBMC中代表卡铂-DNA单加合物水平的14C信号较AMS检测的本底辐射数值高10~100倍,达到AMS有效检测范围。此微小剂量对患者无毒性作用,同时14C射线照射量低于一次腹部CT的0.2%,适合应用于后续的临床试验。
     结论:
     1.亚毒性微小剂量与临床治疗剂量卡铂的药代动力学相同。
     2.亚毒性微小剂量卡铂可诱导体外培养的肿瘤细胞、体内移植物肿瘤,以及小鼠及患者PBMC基因组DNA损伤。
     3.微小剂量与治疗剂量卡铂分别诱导的肿瘤细胞、荷瘤组织中DNA单加合物水平呈直线相关,可潜在鉴定及预测治疗剂量下DNA的损伤程度。
     4.卡铂诱导低水平的单加合物和(或)高DNA修复率与卡铂耐药性(IC50值)呈正相关,可潜在鉴定及预测其化学耐药性。
     5.DNA单加合物水平与总铂含量(即总加合物水平)的变化趋势呈直线相关,可反映总加合物对DNA的损伤程度。
     6.药物代谢、细胞内药物失活及DNA修复途径可不同程度影响Pt-DNA单加合物形成水平,进而影响卡铂耐药性。
     ■
Objectives:
     Platinum (Pt)-based drugs are widely used in the treatment of a variety of cancers. Carboplatin, the second generation of Pt drug, is among the most commomly used anticancer chemotherapeutic drugs because of approximately the same spectrum of activity as cisplatin but reduced toxicity. Pt-based combination chemotherapy is the standard regimen for the treatment of non-small cell lung cancer (NSCLC) or bladder transitional cell carcinoma (TCC). However, most patients will not benefit from chemotherapy because of chemoresistance. The ability to characterize tumors for drug resistance prior to toxic chemotherapy is an unmet medical need. DNA is considered as the major target of Pt drugs. DNA damage or Pt-DNA adduct formation, is the critical step in cancer cell response to Pt chemotherapy. We hypothesize that low levels of Pt-induced DNA damage are predictive of chemoresistance, that is, cancer cells with no or low DNA damage will survive and be resistant to Pt chemotherapy. Accelerator mass spectrometry (AMS) is an ultrasensitive method for measuring carbon-14. When 14C-labeled carboplatin induces carboplatin-DNA monoadducts, carboplatin, together with 14C, is covalently linked to DNA. By measuring the amount of 14C on genomic DNA with AMS, we are able to determine the level of carboplatin-DNA adducts. Furthermore, some relevant parameters, such as drug uptake/ efflux, intracellular drug inactivation, and DNA repair, can also be measured that helps determine the mechanisms of chemoresistance. Because of the supersensitivity of AMS, all these studies can be performed after patients or cancer cells are treated with non-toxic midcrodose of 14C-labeled carboplatin. It is desirable to establish the microdosing approach to identify and predict the chemoresistance to Pt-based drugs. Predictive tests of how a tumor would react to a particular chemotherapeutic regimen would be extremely useful, since this would permit personalized chemotherapy to maximize the therapeutic effects while minimizing the risk of serious side effects and not delaying effective treatment of the disease. This proposal focuses on measurement of carboplatin-DNA adduct formation and repair in human cell lines and human cancer patients with the ultimate goal of identifying chemoresistance and determining the underlying chemoresistant mechanisms for designing of personalized therapy before patients receive toxic chemotherapy.
     Methods and results:
     Six NSCLC cell lines and five bladder TCC cell lines were studied in vitro. The levels of DNA monoadduct formation induced by subtoxic microdosing and therapeutic 14C-labeled carboplatin and its repair rate were detected by AMS at different time points, and the linear regression analysis was calculated. The data showed that microdosing 14C-labeled carboplatin at 50,000 dpm/ml and 1% of therapeutic dose could induce DNA damage, the physiological target of therapeutic carboplatin. The DNA damage induced by microdoses is linearly correlated to that of therapeutic carboplatin (r2=0.95,P<0.0001 for both lung and bladder cancer). Cellular resistance to carboplatin (IC50 value) was determined by the MTT assay. The data showed that DNA monoadduct levels at 4h time point (r2=0.77, p=0.022 for microdose; r2=0.83,p=0.011 for therapeutic dose) and AUC (r2=0.70,p=0.038 for microdose; r2=0.75,p=0.026 for therapeutic dose) induced by both microdosing and therapeutic carboplatin were linearly correlated to the IC50 values of NSCLC cell lines, suggesting the levels of DNA monoadduct induced by microdosing carboplatin can potentially identify and predict the cellular resistance to carboplatin. In addition, DNA repair rate induced by microdosing or therapeutic carboplatin was linearly correlated to the IC50 value of bladder cancer cell lines (r2=0.80, p=0.04 for microdose; r2=0.82, p=0.03 for therapeutic dose). The level of total Pt induced by therapeutic carboplatin and its repair rate in five bladder cancer cell lines were confirmed in parallel by inductively coupled plasma mass spectrometry (ICP-MS) at different time points. The data showed that the kinetics of total Pt level is consistent to that of DNA monoadduct level measured by AMS (r2=0.85,p<0.0001), suggesting the DNA monoadduct level can substitute total adduct level to potentially identify and predict cellular resistance to carboplatin in bladder cancer cell lines. Quantitative real time PCR was performed to determine the mRNA expression levels of ERCC1 and RRM1 in six lung cancer cell lines and five bladder cancer cell lines. These two genes have been used to predict resistance to chemotherapy in NSCLC patients. The carboplatin-DNA monoadduct levels induced by both microdosing and therapeutic carboplatin treatment were superior in predicting chemoresistance, when compared to the ERCC1 and RRM1 expression levels in these 11 cell lines.
     Other major steps, like drug metabolism, cell uptake and efflux, and repair of DNA damage, can affect DNA damage and, therefore, cellular sensitivity to Pt chemotherapy. Measuring drug uptake/efflux and intracellular inactivation allows insights into resistance
     chanisms. Pt-resistant A549 cells had lower DNA damage and higher IC50 when compared to sensitive H23 cells (p<0.001). The uptake/efflux did not contribute significantly to the resistance differences between these two specific cell lines. Intracellular glutathione (GSH) is involved in intracellular inactivation of Pt in A549. Depletion of GSH with buthionine sulphoximine (BSO) increased the carboplatin-DNA monoadduct levels (p<0.05) and sensitized A549 to carboplatin (p<0.01). We also developed a Pt-resistant 5637 sub-cell line by culturing 5637 cells with carboplatin for a long term. Compared with the parental chemosensitive cells, total GSH level increased in the 5637 resistant cells (p<0.05).
     To determine if DNA repair is involved in chemoresistance, we used siRNA to knock down the expression of ERCC1 in the chemoresistant A549 cells. ERCC1 is one of the key proteins in the multi-subunit nucleotide excision repair complex. Downregulation of ERCC1 expression increased the DNA monoadduct levels (p<0.01), and sensitized A549 cells to carboplatin (p<0.001). Compared with chemosensitive 5637 parental cells, the levels of MGMT mRNA and protein expression increased in 5637 resistant cells by PCR array and Western blot (p<0.05), indicating that multiple underlying mechanisms contribute to the chemoresistance.
     We also performed in vivo studies to determine if the microdosing approach could be translated into clinical applications. We titrated and determined the dose of 14C-labeled carboplatin needed for the in vivo studies in mice. Balb/c mice and nude mice carrying tumor xenografts were treated, through intravenous injection, with one microdose (2 mg/m2) or one therapeutic dose (200 mg/m2) of carboplatin, each containing 50,000 dpm per gram of body weight of 14C-labeled carboplatin. Blood samples were taken up after 14C-labeled carboplatin injection. Liquid scintillation counter (LSC) was used to determine the drug metabolism (pharmacokinetics) of 14C-carboplatin in plasma. Peripheral blood mononuclear cells (PBMC) were isolated for DNA extraction. Tumor xenografts were excised. The kinetics of Pt-DNA monoadduct formation in PBMC and tumor xenografts treated with microdosing or therapeutic carboplatin was linear (r2=0.94, p<0.001), with the essentially identical pharmacokinetics. This suggests that the levels of DNA monoadducts induced by microdose can potentially predict the levels of monoadducts induced by therapeutic carboplatin, and microdoses are reasonable surrogates for therapeutic doses. Based on the above results, we have opened a Phase 0 microdosing trial in clinical cancer patients. In this clinical trial, four patients received one subtoxic microdose of 14C-labeled carboplatin at 10×106 dpm/kg and the total unlabeled carboplatin of 1% the therapeutic dose. The half lives of microdosing carboplatin were 1.5 to 2 hours, identical to that of therapeutic dose. The 14C signals in PBMC, representing carboplatin-DNA monoadduct levels, were 10~100 times the background levels, the desired level for AMS analysis. This data suggests that this dose of 14C-carboplatin (10×106 dpm/kg) and total carboplatin dose (1% of therapeutic dose) is the recommended dose for future clinical trials. We did not observe any toxicity in these four patients. The radiation exposure from 14C is less than 0.2% of that from an abdominal CT scan.
     Conclusions:
     1. The identical pharmacokinetics was observed for the subtoxic microdosing and therapeutic carboplatin.
     2. The subtoxic microdosing carboplatin can induce genomic DNA damage in cancer cell lines in vitro, tumor xenografts in vivo, and PBMC from mice or human patients.
     3. The level of carboplatin-DNA monoadducts in cancer cell lines and tumor xenografts in nude mice induced by microdosing carboplatin is linearly proportional to those induced by therapeutic doses. The subtoxic microdosing approach can potentially be used to identify and predict DNA monoadduct levels induced by therapeutic carboplatin.
     4. The low level of DNA monoadducts induced by subtoxic microdosing carboplatin correlates with the cellular resistance to carboplatin. The subtoxic microdosing approach can potentially be used to identify and predict cellular chemoresistance to carboplatin.
     5. DNA monoadduct levels measured by AMS is linearly correlated to the total Pt level induced by therapeutic carboplatin measured by ICP-MS.
     6. The underlying mechanism, like drug metabolism, intracellular drug inactivation and DNA repair pathways can affect DNA monoadduct formation and, therefore, cellular sensitivity to Pt chemotherapy.
引文
[1]Lebwohl D CR. Clinical development of platinum complexes in cancer therapy:an historical perspective and an update [J]. Eur J Cancer.1998; 34:1522-1534.
    [2]Wong E GC. Current status of platinum-based antitumor drugs [J]. Chem Rev.1999; 99:2451-2466.
    [3]Roed H VL, Christensen IJ, Spang-Thomsen M, Hansen HH. The cytotoxic activity of cisplatin, carboplatin and teniposide alone and combined determined on four human small cell lung cancer cell lines by the clonogenic assay [J]. Eur J Cancer Clin Oncol.1988; 24:247-253.
    [4]Silva MJ CP, Dias A, Valente M, Louro H, Boavida MG. Comparative analysis of the mutagenic activity of oxaliplatin and cisplatin in the Hprt gene of CHO cells [J]. Environ Mol Mutagen.2005; 46:104-115.
    [5]Pasetto LM DAM, Rossi E, Monfardini S. Oxaliplatin-related neurotoxicity:how and why [J]?Crit Rev Oncol Hematol.2006;59:159-168.
    [6]Gabano E CD, Ghezzi AR, Osella D. The influence of temperature on antiproliferative effects, cellular uptake and DNA platination of the clinically employed Pt(II)-drugs [J]. Inorg Biochem.2008; 102:629-635.
    [7]Pascoe JM RJ. Interactions between mammalian cell DNA and inorganic platinum compounds. Ⅱ. Interstrand cross-linking of isolated and cellular DNA by platinum(IV) compounds [J]. Biochem Pharmacol.1974; 23:1345-1357.
    [8]Akaboshi M KK, Maki H, Akuta K, Ujeno Y, Miyahara T. The number of platinum atoms binding to DNA, RNA and protein molecules of HeLa cells treated with cisplatin at its mean lethal concentration [J]. Jpn J Cancer Res.1992; 83:522-526.
    [9]T.W. H. Platinum binding to DNA:structural controls and consequences [J]. J.Chem.Soc.,Dalton Trans.2001:2711-2718.
    [10]ZH S. Cisplatin:mode of cytotoxic action and molecular basis of resistance [J]. Oncogene.2003; 22:7265-7279.
    [11]Binks SP DM. Kinetics and mechanism of uptake of platinum-based pharmaceuticals by the rat small intestine [J]. Biochem Pharmacol.1990;40:1329-1336.
    [12]Hromas RA NJ. Burns CP. Decreased cisplatin uptake by resistant L1210 leukemia cells [J]. Cancer Lett.1987; 36:197-201.
    [13]Gately DP HS. Cellular accumulation of the anticancer agent cisplatin:a review [J]. Br J Cancer.1993; 67:1171-1176.
    [14]Knox RJ FF, Lydall DA, Roberts JJ. Mechanism of cytotoxicity of anticancer platinum drugs:evidence that cis-diamminedichloroplatinum(Ⅱ) and cis-diammine-(1,1-cyclobutanedicarboxylato)platinum(Ⅱ) differ only in the kinetics of their interaction with DNA [J]. Cancer Res.1986; 46:1972-1979.
    [15]Frey U, Ranford, J. D., Sadler, P. J. Ring-opening reactions of the anticancer drug carboplatin:NMR characterization of cis-[Pt-(NH3)2(CBDCA-O)(5'-GMP-N')] in solution [J]. Inorg. Chem.1993; 32.
    [16]Kopf-Maier P MS. Changes in the cytoskeleton pattern of tumor cells by cisplatin in vitro [J]. Chem Biol Interact.1992;82:295-316.
    [17]Screnci D MM. Platinum neurotoxicity:clinical profiles, experimental models and neuroprotective approaches [J]. J Inorg Biochem.1999; 77:105-110.
    [18]Jamieson ER LS. Structure, Recognition, and Processing of Cisplatin-DNA Adducts [J]. Chem Rev.1999; 99:2467-2498.
    [19]Reedijk J. New clues for platinum antitumor chemistry:kinetically controlled metal binding to DNA [J]. Proc Natl Acad Sci U S A.2003; 100:3611-3616.
    [20]A. M. Glutathione deficiency produced by inhibition of its synthesis, and its reversal; applications in research and therapy [J]. Pharmacol Ther. 1991; 51:155-194.
    [21]Davies MS B-PS. Hambley TW. Slowing of cisplatin aquation in the presence of DNA but not in the presence of phosphate:improved understanding of sequence selectivity and the roles of monoaquated and diaquated species in the binding of cisplatin to DNA [J]. Inorg Chem.2000; 39:5603-5613.
    [22]Gupta R BJ, Sheil MM, Ralph SF. Identification of bifunctional GA and AG intrastrand crosslinks formed between cisplatin and DNA [J]. J Inorg Biochem.2005; 99:552-559.
    [23]Hah SS SK, de Vere White RW, Henderson PT. Kinetics of carboplatin-DNA binding in genomic DNA and bladder cancer cells as determined by accelerator mass spectrometry [J]. Chem Res Toxicol.2006; 19:622-626.
    [24]Plooy AC F-SA, Schutte HH, van Dijk M, Lohman PH. The quantitative detection of various Pt-DNA-adducts in Chinese hamster ovary cells treated with cisplatin:application of immunochemical techniques [J]. Carcinogenesis.1985; 6:561-566.
    [25]Fichtinger-Schepman AM vdVJ, den Hartog JH, Lohman PH, Reedijk J. Adducts of the antitumor drug cis-diamminedichloroplatinum(Ⅱ) with DNA:formation, identification, and quantitation [J]. Biochemistry.1985; 24:707-713.
    [26]Zou Y VHB, Farrell N. Sequence specificity of DNA-DNA interstrand cross-link formation by cisplatin and dinuclear platinum complexes [J]. Biochemistry.1994; 33:5404-5410.
    [27]Kartalou M EJ. Recognition of cisplatin adducts by cellular proteins [J]. Mutat Res.2001; 478:1-21.
    [28]So S AN, Lieber MR, Koyama H. Genetic interactions between BLM and DNA ligase IV in human cells [J]. J Biol Chem.2004:279:55433-55442.
    [29]Chvalova K BV, Kasparkova J. Mechanism of the formation of DNA-protein cross-links by antitumor cisplatin [J]. Nucleic Acids Res.2007; 35:1812-1821.
    [30]Woynarowski JM FS, Herzig MC, Arnett B, Chapman WG, Trevino AV, Raymond E, Chaney SG, Vaisman A, Varchenko M, Juniewicz PE. Oxaliplatin-induced damage of cellular DNA [J]. Mol Pharmacol.2000; 58:920-927.
    [31]Di Francesco AM RA, Riccardi R. Cellular and molecular aspects of drugs of the future:oxaliplatin [J]. Cell Mol Life Sci.2002; 59:1914-1927.
    [32]Faivre S CD, Salinas R, Woynarowska B, Woynarowski JM. DNA strand breaks and apoptosis induced by oxaliplatin in cancer cells [J]. Biochem Pharmacol.2003; 66:225-237.
    [33]Harder HC SR, Leroy AF. Template primer inactivation by cis- and trans-dichlorodiammine platinum for human DNA polymerase alpha, beta, and Rauscher murine leukemia virus reverse transcriptase, as a mechanism of cytotoxicity [J]. Cancer Res. 1976:36:3821-3829.
    [34]Ciccarelli RB SM, Varshavsky A, Lippard SJ. In vivo effects of cis-and trans-diamminedichloroplatinum(II) on SV40 chromosomes:differential repair, DNA-protein cross-linking, and inhibition of replication [J]. Biochemistry.1985; 24:7533-7540.
    [35]Zhou SF WL, Di YM, Xue CC, Duan W, Li CG, Li Y. Substrates and inhibitors of human multidrug resistance associated proteins and the implications in drug development [J]. Curr Med Chem.2008; 15:1981-2039.
    [36]Suo Z LS, Johnson KA. Single d(GpG)/cis-diammineplatinum(II) adduct-induced inhibition of DNA polymerization [J]. Biochemistry.1999; 38:715-726.
    [37]Comess KM BJ, Essigmann JM, Lippard SJ. Replication inhibition and translesion synthesis on templates containing site-specifically placed cis-diainminedichloroplatinum(Ⅱ) DNA adducts [J]. Biochemistry.1992:31:3975-3990.
    [38]Sorenson CM EA. Mechanism of cis-diamminedichloroplatinum(Ⅱ)-induced cytotoxicity:role of G2 arrest and DNA double-strand breaks [J]. Cancer Res.1988; 48:4484-4488.
    [39]Sorenson CM EA. Influence of cis-diamminedichloroplatinum(II) on DNA synthesis and cell cycle progression in excision repair proficient and deficient Chinese hamster ovary cells [J]. Cancer Res.1988; 48:6703-6707.
    [40]Grossmann KF WA, Moses RE. Saccharomyces cerevisiae lacking Snml, Rev3 or Rad51 have a normal S-phase but arrest permanently in G2 after cisplatin treatment [J]. Mutat Res.2000; 461:1-13.
    [41]AR L. Replication of damaged DNA by translesion synthesis in human cells [J]. FEBS Lett.2005; 579:873-876.
    [42]Prakash S JR, Prakash L. Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function [J]. Annu Rev Biochem.2005; 74:317-353.
    [43]Chaney SG CS, Temple B, Bassett E, Wu Y. Faldu M. Protein interactions with platinum-DNA adducts:from structure to function [J]. J Inorg Biochem.2004; 98:1551-1559.
    [44]Bassett E KN, Bryant MF, Hector S, Pendyala L, Chaney SG, Cordeiro-Stone M. The role of DNA polymerase eta in translesion synthesis past platinum-DNA adducts in human fibroblasts [J]. Cancer Res.2004; 64:6469-6475.
    [45]Vaisman A VM, Umar A, Kunkel TA, Risinger JI, Barrett JC, Hamilton TC, Chaney SG. The role of hMLH1, hMSH3, and hMSH6 defects in cisplatin and oxaliplatin resistance:correlation with replicative bypass of platinum-DNA adducts [J]. Cancer Res. 1998; 58:3579-3585.
    [46]Albertella MR LA, O'Connor MJ. The overexpression of specialized DNA polymerases in cancer [J]. DNA Repair (Amst).2005; 4:583-593.
    [47]Albertella MR GC, Lehmann AR, O'Connor MJ. A role for polymerase eta in the cellular tolerance to cisplatin-induced damage [J]. Cancer Res.2005; 65:9799-9806.
    [48]Okuda T LX, Trang J, Howell SB. Suppression of hREVl expression reduces the rate at which human ovarian carcinoma cells acquire resistance to cisplatin [J]. Mol Pharmacol.2005; 67:1852-1860.
    [49]Lin X TJ, Okuda T, Howell SB. DNA polymerase zeta accounts for the reduced cytotoxicity and enhanced mutagenicity of cisplatin in human colon carcinoma cells that have lost DNA mismatch repair [J]. Clin Cancer Res.2006; 12:563-568.
    [50]Chaney SG CS, Bassett E, Wu Y. Recognition and processing of cisplatin-and oxaliplatin-DNA adducts [J]. Crit Rev Oncol Hematol.2005; 53:3-11.
    [51]Corda Y JC, Anin MF, Leng M, Job D. Spectrum of DNA--platinum adduct recognition by prokaryotic and eukaryotic DNA-dependent RNA polymerases [J]. Biochemistry.1993; 32:8582-8588.
    [52]Hara R SC, Liu M, Price DH, Sancar A. Human transcription release factor 2 dissociates RNA polymerases Ⅰ and Ⅱ stalled at a cyclobutane thymine dimer [J]. J Biol Chem.1999; 274:24779-24786.
    [53]Kimura H TY, Roeder RG, Cook PR. Quantitation of RNA polymerase Ⅱ and its transcription factors in an HeLa cell:little soluble holoenzyme but significant amounts of polymerases attached to the nuclear substructure [J]. Mol Cell Biol.1999; 19:5383-5392.
    [54]Kimura H SK, Cook PR. The transcription cycle of RNA polymerase Ⅱ in living cells [J]. J Cell Biol.2002; 159:777-782.
    [55]Hieda M WH, Maini P, Iborra FJ, Cook PR. Different populations of RNA polymerase Ⅱ in living mammalian cells [J]. Chromosome Res.2005:13:135-144.
    [56]JQ S. Mechanisms of transcription-coupled DNA repair [J]. Nat Rev Mol Cell Biol.2002; 3:21-29.
    [57]JQ S. Rescue of arrested RNA polymerase Ⅱ complexes [J]. J Cell Sci.2003; 116:447-451.
    [58]Jung Y LS. Multiple states of stalled T7 RNA polymerase at DNA lesions generated by platinum anticancer agents [J]. Biol Chem.2003; 278:52084-52092.
    [59]Tremeau-Bravard A RT, Egly JM, Dahmus ME. Fate of RNA polymerase II stalled at a cisplatin lesion [J]. J Biol Chem.2004; 279:7751-7759.
    [60]Laine JP EJ. Initiation of DNA repair mediated by a stalled RNA polymerase II [J]. EMBOJ.2006; 25:387-397.
    [61]Selby CP DR, Reinberg D, Sancar A. RNA polymerase Ⅱ stalled at a thymine dimer:footprint and effect on excision repair [J]. Nucleic Acids Res.1997; 25:787-793.
    [62]Jung Y LS. RNA polymerase Ⅱ blockage by cisplatin-damaged DNA. Stability and polyubiquitylation of stalled polymerase [J]. J Biol Chem.2006; 281:1361-1370.
    [63]Tornaletti S RD, Hanawalt PC. Structural characterization of RNA polymerase Ⅱ complexes arrested by a cyclobutane pyrimidine dimer in the transcribed strand of template DNA [J]. J Biol Chem.1999; 274:24124-24130.
    [64]Fuertes MA AC. Perez JM. Biochemical modulation of Cisplatin mechanisms of action:enhancement of antitumor activity and circumvention of drug resistance [J]. Chem Rev.2003; 103:645-662.
    [65]Barry MA BC, Eastman A. Activation of programmed cell death (apoptosis) by cisplatin, other anticancer drugs, toxins and hyperthermia [J]. Biochem Pharmacol.1990; 40:2353-2362.
    [66]Meyers M HA, Wagner MW, Boothman DA. Role of DNA mismatch repair in apoptotic responses to therapeutic agents [J]. Environ Mol Mutagen.2004; 44:249-264.
    [67]Wang D LS. Cellular processing of platinum anticancer drugs [J]. Nat Rev Drug Discov.2005; 4:307-320.
    [68]Gonzalez VM FM, Alonso C, Perez JM. Is cisplatin-induced cell death always produced by apoptosis [J]? Mol Pharmacol.2001; 59:657-663.
    [69]Wu B DC. Platinum drug adduct formation in the nucleosome core alters nucleosome mobility but not positioning [J]. Chem Biol.2008; 15:1023-1028.
    [70]Kim R TK, Uchida Y, Emi M, Inoue H, Toge T. Current status of the molecular mechanisms of anticancer drug-induced apoptosis. The contribution of molecular-level analysis to cancer chemotherapy [J]. Cancer Chemother Pharmacol.2002; 50:343-352.
    [71]Shi Y. Mechanisms of caspase activation and inhibition during apoptosis [J]. Mol Cell.2002; 9:459-470.
    [72]Henkels KM TJ. Cisplatin-induced apoptosis proceeds by caspase-3-dependent and -independent pathways in cisplatin-resistant and -sensitive human ovarian cancer cell lines [J]. Cancer Res.1999; 59:3077-3083.
    [73]Lacour S HA, Grazide S, Lagadic-Gossmann D. Athias A, Sergent O, Laurent G, Gambert P, Solary E, Dimanche-Boitrel MT. Cisplatin-induced CD95 redistribution into membrane lipid rafts of HT29 human colon cancer cells [J]. Cancer Res.2004; 64:3593-3598.
    [74]Ray S BO, Almasan A. Sensitization of prostate carcinoma cells to Apo2L/TRAIL by a Bcl-2 family protein inhibitor [J]. Apoptosis.2005; 10:1411-1418.
    [75]Blanc C DQ, Krajewski S, Janicke RU, Porter AG, Reed JC, Jaggi R, Marti A. Caspase-3 is essential for procaspase-9 processing and cisplatin-induced apoptosis of MCF-7 breast cancer cells [J]. Cancer Res.2000; 60:4386-4390.
    [76]Kirsch DG DA, Chau BN, Lim DS, de Souza-Pinto NC, Hansford R, Kastan MB, Lazebnik YA, Hardwick JM. Caspase-3-dependent cleavage of Bcl-2 promotes release of cytochrome c [J]. J Biol Chem.1999; 274:21155-21161.
    [77]Hall MD OM, Shen DW, Liang XJ, Gottesman MM. The role of cellular accumulation in determining sensitivity to platinum-based chemotherapy [J]. Annu Rev Pharmacol Toxicol.2008; 48:495-535.
    [78]Wernyj RP MP. Molecular mechanisms of platinum resistance:still searching for the Achilles'heel [J]. Drug Resist Updat.2004:7:227-232.
    [79]Fojo T BS. Strategies for reversing drug resistance [J]. Oncogene.2003; 22:7512-7523.
    [80]Kelland L. The resurgence of platinum-based cancer chemotherapy [J]. Nat Rev Cancer.2007; 7:573-584.
    [81]He L VK, Nebert DW. Analysis and update of the human solute carrier (SLC) gene superfamily [J]. Hum Genomics.2009; 3:195-206.
    [82]Hediger MA RM, Peng JB, Rolfs A, Takanaga H, Bruford EA. The ABCs of solute carriers:physiological, pathological and therapeutic implications of human membrane transport proteinsIntroduction [J]. Pflugers Arch.2004; 447:465-468.
    [83]Kitada N TK, Minegaki T, Itoh C, Tsujimoto M, Sakaeda T, Yokoyama T. Factors affecting sensitivity to antitumor platinum derivatives of human colorectal tumor cell lines [J]. Cancer Chemother Pharmacol.2008; 62:577-584.
    [84]Komatsu M ST, Mutoh M, Chen ZS, Terada K, Furukawa T, Yang XL, Gao H, Miura N, Sugiyama T, Akiyama S. Copper-transporting P-type adenosine triphosphatase (ATP7B) is associated with cisplatin resistance [J]. Cancer Res.2000; 60:1312-1316.
    [85]Teicher BA HS, Kelley MJ, Shea TC, Cucchi CA, Rosowsky A, Henner WD, Frei E 3rd. Characterization of a human squamous carcinoma cell line resistant to cis-diamminedichloroplatinum(II) [J]. Cancer Res.1987; 47:388-393.
    [86]Andrews PA MM, Howell SB. Characterization of cisplatin-resistant COLO 316 human ovarian carcinoma cells [J]. Eur J Cancer Clin Oncol.1989; 25:619-625.
    [87]Kelland LR MP. Abel G, Freidlos F, Loh SY, Roberts JJ, Harrap KR. Establishment and characterization of an in vitro model of acquired resistance to cisplatin in a human testicular nonseminomatous germ cell line [J]. Cancer Res.1992; 52:1710-1716.
    [88]Hospers GA MN, de Jong B, de Ley L, Uges DR, Fichtinger-Schepman AM, Scheper RJ, de Vries EG. Characterization of a human small cell lung carcinoma cell line with acquired resistance to cis diamminedichloroplatinum(II) in vitro [J]. Cancer Res.1988; 48:6803-6807.
    [89]Centerwall CR KD. Goodisman J, Toms BB, Dabrowiak JC. New extracellular (?)tance mechanism for cisplatin [J]. J Inorg Biochem.2008; 102:1044-1049.
    [90]Chu G. Cellular responses to cisplatin. The roles of DNA-binding proteins and DNA repair [J]. J Biol Chem.1994; 269:787-790.
    [91]Meister A AM. Glutathione [J]. Annu Rev Biochem.1983; 52:711-760.
    [92]Ishikawa T. The ATP-dependent glutathione S-conjugate export pump [J]. Trends Biochem Sci.1992; 17:463-468.
    [93]Ishikawa T A-OF. Glutathione-associated cis-diamminedichloroplatinum(II) metabolism and ATP-dependent efflux from leukemia cells. Molecular characterization of glutathione-platinum complex and its biological significance [J]. J Biol Chem.1993; 268:20116-20125.
    [94]Andrews PA MM, Howell SB. Differential potentiation of alkylating and platinating agent cytotoxicity in human ovarian carcinoma cells by glutathione depletion [J]. Cancer Res.1985; 45:6250-6253.
    [95]Lewis AD HJ, Wolf CR. Glutathione and glutathione-dependent enzymes in ovarian adenocarcinoma cell lines derived from a patient before and after the onset of drug resistance:intrinsic differences and cell cycle effects [J]. Carcinogenesis.1988; 9:1283-1287.
    [96]Yang P EJ, Sun Z, Weinshilboum RM. Role of the glutathione metabolic pathway in lung cancer treatment and prognosis:a review [J]. J Clin Oncol.2006; 24:1761-1769.
    [97]Andrews PA MM, Howell SB. Metallothionein-mediated cisplatin resistance in human ovarian carcinoma cells [J]. Cancer Chemother Pharmacol.1987; 19:149-154.
    [98]Kelley SL BA, Teicher BA, Hacker MP, Hamer DH, Lazo JS. Overexpression of metallothionein confers resistance to anticancer drugs [J]. Science.1988; 241:1813-1815.
    [99]Schilder RJ HL, Monks A, Handel LM, Fornace AJ Jr, Ozols RF, Fojo AT, Hamilton TC. Metallothionein gene expression and resistance to cisplatin in human ovarian cancer [J]. Int J Cancer.1990; 45:416-422.
    [100]Wood RD MM, Lindahl T. Human DNA repair genes,2005 [J]. Mutat Res.2005; 577:275-283.
    [101]Zhou BB ES. The DNA damage response:putting checkpoints in perspective [J]. Nature.2000; 408:433-439.
    [102]Weinert T. A DNA damage checkpoint meets the cell cycle engine [J]. Science. 1997:277:1450-1451.
    [103]Chu G CE. Cisplatin-resistant cells express increased levels of a factor that recognizes damaged DNA [J]. Proc Natl Acad Sci U S A.1990; 87:3324-3327.
    [104]Parker RJ EA, Bostick-Bruton F, Reed E. Acquired cisplatin resistance in human ovarian cancer cells is associated with enhanced repair of cisplatin-DNA lesions and reduced drug accumulation [J]. J Clin Invest.1991; 87:772-777.
    [105]Scanlon KJ K-SM, Tone T, Funato T. Cisplatin resistance in human cancers [J]. Pharmacol Ther. 1991; 52:385-406.
    [106]Johnson SW SP, Handel LM, Brennan JM, Godwin AK, Ozols RF, Hamilton TC. Relationship between platinum-DNA adduct formation and removal and cisplatin cytotoxicity in cisplatin-sensitive and -resistant human ovarian cancer cells [J]. Cancer Res. 1994; 54:5911-5916.
    [107]Selvakumaran M PD, Bao R, Yeung AT, Hamilton TC. Enhanced cisplatin cytotoxicity by disturbing the nucleotide excision repair pathway in ovarian cancer cell lines [J]. Cancer Res.2003; 63:1311-1316.
    [108]Wozniak K BJ. Recognition and repair of DNA-cisplatin adducts [J]. Acta Biochim Pol.2002; 49:583-596.
    [109]Meenakshi Dabholkar FB-B, Christine Weber, Vilhelm A. Bohr, Charles Egwuagu, Eddie Reed. ERCC1 and ERCC2 Expression in Malignant Tissues From Ovarian Cancer Patients [J]. J Natl Cancer Inst.1992; 84:1512-1517.
    [110]Scheil-Bertram S T-SP, du Bois A, Harter P, Oppitz M, Ewald-Riegler N, Fisseler-Eckhoff A. Excision repair cross-complementation group 1 protein overexpression as a predictor of poor survival for high-grade serous ovarian adenocarcinoma [J]. Gynecol Oncol.2010; 119:325-331.
    [111]Lord RV BJ, Gandara D, Alberola V, Camps C, Domine M, Cardenal F, Sanchez JM. Gumerlock PH, Taron M, Sanchez JJ, Danenberg KD, Danenberg PV, Rosell R. Low ERCC1 expression correlates with prolonged survival after cisplatin plus gemcitabine chemotherapy in non-small cell lung cancer [J]. Clin Cancer Res.2002; 8:2286-2291.
    [112]Hoffmann AC WP, Leicht C, Bertz S, Danenberg KD, Danenberg PV, Stohr R, Stockle M, Lehmann J, Schuler M, Hartmann A. MDR1 and ERCC1 expression predict outcome of patients with locally advanced bladder cancer receiving adjuvant chemotherapy [J]. Neoplasia.2010; 12:628-636.
    [113]Weaver DA CE, Warner KA, Elkhairi F, Khuder SA, Willey JC. ABCC5, ERCC2, XPA and XRCC1 transcript abundance levels correlate with cisplatin chemoresistance in non-small cell lung cancer cell lines [J]. Mol Cancer.2005; 4:18-25.
    [114]Ferry KV HT, Johnson SW. Increased nucleotide excision repair in cisplatin-resistant ovarian cancer cells:role of ERCC1-XPF [J]. Biochem Pharmacol.2000; 60:1305-1313.
    [115]Dabholkar M VJ, Bostick-Bruton F, Yu JJ, Reed E. mRNA levels of XPAC and ERCC1 in ovarian tumor tissue correlates with response to platinum containing chemotherapy [J]. J Clin Invest.1994; 94:703-708.
    [116]Welsh C DR, McGurk C, Masters JR, Wood RD, Koberle B. Reduced levels of XPA, ERCC1 and XPF DNA repair proteins in testis tumor cell lines [J]. Int J Cancer.2004; 110:352-361.
    [117]Koberle B MJ, Hartley JA, Wood RD. Defective repair of cisplatin-induced DNA damage caused by reduced XPA protein in testicular germ cell tumours [J]. Curr Biol.1999; 9:273-276.
    [118]Chang IY KM, Kim HB, Lee DY, Kim SH, Kim HY, You HJ. Small interfering RNA-induced suppression of ERCC1 enhances sensitivity of human cancer cells to cisplatin [J]. Biochem Biophys Res Commun.2005; 327:225-233.
    [119]George R. Simon SS, Alan Cantor, Prudence Smith, Gerold Bepler. ERCC1 Expression Is a Predictor of Survival in Resected Patients With Non-small Cell Lung Cancer [J]. Chest.2005; 127:978-983.
    [120]Costa RM CV, Galhardo Rda S, Carvalho H. Menck CF. The eukaryotic nucleotide excision repair pathway [J]. Biochimie.2003; 85:1083-1099.
    [121]Moggs JG YK, Essigmann JM, Wood RD. Analysis of incision sites produced by human cell extracts and purified proteins during nucleotide excision repair of a 1,3-intrastrand d(GpTpG)-cisplatin adduct [J]. J Biol Chem.1996; 271:7177-7186.
    [122]Furuta T UT, Aune G. Sarasin A, Kraemer KH, Pommier Y. Transcription-coupled nucleotide excision repair as a determinant of cisplatin sensitivity of human cells [J]. Cancer Res.2002; 62:4899-4902.
    [123]RD W. Nucleotide excision repair in mammalian cells [J]. J Biol Chem.1997; 272:23465-23468.
    [124]Matsunaga T MD, Park CH, Reardon JT, Sancar A. Human DNA repair excision nuclease. Analysis of the roles of the subunits involved in dual incisions by using anti-XPG and anti-ERCC1 antibodies [J]. J Biol Chem.1995; 270:20862-20869.
    [125]AR L. Nucleotide excision repair and the link with transcription [J]. Trends Biochem Sci.1995; 20:402-405.
    [126]Weilbaecher RG AD, Edwards AM, Kane CM. Intrinsic transcript cleavage in yeast RNA polymerase Ⅱ elongation complexes [J]. J Biol Chem.2003:278:24189-24199.
    [127]Nesser NK PD, Hawley DK. RNA polymerase Ⅱ subunit Rpb9 is important for transcriptional fidelity in vivo [J]. Proc Natl Acad Sci U S A.2006; 103:3268-3273.
    [128]Thoma BS WM, Christensen J, Reddy MC, Vasquez KM. Human XPC-hHR23B interacts with XPA-RPA in the recognition of triplex-directed psoralen DNA interstrand crosslinks [J]. Nucleic Acids Res.2005; 33:2993-3001.
    [129]Li J WQ, Zhu Q, El-Mahdy MA, Wani G, Praetorius-Ibba M, Wani AA. DNA damage binding protein component DDB1 participates in nucleotide excision repair through DDB2 DNA-binding and cullin 4A ubiquitin ligase activity [J]. Cancer Res.2006; 66:8590-8597.
    [130]Reardon JT SA. Molecular anatomy of the human excision nuclease assembled at sites of DNA damage [J]. Mol Cell Biol.2002; 22:5938-5945.
    [131]E R. ERCC1 and clinical resistance to platinum-based therapy [J]. Clin Cancer Res.2005:11:6100-6102.
    [132]Olaussen KA DA, Fouret P, Brambilla E. Andre F, Haddad V, Taranchon E, Filipits M, Pirker R, Popper HH, Stahel R, Sabatier L, Pignon JP, Tursz T, Le Chevalier T. S(?)JC; IALT Bio Investigators. DNA repair by ERCC1 in non-small-cell lung cancer and cisplatin-based adjuvant chemotherapy [J]. N Engl J Med.2006; 355:983-991.
    [133]E R. ERCC1 measurements in clinical oncology [J]. N Engl J Med.2006; 355:1054-1055.
    [134]Sancar A. Mechanisms of DNA excision repair [J]. Science 1994; 266:1954-1956.
    [135]Olasz J ML. Geczi L, Bodrogi I, Csuka O, Bak M. Influence of hMLH1 methylation, mismatch repair deficiency and microsatellite instability on chemoresistance of testicular germ-cell tumors [J]. Anticancer Res.2005; 25:4319-4324.
    [136]Francia G GS, Bocci G, Man S, Emmenegger U, Ebos JM, Weinerman A, Shaked Y, Kerbel RS. Down-regulation of DNA mismatch repair proteins in human and murine tumor spheroids:implications for multicellular resistance to alkylating agents [J]. Mol Cancer Ther.2005; 4:1484-1494.
    [137]OD S. Chemistry and biology of DNA repair [J]. Angew Chem Int Ed Engl.2003: 42:2946-2974.
    [138]Wu J ZB, Yu J, Zhu H, Qiu L, Kindy MS, Gu L, Seidel A, Li GM. In vitro and in vivo modulations of benzo[c]phenanthrene-DNA adducts by DNA mismatch repair system [J]. Nucleic Acids Res.2003; 31:6428-6434.
    [139]Strathdee G MM, Illand M, Brown R. A role for methylation of the hMLHl promoter in loss of hMLH1 expression and drug resistance in ovarian cancer [J]. Oncogene 1999; 18:2335-2341.
    [140]Clodfelter JE BGM, Drotschmann K. MSH2 missense mutations alter cisplatin cytotoxicity and promote cisplatin-induced genome instability [J]. Nucleic Acids Res.2005; 33:3323-3330.
    [141]Kartalou M EJ. Recognition of cisplatin adducts by cellular proteins [J]. Mutat Res.2001; 478:1-21.
    [142]Seeberg E EL, Bjoras M. The base excision repair pathway [J]. Trends Biochem Sci.1995; 20:391-397.
    [143]Lindahl T KP, Wood RD. DNA excision repair pathways [J]. Curr Opin Genet Dev.1997; 7:158-169.
    [144]Kelley MR CL, Foster R, Tritt R, Jiang J, Broshears J, Koch M. Elevated and altered expression of the multifunctional DNA base excision repair and redox enzyme Apel/ref-1 in prostate cancer [J]. Clin Cancer Res.2001; 7:824-830.
    [145]Fishel ML SY, Smith ML, Kelley MR. Imbalancing the DNA base excision repair pathway in the mitochondria; targeting and overexpressing N-methylpurine DNA glycosylase in mitochondria leads to enhanced cell killing [J]. Cancer Res.2003; 63:608-615.
    [146]Liu Y PR, Beard WA, Kedar PS, Hou EW, Shock DD, Wilson SH. Coordination of steps in single-nucleotide base excision repair mediated by apurinic/apyrimidinic endonuclease 1 and DNA polymerase beta [J]. J Biol Chem.2007; 282:13532-13541.
    [147]Sukhanova MV KS, Lebedeva NA, Prasad R, Wilson SH, Lavrik OI. Human base excision repair enzymes apurinic/apyrimidinic endonucleasel (APE1), DNA polymerase beta and poly(ADP-ribose) polymerase 1:interplay between strand-displacement DNA synthesis and proofreading exonuclease activity [J]. Nucleic Acids Res.2005; 33:1222-1229.
    [148]Wang D XD, Yang XQ, Chen LS, Li MX, Zhong ZY, Zhang YS. APE1 overexpression is associated with cisplatin resistance in non-small cell lung cancer and targeted inhibition of APE1 enhances the activity of cisplatin in A549 cells [J]. Lung Cancer. 2009; 66:298-304.
    [149]Kothandapani A DV, Brown AR, Banze LA, Wang XH, Sobol RW, Patrick SM. Novel role of base excision repair (BER) in mediating cisplatin cytotoxicity [J]. J Biol Chem. 2011; Epub ahead of print.
    [150]Jackson SP JP. DNA double-strand break repair and V(D)J recombination: involvement of DNA-PK [J]. Trends Biochem Sci.1995:20:412-415.
    [151]Wang W FW. Secondary BRCA1 and BRCA2 alterations and acquired chemoresistance [J]. Cancer Biol Ther.2008; 7:1004-1005.
    [152]M J. Homologous repair of DNA damage and tumorigenesis:the BRCA connection [J]. Oncogene.2002; 21:8981-8993. [153] Xia F TD. DeFrank JS, Zeng ZC, Willers H, Iliakis G. Powell SN. Deficiency of human BRCA2 leads to impaired homologous recombination but maintains normal nonhomologous end joining [J]. Proc Natl Acad Sci U S A.2001; 98:8644-8649.
    [154]Kuhfittig-Kulle S FE, Odersky A, Kuliczkowska A, Goedecke W, Eggert A, Pfeiffer P. The mutagenic potential of non-homologous end joining in the absence of the NHEJ core factors Ku70/80, DNA-PKcs and XRCC4-LigIV [J]. Mutagenesis.2007; 22:217-233.
    [155]Allen C HJ, Nickoloff JA. Interactive competition between homologous recombination and non-homologous end joining [J]. Mol Cancer Res.2003; 1:913-920.
    [156]Duncan T TS, Koivisto P, Bates PA, Lindahl T, Sedgwick B. Reversal of DNA alkylation damage by two human dioxygenases [J]. Proc Natl Acad Sci U S A.2002; 99:16660-16665.
    [157]Mishina Y DE, He C. Direct reversal of DNA alkylation damage [J]. Chem Rev. 2006:106:215-232.
    [158]Moore MH GJ, Dodson EJ, Demple B, Moody PC. Crystal structure of a suicidal DNA repair protein:the Ada O6-methylguanine-DNA methyltransferase from E. coli [J]. EMBO J.1994; 13:1495-1501.
    [159]Fang MZ JZ. Wang Y, Liao J, Yang GY, Wang LD, Yang CS. Promoter hypermethylation and inactivation of O(6)-methylguanine-DNA methyltransferase in esophageal squamous cell carcinomas and its reactivation in cell lines [J]. Int J Oncol.2005: 26:615-622.
    [160]Ragg S X-WM, Bailey J, D'Souza M, Cooper R, Chandra S, Seshadri R, Pegg AE, Williams DA. Direct reversal of DNA damage by mutant methyltransferase protein protects mice against dose-intensified chemotherapy and leads to in vivo selection of hematopoietic stem cells [J]. Cancer Res.2000; 60:5187-5195.
    [161]Wu M KM, Hansen WK, Martin WJ 2nd. Reduction of BCNU toxicity to lung cells by high-level expression of O(6)-methylguanine-DNA methyltransferase [J]. Am J Physiol Lung Cell Mol Physiol.2001; 280:L755-L761.
    [162]Cai S XY, Cooper RJ, Ferkowicz MJ, Hartwell JR, Pollok KE, Kelley MR. Mitochondrial targeting of human O6-methylguanine DNA methyltransferase protects against cell killing by chemotherapeutic alkylating agents [J]. Cancer Res.2005; 65:3319-3327.
    [163]Baumann S KG, Puhringer F, Napieralski R, Feith M, Langer R, Hofler H, Stein HJ, Sarbia M. The prognostic impact of O6-Methylguanine-DNA Methyltransferase (MGMT) promotor hypermethylation in esophageal adenocarcinoma [J]. Int J Cancer.2006; 119:264-268.
    [164]Segal-Bendirdjian E ML, Jacquemin-Sablon A. Alteration in p53 pathway and defect in apoptosis contribute independently to cisplatin-resistance [J]. Cell Death Differ. 1998; 5:390-400.
    [165]Segal-Bendirdjian E J-SA. Cisplatin resistance in a murine leukemia cell line is associated with a defective apoptotic process [J]. Exp Cell Res.1995; 218:201-212.
    [166]Perego P RS, Supino R. Delia D, Caserini C, Carenini N, Bedogne B, Broome E. Krajewski S, Reed JC, Zunino F. Role of apoptosis and apoptosis-related proteins in the cisplatin-resistant phenotype of human tumor cell lines [J]. Apoptosis.1997; 2:540-548.
    [167]Mueller T VW, Simon H, Fruehauf A, Bulankin A, Grothey A, Schmoll HJ. Failure of activation of caspase-9 induces a higher threshold for apoptosis and cisplatin resistance in testicular cancer [J]. Cancer Res.2003; 63:513-521.
    [168]Du C FM, Li Y, Li L, Wang X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition [J]. Cell.2000; 102:33-42.
    [169]Henkels KM TJ. Induction of apoptosis in cisplatin-sensitive and-resistant human ovarian cancer cell lines [J]. Cancer Res.1997; 57:4488-4492.
    [170]Sheu LF YZ, Lee WG, Chen YF, Kao WY, Chen A. STI571 sensitizes nasopharyngeal carcinoma cells to cisplatin:sustained activation of ERK with improved growth inhibition [J]. Int J Oncol.2007; 30:403-411.
    [171]Yang SH WZ, Chien CM, Lo YH. Wu MJ, Chang LS, Lin SR. JNK and ERK mitogen-activated protein kinases mediate THDA-induced apoptosis in K562 cells [J]. Cell Biol Toxicol.2008:24:291-302.
    [172]Lappin G SL. Biomedical accelerator mass spectrometry:recent applications in metabolism and pharmacokinetics [J]. Expert Opin. Drug Metab. Toxicol.2008; 4:1021-1033.
    [173]RM. I. Microdosing:a valuable tool for accelerating drug development and the role of bioanalytical methods in meeting the challenge [J]. Bioanalysis.2009; 1:1293-1305.
    [174]Sandhu P VJ, Rose MJ. Evaluation of microdosing strategies for studies in preclinical drug development:demonstration of linear pharmacokinetics in dogs of a nucleoside analog over a 50-fold dose range [J]. Drug Metab. Dispos.2004; 32:1254-1259.
    [175]Beland FA, Poirier, M.C. Significance of DNA adduct studies in animal models for cancer molecular dosimetery and risk assessment. Environ [J]. Health Perspect.1993; 99:5-10.
    [176]Hemminki K. DNA adducts, mutations and cancer [J]. Carcinogenesis.1993; 14:2007-2012.
    [177]Poirier M, Weston, A. Human DNA adduct measurements:state of the art. Environ [J]. Health Perspect.1996; 104:883-893.
    [178]Frantz CE. Bangerter. C., Fultz, E., Mayer, K.M., Vogel, J.S., Turteltaub. K.W. Dose-response studies of MelQx in rat liver and liver DNA at low doses [J]. Carcinogenesis. 1995; 16.
    [179]Turteltaub KW, Vogel, J.S., Frantz, C.E., Shen, N.H. Fate and distribution of 2-amino-l-methyl-6-phenylimidazow4,5-bxpyridine PhIP. in mice at a human dietary equivalent dose [J]. Cancer Res.1992; 52:4682-4687.
    [180]Vogel JS, Turteltaub, K.W., Finkel, R., Nelson, D.E. Accelerator mass spectrometry:isotope identification at attomole sensitivity [J]. Anal. Chem.1995; 67:353A-359A.
    [181]Turteltaub KW FJ, Gledhill BL, Vogel JS, Southon JR, Caffee MW, Finkel RC, Nelson DE, Proctor ID, Davis JC. Accelerator mass spectrometry in biomedical dosimetry: relationship between low-level exposure and covalent binding of heterocyclic amine carcinogens to DNA [J]. Proc Natl Acad Sci U S A.1990; 87:5288-5292.
    [182]Sarapa N HP, Lappin G, Garner RC. The application of accelerator mass spectrometry to absolute bioavailability studies in humans:simultaneous administration of an intravenous microdose of 14C-nelfinavir mesylate solution and oral nelfinavir to healthy volunteers [J]. J Clin Pharmacol.2005; 45:1198-1205.
    [183]Lappin G KW, Jochemsen R, Kneer J, Chaudhary A, Oosterhuis B, Drijfhout WJ, Rowland M, Garner RC. Use of microdosing to predict pharmacokinetics at the therapeutic dose:experience with 5 drugs [J]. Clin Pharmacol Ther. 2006; 80:203-215.
    [184]Sandhu P VJ, Rose MJ, Ubick EA, Brunner JE, Wallace MA, Adelsberger JK, Baker MP, Henderson PT, Pearson PG, Baillie TA. Evaluation of microdosing strategies for studies in preclinical drug development:demonstration of linear pharmacokinetics in dogs of a nucleoside analog over a 50-fold dose range [J]. Drug Metab Dispos.2004; 32:1254-1259.
    [185]Mandal R KR, Li XF. Interaction of oxaliplatin, cisplatin, and carboplatin with hemoglobin and the resulting release of a heme group [J]. Chem Res Toxicol.2004; 17:1391-1397.
    [186]Mandal R SM, Li XF. Mass spectrometry study of hemoglobin-oxaliplatin complexes in colorectal cancer patients and potential association with chemotherapeutic responses [J]. Rapid Commun Mass Spectrom.2006; 20:2533-2538.
    [187]Meijer C dVE, Dam WA. Wilkinson MH, Hollema H, Hoekstra HJ, Mulder NH. Immunocytochemical analysis of cisplatin-induced platinum-DNA adducts with double-fluorescence video microscopy [J]. Br J Cancer.1997; 76:290-298.
    [188]Fink D ZH. Nebel S, Norris PS, Aebi S, Lin TP, Nehme A. Christen RD. Haas M, MacLeod CL, Howell SB. In vitro and in vivo resistance to cisplatin in cells that have lost DNA mismatch repair [J]. Cancer Res.1997; 57:1841-1845.
    [189]De Waal WA MF, Kraak JC. Analytical methodologies for the quantitation of platinum anti-cancer drugs and related compounds in biological media [J]. J Pharm Biomed Anal.1990; 8:1-30.
    [190]Bonetti A AP, Zaninelli M, Pavanel F, Colombatti M, Cetto GL, Franceschi T, Sperotto L, Leone R. Inductively coupled plasma mass spectroscopy quantitation of platinum-DNA adducts in peripheral blood leukocytes of patients receiving cisplatin- or carboplatin-based chemotherapy [J]. Clin Cancer Res.1996; 2:1829-1835.
    [91]Brouwers EE TM, Rosing H, Schellens JH, Beijnen JH. The application of inductively coupled plasma mass spectrometry in clinical pharmacological oncology research [J]. Mass Spectrom Rev.2008; 27:67-100.
    [192]Pluim D MM, van Waardenburg RC, Beijnen JH, Schellens JH.32P-postlabeling assay for the quantification of the major platinum-DNA adducts [J]. Anal Biochem.1999; 275:30-38.
    [193]Schiller JH HD, Belani CP, Langer C, Sandler A, Krook J. Zhu J, Johnson DH. Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer [J]. N Engl J Med.2002; 346:92-98.
    [194]Goodisman J HD, Tacka KA, Souid AK. Analysis of cytotoxicities of platinum compounds [J]. Cancer Chemother Pharmacol.2006; 57:257-267.
    [195]Ono Y NN, Harada Y, Fukui T, Tokizane T, Sato E, Nakayama M, Nishimura K, Takahara S, Okuyama A. Loss of p73 Induction in a Cisplatin-Resistant Bladder Cancer Cell Line[J]. Molecular Urology.2001;5:25-30.
    [196]Sharma H TN, Baer J, Zaki A, Smith A, McAucliffe CA, Crowther D, Owens S. Fox BW. Blood clearance of radioactively labelled cis-diammine 1,1-cyclobutane dicarboxylate platinum (Ⅱ) (CBDCA) in cancer patients [J]. Cancer Chemother Pharmacol. 1983; 11:5-7.
    [197]Harland SJ ND, Siddik ZH, Chadwick R, Calvert AH, Harrap KR. Pharmacokinetics of cis-diammine-1,1-cyclobutane dicarboxylate platinum(II) in patients with normal and impaired renal function [J]. Cancer Res.1984; 44:1693-1697.
    [198]Calvert AH ND, Gumbrell LA, O'Reilly S, Burnell M, Boxall FE, Siddik ZH, Judson IR, Gore ME, Wiltshaw E. Carboplatin dosage:prospective evaluation of a simple formula based on renal function [J]. J Clin Oncol.1989; 7:1748-1756.
    [199]Oguri S, Sakakibara, T., Mase, H., Shimizu, T., Ishikawa, K., Kimura, K., Smyth, R. D. Clinical pharmacokinetics of carboplatin [J]. J Clin Pharmacol.1988; 28:208-215.
    [200]Dingley KH, Ubick, E. A., Vogel, J. S., Haack, K. W.. DNA isolation and sample preparation for quantification of adduct levels by accelerator mass spectrometry [J]. Methods Mol.Biol.2005:291:21-27.
    [201]Wang S ZH. Malfatti M, de Vere White R, Lara PN Jr, Turteltaub K, Henderson P, Pan CX. Gemcitabine causes minimal modulation of carboplatin-DNA monoadduct formation and repair in bladder cancer cells [J]. Chem Res Toxicol.2010; 30:4573-4578.
    [202]Godwin AK MA, O'Dwyer PJ, Huang CS, Hamilton TC, Anderson ME. High resistance to cisplatin in human ovarian cancer cell lines is associated with marked increase of glutathione synthesis [J]. Proc Natl Acad Sci U S A.1992; 89:3070-3074.
    [203]Parkin DM. The global burden of urinary bladder cancer [J]. Scans J Urol Nephrol Suppl.2008; 218:12-20.
    [204]Amit R. Patel SCC. Current Trends in the Management of Bladder Cancer [J]. J Wound Ostomy Continence Nurs.2009; 36:413-421.
    [205]Yamada K KN, Takagi A, Koi M, Hemmi H. One-milliliter wet-digestion for inductively coupled plasma mass spectrometry (ICP-MS):determination of platinum-DNA adducts in cells treated with platinum(II) complexes [J]. Anal Bioanal Chem.2005; 382:1702-1707.
    [206]David R. Johnson BCB, Barry Mook-Kanamori. Rapid cloning of HLA class I cDNAs by locus specific PCR [J]. Journal of Immunol ogical Methods.2000; 233:119-129.
    [207]Jorg Thomas Hartmann H-PL. Toxicity of platinum compounds [J]. Expert Opin. Pharmacother.2003; 4:889-901.
    [208]Wang H LM, Rinehart JJ, Zhang R. Pretreatment with dexamethasone increases antitumor activity of carboplatin and gemcitabine in mice bearing human cancer xenografts: in vivo activity, pharmacokinetics, and clinical implications for cancer chemotherapy [J]. Clin Cancer Res.2004; 10:1633-1644.
    [209]Westerveld A HJ. van Duin M, de Wit J, Odijk H, Pastink A, Wood RD, Bootsma D. Molecular cloning of a human DNA repair gene [J]. Nature.1984; 310:425-429.
    [210]Ahmad A RA, Duensing A, van Drunen E, Beverloo HB, Weisberg DB, Hasty P, Hoeijmakers JH, Niedernhofer LJ. ERCC1-XPF endonuclease facilitates DNA double-strand break repair [J]. Mol Cell Biol.2008; 28:5082-5092.
    [211]Altaha R LX, Yu JJ, Reed E. Excision repair cross complementing-group 1:gene expression and platinum resistance [J]. Int J Mol Med.2004; 14:959-970.
    [212]Reed E. DNA damage and repair in translational oncology:an overview [J]. Clin Cancer Res.2010; 16:4511-4526.
    [213]Vilmar A SJ. Excision repair cross-complementation group 1 (ERCC1) in platinum-based treatment of non-small cell lung cancer with special emphasis on carboplatin: a review of current literature [J]. Lung Cancer.2009; 64:131-139.
    [214]U SSDSG. ERCC1-immunoexpression does not predict platinum-resistance in ovarian cancer [J]. Gynecol Oncol.2008; 108:252-253.
    [215]Helleday T PE, Lundin C, Hodgson B, Sharma RA. DNA repair pathways as targets for cancer therapy [J]. Nat Rev Cancer.2008; 8:193-204.
    [216]Meijer C MN, Hospers GA, Uges DR, de Vries EG. The role of glutathione in resistance to cisplatin in a human small cell lung cancer cell line [J]. Br J Cancer.1990; 62:72-77.
    [217]DJ S. Mechanisms of resistance to cisplatin and carboplatin [J]. Crit Rev Oncol Hematol.2007; 63:12-31.
    [218]Matsuoka S BB, Smogorzewska A, McDonald ER 3rd, Hurov KE, Luo J, Bakalarski CE. Zhao Z, Solimini N, Lerenthal Y, Shiloh Y, Gygi SP, Elledge SJ. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage [J]. Science.2007; 316:1160-1166.
    [219]Capdevila J EE, Peralta S, Macarulla T, Ramos FJ, Tabernero J. Oxaliplatin-based chemotherapy in the management of colorectal cancer [J]. Expert Rev Anticancer Ther.2008; 8:1223-1236.
    [220]Vaena DA, R. Abonour. Long-term survival after high-dose salvage chemotherapy for germ cell malignancies with adverse prognostic variables [J]. J Clin Oncol. 2003; 21:4100-4104.
    [221]Fisch MJ HK. Einhorn LH, Sledge GW. Relationship between platinum-DNA adducts in leukocytes of patients with advanced germ cell cancer and survival [J]. Clin Cancer Res.1996; 2:1063-1066.
    [222]Motzer RJ RE, Perera F, Tang D, Shamkhani H, Poirier MC, Tsai WY, Parker RJ, Bosl GJ. Platinum-DNA adducts assayed in leukocytes of patients with germ cell tumors measured by atomic absorbance spectrometry and enzyme-linked immunosorbent assay [J]. Cancer.1994; 73:2843-2852.
    [223]Parker RJ GI, Tarone R. Vionnet JA, Grunberg S, Muggia FM. Reed E. Platinum-DNA damage in leukocyte DNA of patients receiving carboplatin and cisplatin chemotherapy, measured by atomic absorption spectrometry [J]. Carcinogenesis.1991; 12:1253-1258.
    [224]Fichtinger-Schepman AM vdV-VS, van Dijk-Knijnenburg HC, van Oosterom AT, Baan RA, Berends F. Kinetics of the formation and removal of cisplatin-DNA adducts in blood cells and tumor tissue of cancer patients receiving chemotherapy:comparison with in vitro adduct formation [J]. Cancer Res.1990; 50:7887-7894.
    [225]Reed E PR, Gill I, Bicher A, Dabholkar M, Vionnet JA, Bostick-Bruton F, Tarone R, Muggia FM. Platinum-DNA adduct in leukocyte DNA of a cohort of 49 patients with 24 different types of malignancies [J]. Cancer Res.1993; 53:3694-3699.
    [226]Schellens JH MJ, Planting AS, van der Burg ME. van Meerten E. de Boer-Dennert M, Schmitz PI, Stoter G, Verweij J. Relationship between the exposure to cisplatin, DNA-adduct formation in leucocytes and tumour response in patients with solid tumours [J]. Br J Cancer.1996; 73:1569-1575.
    [227]van de Vaart PJ BJ, de Jong D, Sneeuw KC, Majoor D, Bartelink H. Begg AC. DNA-adduct levels as a predictor of outcome for NSCLC patients receiving daily cisplatin and radiotherapy [J]. Int J Cancer.2000; 89:160-166.
    [228]Poirier MC RE, Shamkhani H, Tarone RE, Gupta-Burt S. Platinum drug-DNA interactions in human tissues measured by cisplatin-DNA enzyme-linked immunosorbent assay and atomic absorbance spectroscopy [J]. Environ Health Perspect.1993; 99:149-154.
    [229]Reed E OR, Tarone R, Yuspa SH, Poirier MC. Platinum-DNA adducts in leukocyte DNA correlate with disease response in ovarian cancer patients receiving platinum-based chemotherapy [J]. Proc Natl Acad Sci U S A.1987; 84:5024-5028.