卵巢癌铂类耐药细胞系线粒体基因组和蛋白质组分析及其与临床耐药相关性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景和目的
     卵巢癌是死亡率最高的妇科恶性肿瘤。在肿瘤细胞减灭术的基础上辅助化疗的治疗策略虽然使疾病的预后得到改善,但晚期卵巢癌的5年生存率仍然徘徊在15-20%左右。肿瘤细胞对于化疗药物产生耐药性是主要原因之一。目前已知的卵巢癌耐药机制包括:1)化疗药物外流使肿瘤细胞内药物浓度降低。涉及的耐药基因和蛋白包括,MDR1,MRP和LRP等。2)肿瘤细胞对于抗肿瘤药物的转化和解毒功能增强。涉及谷胱甘肽S转移酶(GSTs)和P450家族等。3)化疗药物作用靶分子的改变,如拓扑异构酶Ⅱ、二氢叶酸还原酶等。4)DNA损伤修复功能加强,如甲基鸟嘌呤甲基转移酶(MGMT)活性增加。5)化疗药物不能诱导肿瘤细胞凋亡。现有的研究结果表明,耐药基因在卵巢癌中的表达并不能良好地预测肿瘤的耐药性和预后,结合有关逆转肿瘤耐药性的研究在体内达不到理想效果,说明还有许多未知的耐药机制没有认识。
     线粒体是普遍存在于真核细胞中的一种重要的细胞器,是细胞进行氧化磷酸化,产生ATP的主要场所。细胞生命活动所需能量的90%是由线粒体提供的。与其它存在于细胞浆的细胞器相比,其特别引人注目之处在于,线粒体是唯一一个含有DNA(mtDNA)并能进行转录和翻译的细胞器。mtDNA具有遗传功能,其转录和翻译过程受到核基因的控制。近年的研究表明mtDNA在肿瘤发生、信号传导和凋亡调节方面亦具有重要作用。线粒体的化学组成主要是蛋白质,其含量占线粒体干重的65%—70%。由于mtDNA所含有的信息量小,线粒体所具有的一系列繁复的生物功能所需的90%以上的酶及自身结构蛋白主要依赖于核基因组与细胞质的蛋白质合成。
     在上述五种卵巢癌化疗耐药的机制中,化疗药物外流使肿瘤细胞内药物浓度降低的机制,肿瘤细胞对于抗肿瘤药物的转化和解毒功能增强的机制等,直接与肿瘤细胞的氧化磷酸化,能量产生的过程有关。抑癌基因p53所具有的诱导肿瘤细胞凋亡的作用更是直接通过线粒体的活动而执行这一功能。与耐药机制相关的一些酶本身就位于线粒体内。探讨线粒体基因组和蛋白质组在化疗耐药过程中的改变对于认识卵巢癌的耐药机制具有积极意义。
     受国家自然科学基金委员会资助,本课题组开展的线粒体基因组与卵巢癌耐药性及预后的研究,通过对初治和复发(耐药)的卵巢癌肿瘤标本各10例的mtDNA的全长测序,共发现69个基因库未记载的新的多态性位点和17个突变位点,突变率为0.54/10,000bp,初治与复发标本中mtDNA的突变率无明显的差别。由于临床标本受研究对象的个体差异、有无原发耐药性等因素的影响,其mtDNA的突变是否为肿瘤耐药特异性的改变仍不得而知,这些改变对于线粒体内蛋白质组表达的影响更无从答案。
     本研究在分别获得卵巢癌铂类敏感型细胞系SKOV3和A2780、及其顺铂和卡铂耐药型细胞株的基础上,以其作为体外化疗耐药的模型,全面探讨卵巢癌化疗耐药对于线粒体基因组和蛋白质组表达的影响;在不同的临床标本上进一步验证化疗敏感和耐药细胞系差异表达蛋白质的改变。
     研究内容
     本研究的内容和方法包括以下四个部分:
     1.分别提取SKOV3和A2780化疗敏感型和顺铂/卡铂耐药型细胞株的mtDNA,PCR扩增并全长测序。分析化疗敏感型和耐药型细胞株mtDNA碱基突变数目及相应的氨基酸变化,观察化疗耐药性对mtDNA改变的影响。
     2.优化细胞系线粒体蛋白质提取技术。分别采用经典的非连续密度梯度离心法与反复差速离心法,提取卵巢癌敏感型细胞株SKOV3和A2780、及其顺铂和卡铂耐药型细胞株的线粒体蛋白质,经过电镜观察法和Western Blotting法对线粒体的形态和纯度进行鉴定。
     3.采用差示凝胶电泳(Difference Gel Electrophoresis,DIGE)制备卵巢癌敏感和耐药型细胞株的线粒体蛋白质表达谱。经过胶上蛋白原位酶切和MALDI—TOF—MS质谱仪对差异蛋白点进行肽质量指纹谱分析。通过Mascot软件在SwissPort和NCBInr数据库进行检索,判断可能与耐药相关的差异候选蛋白。以Western Blotting法验证ATP-α等三种差异表达蛋白质。
     4.选择卵巢上皮癌化疗敏感和耐药患者的肿瘤标本各21例,应用免疫组化法验证耐药型A2780/CDDP和A2780/CBP共同下调的线粒体蛋白质ATP-α在卵巢上皮癌组织中的表达。
     研究结果
     1.与基因库中正常细胞的mtDNA序列相比对,化疗敏感型SKOV3与顺铂/卡铂耐药型细胞株SKOV3/DDP、SKOV3/CBP碱基位点的突变数目分别为31、34、38;导致氨基酸改变的数目分别为5、8、10。化疗敏感型A2780与顺铂/卡铂耐药型细胞株A2780/DDP、A2780/CBP碱基位点改变的分别为43、37、40;导致氨基酸的改变数均为9。该6株卵巢癌细胞株mtDNA全长序列的碱基位点突变率为22.4/10,000bp。比较铂类敏感型与耐药型细胞株之间mtDNA碱基位点的突变情况,母代SKOV3(铂类敏感型)细胞经过体外铂类药物诱导耐药后,SKOV3/CDDP mtDNA的55个碱基位点较母本发生了突变;SKOV3/CBP中52个碱基位点较母本发生了突变。母代A2780经过体外铂类药物诱导耐药后,A2780/CDDP mtDNA的17个碱基位点较母本发生突变;A2780/CBP中12个碱基位点较母本发生突变。
     2.采用经典的差速离心/非连续密度梯度离心和反复差速离心两种方法提取卵巢癌细胞系线粒体蛋白质均获成功。以Western Blotting法对线粒体特异性蛋白抗体COX4、细胞核蛋白抗体Lamin-B、膜蛋白抗体Flotillin-1、胞浆骨架系统蛋白抗体β-actin等进行验证,结果显示两种方法提取的线粒体纯度均较好。电镜观察线粒体的纯度和形态,前一种方法所得的纯度虽高,但线粒体碎片较多;而后者所得的线粒体纯度好、线粒体碎片较少。比较线粒体的得率,收集1*10~8个细胞,前者获得的蛋白量约50ug(±);后者约250ug(±)。本研究选择了反复差速离心法作为最终提取线粒体蛋白质的方法。
     3.通过差示凝胶电泳(Difference Gel Electrophoresis,DIGE)与MALDI—TOF—MS质谱鉴定相结合的方法,分别对卵巢癌化疗敏感与耐顺铂和卡铂耐药细胞株,SKOV3与SKOV3/DDP、SKOV3与SKOV3/CBP、A2780与A2780/DDP、A2780与A2780/CBP进行比较蛋白质组分析,共显示出236个差异表达点,其中表达上调点为108个,表达下调点为128个。以差异的倍数高或两个以上细胞株共同具备的差异表达点为依据,对其中的19个蛋白差异点进行鉴定。结果表明,共鉴定出13个蛋白点。除3个为未明确蛋白外,其余10个均为下调蛋白,其中的5个为线粒体功能相关蛋白,分别为ATP-α、PRDX3、PHB、ETF、ALDH,均为核编码蛋白,多与线粒体的有氧能量代谢和呼吸链电子传递有关。在这5个差异蛋白质中,仅有ATP-α在A2780/CDDP和A2780/CBP耐药型细胞株中共下调。购得ATP-α、PRDX3、PHB三种抗体,采用Western Blotting法验证表明,三种蛋白质分别在耐药细胞株A2780/CDDP和A2780/CBP、SKOV3/CBP中表达下调。
     4.应用免疫组化法验证耐药型A2780/CDDP和A2780/CBP共同下调的线粒体蛋白质ATP-α在卵巢上皮癌组织中的表达。结果表明,化疗敏感组和耐药组各21例,两组患者的年龄、分期和组织学分类无差异。从免疫组化结果的数值看,化疗敏感组中ATP-α的表达率高于化疗耐药组,但两组不具备统计学差异(p=0.25)。
     研究结论
     1.卵巢癌化疗敏感和耐药细胞株mtDNA全长序列的碱基位点的突变数目为31~41个,高于本课题组关于卵巢癌组织中mtDNA的碱基位点突变数(17个)。卵巢癌细胞系体外经过铂类药物诱导耐药后,mtDNA较母本发生较明显的突变。但是,化疗药物作用后mtDNA的突变数SKOV3较A2780明显增多。
     2.采用经典的差速离心/非连续密度梯度离心和反复差速离心法提取卵巢癌细胞株线粒体均能获得高纯度的线粒体蛋白质。反复差速离心法用于细胞株线粒体蛋白质的提取具有线粒体得率较高,线粒体碎片相对较少的优点。
     3.差示凝胶电泳(DIGE)在传统双向电泳(2-D)技术的基础上,结合了多重荧光分析的方法,完成了本研究中线粒体蛋白质样本量较低的比较蛋白质组学分析。其所具备的独特的内标概念,使计算机软件系统全自动地根据每个蛋白点的内标对其表达量进行校准,从而保证了结果的准确性、可靠性和重复性。本研究中所鉴定出的部分细胞差异表达蛋白ATP-α、PRDX3、PHB、ETF、ALDH等均为核基因编码的蛋白质,均表达下调的蛋白,多与细胞的能量代谢和呼吸链电子传递有关。研究中未观察到线粒体mtDNA所编码的蛋白质改变可能与mtDNA所具有的遗传信息有限以及实验技术的局限性有关。
     4.应用免疫组化法验证线粒体蛋白ATP-α在卵巢上皮性癌组织中的表达,观察到ATP-α在化疗耐药组患者的卵巢癌组织中表达下调,但是在统计学上未达到显著性意义。
Background and objective:
     The mortality of ovarian cancer is the highest among the gynecological malignant.The prognosis of ovarian carcinoma has been improved by chemotherapy based on cytoreductive(CRS),however,5 years survival rate of the advanced disease is still between 15-20%,the drug resistence of tumor cells is the one of the main causes.
     The known mechanisms of chemo-resistance of ovarian cancer included:
     1) Outflow of chemotherapy drug decreases concentration in cells.MDR1,MRP和LRP are the mostly involved resistant gene and protein;2) Conversion and detoxification of anti-tumor drug by carcinoma cells is enhanced,involving GSTs and P450;3) Chemotherapy drugs result in modification of target molecule on cells,including TOPⅡand reductase of dihydrofolic acid;4) Enhancement of DNA repair,including MGMT;5) Chemotherapy drug was unable to induce apoptosis of cancer cells.The present studies have revealed that expression of drug resistance genes of OC fails to predict the drug resistance and prognosis,the study of retroconversion of drug resistance fail to be an ideal approach, which indicates that there remains much unknown the mechanism of drug resistance.
     Mitochondria,which is a vital cell organella universally in eukaryocyte,,provides sites for oxidative phosphorylation and generation of ATP,and is responsible for 90%of the energy for celluler metabolism.Differing from other organella,it is distinctive for containing DNA and ability to transcription and translation.mtDNA can inherit,the transcription and translation of which is under the regulation of nuclear gene.Recent researches have indicated that mtDNA plays an important role in tumorigenesis,signal transmission and apoptosis.Mitochondria mainly composed of protien which accounts for 65%—70%dry weight of the total.As mtDNA contains limited information,the enzymes and structure protien underlying the 90%of cellular function depend on nuclear gene-coded.
     Oxidative phosphorylation and energy production in carcinoma cells are directly related to part of the mechanisms of drug resistance mentioned above,including(namely) drug decreased drug concentration in cells for outflow of chemotherapy and enhancement of conversion and detoxification of anti-tumor drugs.Moreover,Mt are involed in the apoptosis of tumor cells induced by p53.In addition,some of the drug resistance related enzyme are just located in mitochondria.Therefore,mitochondria deserve investigation concerning genome and proteome as it is associated with drug resistance.
     Funded by national natural science committee,our team has explored in the field of mitochondrial genome and its relation to drug resistance and prognosis of OC.10 specimens of mtDNA sequence of primary OC and recurrent(resistant) OC have been conducted and new polymorphism and 17 mutations(mutational rate 0.54/10,000bp) were identified.There is no significant difference between the mutational rate of mtDNA in initial treatment specimen and that in recurrent specimen.Considering individual variation among subjects and possible influence of primary resistance,it remains to be elucidated whether the mtDNA mutation is specifically related to drug resistance as well as the effects on expression of proteome are caused by these mutations.
     In the study,the cisplatin resistance cell lines and carboplatin resistance cell lines derived from platinum sensitivity SKOV3 and A2780 served as the models of drug resistance induced by chemotherapy in vitro.We studied the effects of chemotherapy resistance on mtDNA mutation and expression of proteome.We further verified different expression protein in drug-sensitive and resistant specimens under different clinical conditions.
     Material and Motheds
     1.Extract the mtDNA from SKOV3 line,A2780 line,cisplatin resistant cell lines and carboplatin resistant cell lines,and then amplified them by PCR for sequencing.Analyse the sequences of the chemotherapy sensitive cell lines and the chemotherapy resistant cell lines as well as their corresponding alterations of amino acids.Observe the effects of chemotherapy resistance on mtDNA mutation.
     2.Optimized isolation technology for mitochondria from cell lines:classical discontinuous density gradient centrifugation and repeatedly fractions centrifugation were introduced for isoltion of mitochondria from SKOV3,A2780,and their respeative cisplatin resistant lines and carboplatin resistant lines.Observation of the morphology and evaluation of purity was performed with electron microscopy and Western Blotting.
     3.DIGE was used for presenting protein expression spectrum of mitochondria from chemotherapy sensitive cell lines and chemotherapy resistant cell lines.Using sequence-specific proteases to break up the proteins into peptides on the gel was performed and A peptide-mass map was generated to detect different expression proteins by MALDI—TOF—MS (mass spectrometer).Search for possible candidate chemo-resistance associated protein in SwissPort and NCBInr databases.Verified the three differential expression proteins with Western Blotting.
     4.The expression of mitochondrial protein ATP-α,which had been down-regulated in the drug-resisted cell lines A2780/CDDP and A2780/CBP,was reevaluated in 21 chemotherapy-sensitive OC specimens and 21 drug-resistant OC specimens with immunohistochemistry.
     Results:
     1.Compared with the normal cells,31、34 and 38 mutations occurred respectively in the mtDNA of SKOV3,SKOV3/DDP and SKOV3/CBP lines,with5,8 and 10 corresponding amino acids changes,respectively.43,37 and 40 mutations occurred respectively in the mtDNA of A2780,A2780/ DDP and A2780/ CBP lines,with 9 corresponding amino acids changes respectively均为9。For the 6 cell lines,the mutation rate of the mtDNA was 22.4/10,000bp. After induction of drug resistance in vitro,SKOV3/CDDP presented 55 mutations in mtDNA compared with their mother generations(SKOV3);SKOV3/CBP presented 52(compared with SKOV3);A2780/CDDP presented 17(compared with A2780);and A2780/CBP presented 12 mutations(compared with A2780).
     2.Successful isolation of mitochondria from OC cell lines was obtained by both classical uncontinuous density gradient centrifugation and repeatedly fractions centrifugation. Western Blotting revealed satisfactory purity was revealed by western blot.Under the electron microscopy,high purity with more mitochondrial debris was observed with density gradient centrifugation while high purity with less mitochondrial debris with differential centrifugation.As more protein was extracted by fractions centrifugation,finally,this technology was adopted in our study.
     3.Combination of DIGE and MALDI—TOF—MS was introduced for compare-proteome analysis of the following lines:SKOV3 and SKOV3/DDP、SKOV3 and SKOV3/ CBP、A2780 and A2780/ DDP,A2780 and A2780/ CBP,and 236 differential expression spots were discovered including 108 up-regulation and 128 down-regulation. Nineteen differential expression spots,whose expression differences significant or presented in more than 2 lines,were selected for identification.13 protein spots were identified and 10 were down regulated,5 of which were mitochondrial protein,namely,ATP-α、PRDX3、PHB、ETF、ALDH,coded by nuclear DNA and responsible for oxidative metabolism and electron transport respiratory chain.Of the 5 proteins,ATP-αis the only one down regulated in two lines,A2780/CDDP and A2780/CBP,down regulation of PRDX3 and PHB in SKOV3/CBP has been verified by Western Blotting as well.
     4.ATP-αin ovarian cancer tissue was verified by Immunohistochemistry.No statistical difference(p=0.25) was found between the chemotherapy sensitive group and chemotherapy resistant group,despite that a higher ATP-αexpression was observed in the chemotherapy sensitive group.
     Conclusions:
     1.There were 31~41 mutations in mtDNA from sensitive ovarian cancer cell lines and resistant lines,more than those from ovarian cancer tissue.There were much more mutations of mtDNA of drug-resistant SKOV3 than drug-resisted A2780.
     2.High purity mitochondria were obtained from ovarian cancer cell lines by classical uncontinuous density gradient centrifugation and repeatedly frantions centrifugation. repeatedly fractions centrifugation is superior due to higher extraction with less mitochondrial debris.
     3.DIGE,characterized by integrity of 2-DE technique and CyDye DIGE fluors, successfully processed the comparative proteomic analysis with lower amount of mitochondrial protein.With a specific internal standard integration,the software automatically directs the rectification of expression of protein.Thus the results are more accurate,reliable and reproducible.We identified some differentl expression proteins,such as ATP-α、PRDX3、PHB、ETF、ALDH,which are coded by nuclear genes and all down regulated.These proteins are associated with energy metabolism and electron transfer respiratory chain.No proteins encoded by mtDNA was observed in the different expression proteins and it may be related to limited genetic informations in mtDNA and limitation by experimental techniques.
     4.Immunohistochemistry to detect ATP-αexpression in ovarian cancer tissue demonstrated a down -regulation of ATP-αin ovarian cancer tissue of patients with drug-resistance,however,without statistical significant differences.
引文
1. Chu GCellular responses to cisplatin ;the roles of DNA-binding proteins and DNArepair.J Biol Chem 1994;269:787-90.
    
    2. Mihara M, Erster S, Zaika A, et al.p53 has a direct apoptogenic role at the mitochondria. Mol Cell 2003;11:577-90.
    
    3. Mann SC, Andrews PA, Howell SB, Short-term cisdiamminedichloroplatinum(II) accumulation in sensitive and resistant human ovarian carcinoma cells. Cancer Chemother Pharmacol 1990;25:236-40.
    
    4. Johnson WS, Ozols RF, Hamilton TC.Mechanisms of drug resistance in ovarian cancer.. Cancer 1993;71:644-9.
    
    5. Yao KS, Godwin AK, Johnson SW et al. Evidence for altered regulation of gamma-glutamycysteine synthetase gene expression among cisplatin-sensitive and cisplatin-resistant human ovarian cancer cell lines. Cancer Res 1995;55:4367-74.
    
    6. Katz EJ, Andrews PA, Howell SB. The effect of DNA polymerase inhibitor on the cytotoxicity of cisplatin in human ovarian carcinoma cells. Cancer Commun 1990;20:16-25.
    
    7. Johns DR. Mitochondrial DNA and disease. N Engl J Med , 1995 ,333(10) :638.
    
    8. Taylor SW,Fahy E,Zhang B,et al.Characterization of the human heart mitochondrial proteome,Nat Biotechnol 2003;21:281-286.
    
    9. Johns DR. Mitochondrial DNA and disease. N Engl J Med , 1995 ,333(10) :638
    
    10. Cavalli LR, Liang BC. Mutagenesis, tumorigenicity, and apoptosis: are the mitochondria involved?Mutat Res. 1998 Feb 26;398(1-2): 19-26.
    
    11. Fliss MS, Usadel H, Caballero OL, Wu L, Buta MR, Eleff SM, Jen J, Sidransky D. Facile detection of mitochondrial DNA mutations in tumors and bodily fluids. Science. 2000 Mar 17;287(5460):2017-9.
    
    12. Chen JZ, Kadlubar FF. Mitochondrial mutagenesis and oxidative stress in human prostate cancer. Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2004 May;22(1):1-12.
    
    13. Carew JS, Huang P. Mitochondrial defects in cancer. Mol Cancer. 2002 Dec 9;1(1):9.
    
    14. Wallace DC. Mitochondrial diseases in man and mouse. Science. 1999 Mar 5;283(5407):1482-8.
    
    15. Singh KK. Mitochondrial dysfunction is a common phenotype in aging and cancer. Ann N Y Acad Sci.2004 Jun;1019:260-4.
    
    16. Taylor SW,Fahy E,Zhang B,et al .Characterization of the human heart mitochondrial proteome.Nat Biotechnol.2003;21:281-286.
    
    17. Da Cruz S, Xenarios I,Langredge J, et al。 Proteomic analysis of the mouse liver mitochondrial inner membrane, J Biol Chem 2003 Oct 17;278(42):41566-71
    
    18. Scheffler NK, Miller SW, Carroll AK, et al. Two-dimensional electrophoresis and mass spectrometric identification of mitochondrial proteins from an SH-SY5Y neuroblastoma cell line.Mitochondrion 2001 ; 1 (2): 161-79.
    
    19. Karim Rezaul,Linfeng Wu,Viveka Mayya,et al. A Systematic characterization of mitochondrial proteome from human T leukemia cells.Molecular & Cellular Proteomics.2004;4(2) 169-181
    
    20. Petit, P. X, Goubern, M, Diolez, P, Susin, S, A, Zamzami, N, and Kroemer,G. Disruption of the outer mitochondrial membrane as a result of large amplitude swelling:the impact of irreversible permeability transition. FEBS Lett. 1998;426:111-116.
    21.柳君泽,高文祥,蔡明春等,ATP和缺氧暴露对大鼠脑线粒体RNA和蛋白质体外合成的影响.生理学报,2002; 54 (6): 485-489.
    
    22. J.M. Graham,T.Ford,D.Rickwood. Isolation of the major subcellular organelles from mouse liver using Nycodena gradients without the use of an ultracentrifuge. Analytical Biochemistry. 1900;187:318-323.
    23. Sickmann A, Reinders J, Wagner Y,Joppich C, Zahedi R, Meyer H E,Schonfisch B,Perschil I, Chacinska A, Guiard B.Rehling P, Pfanner N, Meisinger C.The preoteome of Saccharomyces cerevisiae mitochondria. PNAS, 2003; 100(23):13207-13212.
    
    24. Taylor S W, Fahy E, Zhang B, Glenn G M, Warnock D E,Wiley S, Murphy A N,Gaucher S P, Capaldi R A, Gibson B W, Ghosh S S. Characterization of the human heart mitochondrial proteome. Nature Biotec,2003;21(3):281-286.
    
    25. Lopez M F, Kristal B S, Chernokalskaya E, Lazarev A, Shestopalov A I, Bogdanova A, Robinson M. High-through put profiling of the mitochondrial proteome using affinity fractionation and automation. Electrophoresis, 2000;21:3427-3440. )。
    
    26. SchefflerNK, MillerSW, CarrollAK, et al.Two-dimensional electrophoresis and mass spectrometric identification of mitochondrial proteins from an SH-SY5Y neuroblastoma cell line. Mitochondrion. 2001; 1 (2): 161-179.
    
    27. Copeland WC, Wachsman JT, Johnson FM, et al. Mitochondrial DNA alterations in cancer. Cancer Invest. 2002;20:557-569. 107.
    
    28. Newmeyer DD, Ferguson-Miller S. Mitochondra:releasing power for life and unleashing the machineries of death. Cell. 2003; 112:481-490. 35.
    
    29. Jacob Kagan, Sudhir Srivastava Mitochondria as target for early detection and diagnosis of cancer.Critical Reviews in Clinical Laboratory Sciences.2005;42(5-6):453-472.
    
    30. Tonge R,Shaw J,Middleton B et al.Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics.Proteomics 2001; 1:377-396.
    
    31. Taylor SW, Fahy E, Zhang B, et al. Characterization of the human heart mitochondrial proteome. Nat Biotechnol. 2003;21:281-286.
    
    32. Andreoli C, Prokisch H, Hortnagel K et al.MitoP2,an integrated database on mitochondrial proteins in yeast and man.Nucleic Acids Res. 2004;32:Database issue:D459-462.
    
    33. Rezaul K, Wu L,Mayya V, et al.A systematic characterization of mitochondrial proteome from a human Tleukemia cells. Mol Cell Proteomics. 2005;4:169-181.
    
    34. Scharfe C, Zaccaria P, Hoertnagel K, et al.MIIOP, the mitochondrial proteome database:2000 update. Nuc Acid Res. 2000;28(1): 155-158.
    
    35. Andreoli C, Prokisch H, Hortnagel K, et al.MitoP2, an integrated database on mitochondrial proteins in yeast and man. Nuc Acid Res. 2004;32(90001) :459-462.
    
    36. Rabilloud T, Kieffer S, Procaccio V, et al. Two-dimensional electrophoresis of human placental mitochondrial and protein identification by mass spectrometry:toward a human mitochondrial proteome. Electrophoresis. 1998;19:1006-1014.
    
    37. Fountoulakis M, Bemdt P, Langen H, et al.The rat liver mitochondrial proteins. Electrophoresis. 2002;23:311-328.
    
    38. Mootha V K, Bunkenborg J, Olsen JV, et al. Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria. Cell. 2003;115(5)629-640.
    
    39. Cruz SD,Xenarios I,Langridge J, et al.Proteomic analysis of the mouse liver mitochondrial inner membrane. J Biol Chem. 2003;278(42) :41566-41571.
    
    40. Devreese B, Vanrobaeys F, Smet J, et al.Mass spectrometric identification of mitochondrial oxidative phosphorylation subunits separated by two-dimensional blue-native polyacrylamide gel electrophoresis. Electrophoresis.2002;23:2525-2533.
    
    41. Pflieger D, LeCaerJP, Lemaire C, et al. Systematic identification of mitochondrial proteins by LC-MS/MS. Anal Chem, 2002;74:2400-2406.
    42. Wang X. The expanding role of mitochondria in apoptosis. Genes Dev 2001;15:2922-33.
    
    43. Dang CV, Semenza GL. Oncogenic alterations of metabolism. Trends Biochem Sci 1999:24:68-72.
    
    44. Ziegler A, von Kienin M, Decorps M, Remy C. High glycolytic activity in rat glioma demonstrated in vivo by correlation peak 1H magnetic resonance imaging.Cancer Res 2001:61:5595-600.
    
    45. Cuezva JM, Ostronoff LK, Ricart J, Lopez de HM, Di LCM, Izqierdo JM. Mitochondrial biogenesis in the liver during development and oncogenesis .J Bioenerg Biomembr 1997;29:365-77.
    
    46. Isidoro A.Martinez M.Fernandez PL, et al. Alteration of the bioenergetic phenotype of mitochondria is a hallmark of breast .gastric .lung and oesophageal cancer.Biochem J 2004;378:17-20.
    
    47. Cuezva JM, Chen G, Alonso AM, et al. The bioenergetic signature of lung adenocarcinomas is a molecular marker of cancer diagnosis and prognosis. Carcinogenesis 2004;25:1157-63.
    
    48. Cuezva JM, Krajewska M, Heredia ML, et al.The bioenergetic signature of cancer:a marker of tumor progression. Cancer Res 2002;62:6674-81.
    
    49. Young-Kyoung Shin, Byong Chul Yoo,Hee Jin Chang, et al. Down-regulation of mitochondrial F1F0-ATP synthase in human colon cancer cells with induced 5-fluorouracil resistance. Cancer Res. 2005;65(8):3162-3170.
    
    50. Walker JE. The regulation of catalysis in ATPsynthse. Curr Opin Struct Biol 1994;4:912-8.
    
    51. Shchepina LA, Pletjushkina 0Y,Avetisyan AV,et al.Oligomycin, inhibitor of the F0 part of H+ -ATP-synthase, suppresses the TNF-induced apoptosis.Oncogene 2002;21:8149-57.
    
    52. Verschoor GJ, van der Sluis PR, Slater EC. The binding of aurovertin to isolate P subunit of F1(mitochondrial ATPase). Stoicheiometry of β subunit in F1.Biochim Biophys Acta 1977;462:438-49.
    
    53. Goldstein JC, Waterhouse NJ, Juin P, Evan GI, Green DR. The coordinate release of cytochrome c during apoptosis is rapid, complete and kinetically invariant.Nat Cel Biol 2000:2:156-62.
    
    54. Kass GEN, Eriksson JE, Weis M, et al. Chromation condensation during apoptosis requires ATP. [J], Biochem J, 1996,318, (3): 749-752.
    
    55. 吕桂芝,胡颖,张桂国等, ATP对人白血病细胞U937凋亡的影响。解剖学报, 2002; 33 (5): 546-549.
    
    56. Nijtmans, L. G. J.et al.The mitochondrial PHB complex:roles in mitochondrial respiratory complex assembly, aging and degenerative disease. CMLS. Cell. Mol. Life Sci. 2002;59:143-155.
    
    57. Artal-Sanz, M. et al.The mitochondrial prohibitin complex is essential for embryonic viability and germline function in Caenorhabditis elegans.J.Bio.Chem.2003;278:32091-32099.
    
    58. Sato T, Saito H, Swensen J, et al.The human prohibitin gene located on chromosome 17q21 is mutated in sporadic breat cancer. Cancer Res. 1992;52:1643-1646.
    
    59. Fusaro G, Wang S,Chellappan S.Differential regulation of Rb family proteins and prohibitin during camptothecin-induced apoptosis. Oncogene. 2002;21:4539-4548.
    
    60. Nijtmans, L. G. et al.Prohibitins act as a membrane-bound chaperone for the stabilization of mitochondrial proteins. EMB0 J. 2000; 19:2444-2451.
    
    61. Gina Fusaro, Piyali Dasgupta, Shipra Rastogi, et al. Prohibitin induces the transcriptional activity of P53 and is exported from the nucleus upon apoptotic signaling. The Journal of Biological Chemistry(JBC). 2003:278(48):47853-47861.
    
    62. Fellenberg,J.et al. Identification of drug-regulated genes in osteosarcoma cells. Int. J. Cancer. 2003;105:636-643.
    
    63. Nijtmans, L. G. J.et al.The mitochondrial PHB complex:roles in mitochondrial respiratory complex assembly, aging and degenerative disease. CMLS. Cell. Mol. Life Sci. 2002;59:143-155.
    
    64. Manjeshwar, S. et al. Tumor suppression by the prohibitin gene 3' untranslated region RNA in human breast cancer. Cancer Res. 2003;63:5251-5256.
    65. Soskams, A. J. et al.Cell cycle activity and expression of prohibitin mRNA. J. Cell. Physiol. 1993; 157:389-295.
    
    66. Jupe,E.R.et al.The 3' untranslated region of prohibitin and cellular immortalization.Exp.Cell Res. 1996;224:128-135.
    
    67. L. Vergani,M. Barile, C. Angelini, A. B. Burlina, L. Nijtmans.M. P.Freda, et al. Riboflavin therapy. Biochemical heterogeneity in two adult lipid storage myopathies, Brain 1999;122:2401-2411.
    
    68. Manuel Schiff, Roseline Froissart, Rikke K. J. Olsen, et al.Electron transfer flavoprotein deficiency:Functional and molecular aspects. Molecular Genetics and Metabolism.2006;88:153-158.
    
    69. Catherine Bertrand, Renee Dumoulin,Priscille Divry, Monique Mathieu and Christine Vianey-Saban.Purification of electron transfer flavoprotein from pig liver mitochondria and its application to the diagnosis of deficiencies of acyl-CoA dehydrogenases in human fibroblasts.Clinica Chimica Acta. 192;210:75-91.
    
    70. Riveros-Rosas H, Julian-Sanchez A,Pina E. Enzymology of ethanol and acetaldehyde metabolism in mammals. Arch Med Res 1997;28:453-471.
    
    71. Tomonari Matsuda, Hisatoshi Yabushita, Robert A. Kanaly et al. Increased DNA Damage in ALDH2-Def icient Alcoholics. Chem. Res. Toxicol. 2006; 19:1374-1378.
    
    72. Ashmarin LP, Danilova RA, Obukhova MF. Main ethanol metabolizing alcohol dehydrogenases(ADH I and ADH IV):biochemical functions and the physiological manifestation. FEBS Lett 2000;486:49-51.
    
    73. Wojciech Jelski, Lech Chrostek, Wlodzimierz Markiewicz, et al.Activity of Alcohol Dehydrogenase(ADH) Isoenzymes and Aldehyde Dehydrogenase(ALDH) in the Sera of Patients With Breast Cancer. Journal of Clinical Laboratory Analysis. 2006;20:105-108.
    
    74. Tomonari Matsuda, Hisatoshi Yabushita, Robert A. Kanaly et al. Increased DNA Damage in ALDH2-Def icient Alcoholics. Chem. Res. Toxicol. 2006; 19:1374-1378.
    
    75. Ashmarin LP, Danilova RA, Obukhova MF. Main ethanol metabolizing alcohol dehydrogenases (ADH I and ADH IV):biochemical functions and the physiological manifestation. FEBS Lett 2000;486:49-51.
    
    76. Riveros-Rosas H, Julian-Sanchez A,Pina E.Enzymology of ethanol and acetaldehyde metabolism in mammals. Arch Med Res 1997;28:453-471.
    
    77. Ashmarin LP, Danilova RA, Obukhova MF. Main ethanol metabolizing alcohol dehydrogenases (ADH I and ADH IV):biochemical functions and the physiological manifestation. FEBS Lett 2000;486:49-51.
    
    78. Bosron, W. F, Li, T. K. Genetic polymorphism of human liver alcohol and aldehyde dehydrogenases, and their relationship to alcohol metabolism and alcoholism.Hepatology. 1986;6:502-510.
    
    79. Brooks P,Theruvathu J. A. DNA adducts from acetaldehyde:implications for alcohol-related carcinogenesis. Alcohol.2005;35:187-193.
    
    80. Huai-Rong Luo, Yedy Israel, Guang-Chou Tu, C. J. Peter Eriksson, and Ya-Ping Zhang . Genetic Polymorphism of Aldehyde Dehydrogenase 2(ALDH2) in a Chinese Population:Gender,Age,Culture,and Genotypes of ALDH2. Biochemical Genetics. 2005;43:5213-18.
    
    81. Yokoyama A,Omori T.Genetic polymorphisms of alcohol and aldehyde dehydrogenases and risk for esophageal and head and neck cancers. Jpn. J. Clin. Oncol. 2003;33:111-121.
    
    82. SIMON HU,HAJ-YEHIA A, LEVI-SCHAFFER F. Role of reactive oxygen species(ROS) in apoptosis induction J. Apoptosis 2000, 5(5) :415-418.
    
    83. SUSI NS A, ZAMLAM N.CASTED 0 M, et al.Bcl-2 inhibits the mitochondrial release of an apoptogenic protease J. JE x pMe 1996; 184(4) : 1331-1341.
    
    84. BAIER M, DET ZKJ. Alkyl hydroperoxidereductases:the via out of the oxidative breakdown of lipids in chloroplasts J. Tren Plant Sci, 1999;4(5):166-168.
    85.Kang SW,Baines IC and Rhee SG:Characterization of a mammalian peroxiredoxin that contains one conserved cysteine.J Biol Chem 1998;273(11):6306-6311.
    86.NOHD Y,AHN SJ,LEER A,et al.Overexpression of peroxiredoxin in human breast cancer J.Anticancer Res,2001,3B:2085-2090.
    87.CHOI JH,KI MTN,KI MS,et al.Overexpression of mitochondrial thioredoxin reductase and peroxiredoxin Ⅲ in hepatocellular carcinomas J,Anticancer Res,2002,6A:3331-3335.
    88.KINNUL AVL,LEHTONE NS,SORMUNE NR,et al.Overexpression of peroxiredoxins Ⅰ,Ⅱ,Ⅲ,Ⅴ,and Ⅵ in malignant mesothelioma J.J Pathol,2002;l(3):316-323.
    89.Kang SW,Chae HZ,Seo MS,Kim KW,Baines IC and Rhee SG:Mammalian peroxiredoxin isoforms can reduce hydrogen peroxide gengerated in response to growth factor and tumor necrosis factor-alpha.J Biol Chem.1998:273(11):6297-6302.
    90.Tong-Shin Chang,Chun-Seok Cho,Sunjoo Park,et al.Peroxiredoxin Ⅲ,a Mitochondrion-specific Peroxidase,Regulates Apoptotic Signaling by Mitochondria.Whe Journal OF Biological Chemistry.2004;279(40)41975 41984.
    91.Dong-Young Noh,Soo-Hung Ahn,Ryung-Ahlee et al.Overexpression of Peroxiredoxin in Human Breast Cancer.Anticancer Research.2001;21:2085-2090.
    92.Kahlos K,Anttila S,Asikainen T,et al.Manganese superoxide dismutase in healthy human pleural mesothelium and in malignant pleural mesothelioma.Am J Respir Cell Mol Biol 1998;18:570-580.
    93.Thompson CB.Apoptosis in the pathogenesis and treatment of disease.Science,1995;267:1456-1462.
    94.Kerr JFR.Apoptosis:a basic biology phenomenon with wide-ranging implication in tissue kinetics,Br J Cancer,1972,26:269 257.
    95.Ericdaugas,Santos A.Suain,Naoufal Zamzami,et al.Mitochondrion-nuclear translocation of AIF in apoptosis and necrosis.The FASEB Jonrnal,2000;14:729-739.
    96.刘丽君,彭建新,洪华珠等.线粒体在细胞凋亡中的变化与作用.细胞生物学杂志,2005;27:117-120.
    97.方希敏.细胞色素C与细胞凋亡.国外医学临床生物学与检验学分册,2005:26(1):43-46.
    98.Hengartner MO.The biochemistry of apoptosis.Nature.2000;407(6805):770-6.
    99.Chu G.Cellular responses to cisplatin;the roles of DNA-binding proteins and DNArepair.J Biol Chem 1994;269:787-90.
    100.Mihara M,Erster S,Zaika A,et al.p53 has a direct apoptogenic role at the mitochondria.Mol Cell 2003;11:577-90.
    101.Susin SA,Lorenzo HK,Zamzami N,et al.Molecular characterization of mitochondrial apoptosis-inducing factor.Nature.1999;397(6718):441-6.
    102.Cuezva JM,Krajewska M,Heredia ML,et al.The bioenergetic signature of cancer:a marker of tumor progression.Cancer Res 2002;62:6674-81.
    103.Young-Kyoung Shin,Byong Chul Yoo,Hee Jin Chang,et al.Down-regulation of mitochondfial FIFO-ATP synthasein human colon cancer cells withinduced 5-fluorouracil resistance.Cancer Res.2005;65(8):3162-3170.
    104.Cuezva JM,Krajewska M,Heredia ML,et al.The bioenergetic signature of cancer:a marker of tumor progression.Cancer Res 2002;62:6674-81.
    105.Isidoro A,Martinez M,Fernandez PL,et al.Alteration of the bioenergetic phenotype of mitochondria is a hallmark of breast,gastric,lung and oesophageal cancer.Biochem J 2004;378:17-20.
    1.Fang M,Zhang HQ,Xue SB,et al.Apoptosis resistance and its reversal in Harrington to nine resistant cell line.Yao Hsuch H such P ao.1994;29:891.
    2.Grant CE,Valdimarsson G,Hipfner DR,et al.Overexpression of multidrug resistance associated protein(MRP) increase resistance to natural product drugs Cancer Res,1994;54:357.
    3.Izquierdo MA,Scheffer GL,Flens MJ,et al Relationship of LRP human major vault protein to in vitro and clinical resistance to anticancer drugs Cytotechnology,1966,19:191.
    4.Chu G.Cellular responses to cisplatin;the roles of DNA-binding proteins and DNArepair.J Biol Chem 1994;269:787-90.
    5.Mann SC,Andrews PA,Howell SB,Short-term cisdiamminedichloroplatinum(Ⅱ) accumulation in sensitive and resistant human ovarian carcinoma cells.Cancer Chemother Pharmacol 1990;25:236-40.
    6.Johnson WS,Ozols RF,Hamilton TC.Mechanisms of drug resistance in ovarian cancer..Cancer 1993;71:644-9.
    7.Yao KS,Godwin AK,Johnson SW et al.Evidence for altered regulation of gamma-glutamycysteine synthetase gene expression among cisplatin-sensitive and cisplatin-resistant human ovarian cancer cell lines.Cancer Res 1995;55:4367-74.
    8.Katz EJ,Andrews PA,Howell SB.The effect of DNA polymerase inhibitor on the cytotoxicity of cisplatin in human ovarian carcinoma cells.Cancer Commun 1990;20:16-25.
    9.陈慧君,吴绪峰,陈惠祯.TopoⅡα、6ST-л.P-gp在卵巢癌化疗耐药中的作用.肿瘤防治研究.2006;33(3):197-199.
    10.夏奇,裘雅芬.LRP和P-gp在卵巢上皮性癌组织中的表达及与化疗耐药关系的探讨.浙江临床医学,2003:7(5):501-502.
    11.Coley HM,Drug resistance studies using fresh human ovarian carcinoma and soft tissue carcoma samples.Keio J Med,1997;46:142-147.4
    12.Kavallaris M,Leary JA,Barrett JA,et al.MDRI and multidrug resistance-associated protein(MRP) gene expression in epithelial ovarian tumors.Cancer Lett,1996;102(1-2):7-16.
    13.Rappa G,Lorico A,Favell RA,et al.Evidence that the multidrug resistance protein(MRP) from gene knock out models.Biochem Pharmacol,1999;58(4):557-562.
    14.Sharp SY,Smith V,Hobbs S,et al.Lack of a role for MRP1 in platinum drug resistance in human ovarian cancer cell lines.Br J Cancer,1998;78(2):175-180.
    15.Laurencot CM,Scheffer GL,Scheper RJ,et al,lncreased LRP mRNA expression is associated with the MDR phenotype in intrinsically resistant human cancer cell lines.ln J Cancer,1997;72(6):1021 - 1026.
    16.Izquierdo MA,van der Zee AG,Vermorken JB,et al.Drug resistance-associated marker LRP for prediction of response to chemotherapy and prognoses in advanced carcinoma,J Natl Cancer Inst,1995;87(16):1230-1237.
    17.Dalton WS,Scheper RJ.Lung resistance-related protein:Determining its role in multidrug reisitance J.Natl Canc Inst,1999;91(19):1604-1605.
    18.夏奇,谢幸,叶大风等,肺耐药蛋白在上皮性卵巢癌中的表达及临床意义,现代妇产科进展,2002;11(1):24-26
    19.ltengstler JG,Pilch H,Schmidt M,et al.Metallothionein expression in ovarian cancer in relation to histopathological parameters and molecular marker of prognosis.Int J Cancer,2001;95(2):121-127.
    20.Surowiak P,Matema V,Maciejczyk A,et al.Nuclear metallothionein expression co,elates with cisplatin resistance of ovarian cancer cells and poor clinical outcome.Virchows Arch.2007;450(3):279-85.
    21.王薇,高庆蕾,乌素芳等,上皮性卵巢癌组织中金属硫蛋白与肺耐药蛋白的表达及意义,中国实用妇科与产科杂志,2004:20(3):152-154.
    22.Wang LS,Chow KC,Wu Yc,et al.lnverse expression of dihydrodiol dehydrogenase and glutathione-S-transferase in patients with esophageal squamous cell carcinoma.Int J Cancer.2004:111(2):246-251.
    23.Pias EK,Aw TY.Apoptosis in mitotic competent undifferentiated cells is induced by cellular redox imbalance independent of reactive oxygen species production J.FAS EB,2002(8);781-790.
    24.Coffey RN,Watson RW,Hegarty PK,et al.Priming prostate carcinoma cells for increated apoptosis is associated with up-regulation of the caspases J.Cancer.2001;92(9):2297-2308.
    25.Domenicotti C,Paola D,Vitali A,et al.Glutathione depletion induces apoptosis of rat hepatocytes through activation of protein kinase C novel isoforms and dependent increase in AP-1 nuclear binding J.Fr Radic Biol Med,2000;29(12):1280-1290.
    26.Armstrong JS,Steinauer KK,Hornung B,et al.Role of glutathione depletion and reactive oxygen species generation in apoptosis signaling in a human B lymphoma cell line J.Cell Death Differ,2002(3):252-263.
    27.Liu J,Shen HM,Ong CN,Role of intracellular thiol depletion,mitochondrial dysfunction and reactive oxygen species in Salvia miltiorrhizarinduced apotosis in human hepatoma HepG2 cells J.Life Sc 2001,69(16):1833-1850.
    28.STAVROVSKAYA A A.Cellular mechanisms of multidrug resistance of tumor cells J Biochemistry(Mosc),2000;22(47):7369-7375.
    29.Tanoguchi K,Sasano H,Yabuki N,et al.Immunohistochemical and two-parameter flow cytometric of DNA topoisomerase Ⅱ alpha in human epithelial ovarian carcinoma and gern cell tumor.Mod Pathol,1998;11(2):99-104.
    30.Bjergback L,Kingma P,Nielsen Is,et al.Communication between the ATPase and cleavage/relegation domains of human topoisomerase Ⅱ alpha.J Biol Chem.2000;275(17):13041-13048.
    31.Vikhanskaya F,Clerico L,Valenti M,et al.Mechanism of resistance to cisplatin in a human ovarian-carcinoma cell line selected for resistance to doxorubicin:possible role of p53.Int J Cancer,1997,72(1):155-168.
    32.Kigawa J,Takahashi M,Minagawa Y,et al.Topoisomeras- Ⅱ activity and response to second-line chemotherapy consisting of camptothecin-Ⅱ and cisplatin in patients with ovarian cancer.Int J Cancer.1999;84(5):521-524.
    33.Zhang B,Pan JS,Liu JY et al.Effects of chemotherapy and/or radiotherapy on surviving expression in ovarian cancer.Methods Find Exp Clin Pharmacol.2006;28(9):619-25.
    34.Nakamura M,Tsuji N,Asanuma K.Survivin as a predictor of cis-diamminedichloroplatinum sensitivity gastric cancer patients.Cancer Sci.2004;1:44-51.
    35.Ro L,Yi M,Carolyn C,et al.Survivin as a therapeutic target for radiation sensitization in lung cancer.Cancer Res 2004;64:2840-2845.
    36.Lo Muzio L,Farina A,Rubini C,et al.Survivin as prognostic factor in squamous cell carcinoma of the oral cavity.Cancer Lett 2005;225:27-33
    37.Warnexke-Eberz U,Hokita S,Xi H et al.Overexpression of surviving Mrna is associated with a favorable prognosis following neoadjuvant radiochemotherappy in esophaged cancer.Oncol Rep 2005;13:1241-6.
    38.Ruley HE.p53 and response to chemotherapy and radiotherapy.In:DeVita VT,Hellman S,Tosenberg SA.Principles and practice of oncology updates.Philadelphia:Lippincott-Raven,1997;11:1-19.
    39.闫雪冬,p53与卵巢癌的基因治疗.中国肿瘤生物治疗杂志,2005;12(2):155-157.
    40.Lane DP.p53,guardian of the genome.Nature 1992;358:15-6.
    41.EL-Deity WS,Harper JW,O'Connor PM,et al.WAF1/CIP1 is induced in p53-mediated GI arrest and apoptosis.Cancer Res 1994;54:1169-74.
    42.Kastan MB,Canman CE,Leonard CL.P53,cell cycle control and apoptosis:Implications for cancer.Cancer Metastasis Rev1995;14:3-15.
    43.Nunez G,Clarke MF.The Bcl-2 family of proteins:Regulators of cell death and survival.Trends Cell Bio11994;4:399-403.
    44.Skilling JS,Squartrito RC,Connor JP,et al.p53 gene mutation analysis carcinoma cell lines.Cancer Res 1992;52:4196-9.
    45.Ferreira CG,Tolis C,Giaccone G.P53 and chemosensitivity.Ann Oncol 1999;10:1011-21.
    46.Herod JJO,Eliopoulos AG,Warwick J et al.The prognostic significance of Bcl-2 and p53 expression in ovarian carcinoma.Cancer Res 1996;56:2178-84.
    47.Nicholson DW,Thomberry NA,Apoptosis:life and death decisions.Science,2003;299(6504):214-215.
    48.Hersey P,Zhang XD,Overcoming resistance of cancer cells to apoptosis.J Cell Physiol.2003;196(1):9-18.
    49.Shangary S,Johnson DE,Recent advances in the development of anticancer agents targeting cell death inhibitors in the bcl-2 Drotein family.Leukemia.2003;17(8):1470-81.
    50.李佳平,李英勇,刑洪贵等,bcl-2基因与人卵巢癌细胞毒药耐药机制的研究,四川肿瘤防治,2005;18(1):1-3.
    51.张燕玲,岳冀蓉,萤碧蓉,耐药肺癌细胞caspase8、bcl-2、细胞色素C及bcl-2mRNA的异常表达,四川大学学报,2005:36(6):786-788.
    52.Bradford W,Gibson.The human mitochondrial proteome:oxidative stress,protein modifications and oxidative phosphorylation.Int J Biochem Cell Biol.,2005;37(5):927-934.
    53.Rezaul K,Wu L,Mayya V,et al.A Systematic characterization of mitochondrial proteome from human T leukemia cells.Mol Cell Proteomics.2005;4(2):169-81.
    54.Taylor SW,Fahy E,Zhang B,et al.Characterization of the human heart mitochondrial proteome,Nat Biotechnol 2003;21:281-286.
    55.Kaqan J,Srivastava S.Mitochondria as a target for early detection and diagnosis of cancer.Crit Rev Clin Lab Sci.2005;42(5-6):453-72.
    56.Copeland WC,Wachsman JT,Johnson FM,et al.Mitochondrial DNA alterations in cancer.Cancer Invest 2002;20:557-569.
    57.Newmeyer DD,Ferguson-Miller S.Mitochondria:releasing power for life and unleashing the machineries of death.Cell 2003;112:481-490.
    58.Cipolat S,Martins de Brito O,Dal Zilio B,et al.OPA1 requires mitofusin 1 to promote mitochondrial fusion.Proc Natl Acad Sci USA 2004;101:15927-15932.
    59.Krieq RC,Knuechel R,Schiffmann E,et al.Mitochondrial proteome:cancer-altered metabolism associated with cytochrome C oxidase subunit level variation Proteomics.2004;4(9):2789-95.
    60.付玉荣,邱宗荫,颜玉蓉.羟基喜树碱诱导SMMC-7721细胞调亡时线粒体调广诱导因子的转位研究,2006;14(4):285-288.
    61.Hirama M,Isonishi S,Yasuda M,et al.Characterization of mitochondria in cisplatin-resistant human ovarian carcinoma cells.Oncol Rep.2006;16(5):997-1002.
    62.史宏辉,潘凌亚,杨秀玉等,化疗后卵巢癌组织中线粒体DNA的变化,中华妇产科杂志,2005;40(7):469-471.