中国青蟹属种类组成和拟穴青蟹群体遗传多样性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
青蟹是我国重要的海洋经济蟹类。本文通过形态学和分子标记方法,研究青蟹属在中国大陆东南沿海的种类组成,明确优势种的种类;分析优势种拟穴青蟹S.paramamosain的遗传多样性和遗传分化。为我国青蟹种质资源的可持续利用及保护,加速遗传育种提供科学依据。
     采集了13个地区共413只野生青蟹。通过形态比较,确认有4个种,它们是:锯缘青蟹(Scylla serrata),紫螯青蟹(S.tranquebarica),拟穴青蟹(S.paramamosain),榄绿青蟹(S.olivacea)。这4个种类可以从头胸甲额缘4个齿的长度(FMSH/DFMS)、形状,螯足腕节内刺的有无、螯足及步足斑纹来区分。其中拟穴青蟹S.paramamosain在中国大陆东南沿海分布最广,数量最多,其他3个种仅在海南沿海和北部湾被发现。
     对锯缘青蟹,紫螯青蟹,拟穴青蟹,榄绿青蟹这4种青蟹的线粒体COI基因片段进行了测序,分析研究了其种间遗传差异及系统发育关系。研究结果显示:4种青蟹在COI基因片段上存在差异,种间遗传距离平均为0.1413,种内遗传距离平均为0.0062。种间序列差异远大于种内差异。优势种与GenBank中己知的S.paramamosain COI序列比较,遗传距离为0.0013,与S.serrata的遗传距离为0.1213。序列特征、遗传距离和系统进化等分析结果支持形态分类的结果,即中国青蟹属的优势种为拟穴青蟹S.paramamosain。
     采用RAPD和AFLP技术对中国拟穴青蟹13个野生群体和3个养殖群体共480个标本做了遗传多样性和遗传分化分析。
     RAPD标记的结果显示,各野生地理群体的多态位点百分数在26.79-38.39%之间;有效等位基因数Ne为1.2473-1.3094;Shannon信息指数在0.1511-0.1888之间;遗传多样性指数h为0.1097-0.1372。AFLP标记的结果显示,各野生地理群体的多态位点百分数在61.45-65.85%之间;有效等位基因数Ne为1.1478-1.2103;Shannon信息指数在0.2360-0.2927之间;遗传多样性指数h为0.1503-0.1881。RAPD和AFLP分子标记的结果均显示拟穴青蟹的遗传多样水平较低。采用RAPD、AFLP两种标记得到的野生群体间的遗传分化指数G_(st)分别为0.0154-0.0512和0.0029-0.0669,表明拟穴青蟹野生群体间有一定遗传分化,但分化程度不高;超过95%的遗传变异来自于群体内。
     采用RAPD、AFLP分子标记分析了拟穴青蟹各养殖群体的遗传多样性。RAPD标记表明,3个养殖群体的多态位点百分数、有效等位基因数Ne、Shannon信息指数、遗传多样性h分别为40.32%、1.2693、0.2011、0.1516;相同地点3个野生群体的分别为41.56%、1.3966、0.2083、0.1598。AFLP标记表明,3个养殖群体的多态位点百分数、有效等位基因数Ne、Shannon信息指数、遗传多样性h分别为66.29%、1.2589、0.2901、0.1846;相同地点3个野生群体的分别为68.68%、1.2611、0.2962、0.1895。野生群体各项遗传多样性指标均比养殖群体的略高。RAPD、AFLP 2种分子标记分析的遗传距离结果分别为0.0253、0.0316。养殖群体与13个野生群体聚类分析结果显示,汕头养殖群体与汕头野生群体较接近,而厦门、福州养殖群体则与北部湾的野生群体较相近。遗传距离和2种分子标记的聚类分析结果均显示养殖群体与野生群体没有明显的分化。
In order to study on the species composition and dominant species in the coastal waters of southeastern China in genus Scylla, 413 individuals were collected from 13 sites and 24 measurements were taken. By morphological comparison, there are 4 species being identified, namely S. serrata, S. tranquebarica , S. paramamosain, S. olivacea. The four species can be distinguished by means of the length and shape of the four frontal spines, with or without inner carpus spine and the polygonal patterning of chelipeds and legs. S. paramamosain is the most dominant and the other three species be found in Hainan waters and Beibu Bay only. The morphological characters and a key to Genus Scylla for 4 species are also given.
     The sequences of mtDNA COI gene fragment of 4 species of mud crabs: S. serrata (Forsk(?)l,1775), S.tranquebarica (Fabricius, 1798), S.olivavea(Herbst,1796), S.paramamosain(Estampador,l949), collected from the coastal waters of southeastern China were analyzed. The genetic difference means 0.0062 intraspecific, while 0.1413 interspecific. The NJ tree shows that all four species formed reciprocal monophyletic groups. These provide additional conclusive evidence that there are four distinct species of mud crab in China. The genetic distance between dominant species and the known S. paramamosain(GenBank accession number: AY373351) is 0.0013, and 0.1213 between dominant species and the known S.serrata(GenBank accession number: AY373341). The results of sequence analysis, genetic distance, and NJ clustering have proved that the dominant species is S.paramamosain.
     S. paramamosain, the dominant species, is most widely distributed in the coastal waters of southeast China and commonly occurring in estuarine and mangrove waters. The genetic structure and genetic diversity in 480 individuals including 13 wild populations and 3 cultured ones were analyzed using RAPD and AFLP.
     By RAPD, the percentage of polymorphic loci among wild populations range from 26.79-38.39%, the effective number of alleles per locus(Ne) range from 1.2473-1.3094, the Shannon's Information index range from 0.1511-0.1888 and the Nei's gene diversity(h) range from 0.1097-0.1372. By AFLP, the percentage of polymorphic loci among wild populations range from 61.45-65.85%, the effective number of alleles per locus(Ne) range from 1.1478-1.2103, the Shannon's Information index range from 0.2360-0.2927 and the Nei's gene diversity(h) range from 0.1503-0.1881. The results of RAPD and AFLP show that the genetic diversity of S. paramamosain is low. G_(ST) among wild populations of S. paramamosain ranges from 0.0154-0.0512 and 0.0029-0.0669 by RAPD and AFLP respectively. Genetic differentiation index indicates there exists some differentiation among different populations of S. paramamosain, but the differentiation is low. More than 95% of genetic diversity was derived from within the populations.
     The genetic diversity of 3 cultured and 3 wild populations from the same sites are compared. The percentage of polymorphic loci, the effective number of alleles per locus(Ne), the Shannon's Information index, and the Nei's gene diversity(h) of cultured populations are 40.32%, 1.2693,0.2011,0.1516 respectively. While the wild ones are 41.56%, 1.3966, 0.2083,0.1598 respectively by RAPD. The percentage of polymorphic loci, the effective number of alleles per locus(Ne), the Shannon's Information index, and the Nei's gene diversity(h) of cultured populations are 66.29%, 1.2589, 0.2901, 0.1846 respectively. While the wild ones are 68.68%, 1.2611, 0.2962, 0.1895 respectively by AFLP. The cultured populations are lower than wild ones in genetic diversity. The genetic distance between the cultured and wild populations is 0.0253 and 0.0316 by RAPD and AFLP respectively. The result of Cluster's analysis between the cultured populations and 13 wild populations show that Shantou cultured population is closely related to Shantou wild population, Xiamen cultured population and Fuzhou one are closely related to the Beibu Bay group but not to the local wild populations. The results of genetic distance and Cluster's analysis show that genetic differentiation between cultured and wild populations is also not distinct.
引文
[1] 陈丕茂.广东人工鱼礁区增殖放流种类初探[J].南方水产,2005,1(1):12-20.
    [2] 范小建,张玉香,张天佐等.中国农业统计资料[z].中国农业出版社,2003,160.
    [3] 范小建,张玉香,张天佐等.中国农业统计资料[Z].中国农业出版社,2004,160.
    [4] 牛盾,张玉香,张天佐等.中国农业统计资料[Z].中国农业出版社,2005,156.
    [5] 牛盾,张玉香,张天佐等.中国农业统计资料[z].中国农业出版社,2006,134.
    [6] 李少菁,王桂忠.锯缘青蟹繁殖生物学及人工育苗和养成技术的研究[J].厦门大学学报,2001,40(2):552-565.
    [7] 王桂忠,林淑君,林琼武等.盐度对锯缘青蟹(Scylla serrata)幼体存活与生长发育的影响[J].水产学报,1998,22(1):89-92.
    [8] 曾朝曙,王桂忠,李少菁.锯缘青蟹胚胎发育的观察及温度影响胚胎发育的研究[J].福建水产,1991,(1):41-50.
    [9] 曾朝曙,李少菁.锯缘青蟹幼体实验生态研究Ⅰ.饵料对幼体存活与发育的影响[C].甲壳动物学论文集(第三缉).青岛:青岛海洋大学出版社,1992:85-94.
    [10] 王桂忠,李少菁,林琼武.锯缘青蟹人工育苗和养成试验研究[J].福建水产,1994,(3):4-8.
    [11] 汤鸿,李少菁,王桂忠等.铜、锌、镉对锯缘青蟹代谢酶活力影响的实验研究[J].厦门大学学报(自然科学版).2000,39(4):521-525.
    [12] 李少菁,汤鸿,王桂忠等.锯缘青蟹胚胎发育过程中几种水解酶活力的比较研究[J].厦门大学学报(自然科学版),1995,34(6):970-974.
    [13] 韩保平.菲律宾的锯缘青蟹养殖[J].水产科技情报,1999,26(2):78-81.
    [14] Estampador, D.P.. Studies on Scylla (Crustacea: Portunidae), Ⅰ revision of the genus[J]. Phillip J Sci, 1949,78:95-108.
    [15] Serène R.. Les especes du genre Scylla à Nhatrang (Viet-Nam)[C]. Pore. Indo-Pacific. Fish. Coun. 3rd. Meeting, Madras 1951 Section Ⅱ,1952,133-137.
    [16] Stephenson W., Campbell B.. The Australian Portunids (Crustacea: Portunidae)Ⅳ. Remaining Genera[J]. Aust. J. Mar. Freshwat. Res., 1960,11(1):73-122.
    [17] Holthuis, L. B.. A collection of decapod Crustacea from Sumba, Lesser Sunda Islands, Indonesia[J]. Zool. Verh., 1978,162:1-55.
    [18] Joel D.R., Raj P.J.S.. Taxonomic remarks on two species of the genus Scylla de Haan (Portunidae: Brachyura) from Pulicat Lake[J]. Journal of the Inland Fisheries Society of India, 1980,12(2):39-50.
    [19] Radhakrishnan C. K., Samuel C. T.. Report on the occurrence of one subspecies of Scylla serrata (Forsk(?)l) in Cochin Backwaters[J]. Fisheries Technology, 1982, 19:5-7.
    [20] Oshiro N., Mangrove crabs (Scylla spp.). In: S. Shokita, K. Kakazu, A. Tomori, & T. Toma(Eds)[R].Aquaculture in Tropical Areas. 1991,218-229.
    [21] Kathirval M., Srinivasagam S.. Taxonomy of the mud crab, Scylla serrata (Forsk(?)l), from India[C]. The mud crab. A report on the seminar convened in Surat Thani, Thailand. Angell C A, eds, Bay of Bengal Programme, Madras, India, 1992,211-221.
    [22] Fuseya R., Watanabe S.. Cenetic variability in the mud crab genus Scylla (Decapoda: Portunidae) [J]. Fish.Sci., 1996,78(1):95-109.
    [23] Overton J.L., Macintosh, D.J., Thorpe, R.S.. Multivariate analysis of the mud crab Scylla serrata (Brahyura: Portunidac) from four locations in Southeast Asia[J]. Marine Biology, 1997,128:55-62.
    [24] #12
    [25] Sugama K., John H.. Genetic charaterisation in the mud crab Scylla (Brachyura: Portunidae).In: Mud Crab Scientific Forum.[M]. 1997,20-24.
    [26] Klinbunge A., Boonyapakdee B., Pratoomchat B.. Genetic diversity and species-diagnostic markers of mud crabs (Genus Scylla) in eastern Thailand determined by RAPD analysis[J]. Marine Biotechnology, 2000,2:180-187.
    [27] #12
    [28] 高天翔,王玉江,刘进贤等.3种青蟹线粒体 12SrRNA 基因序列分析[J].水产学报.2005,29(3):313-317.
    [29] Keenan C.P., Davies P.J.F., Mann D.L.. A revision of the genus Scylla de Hann, 1833(Crustacea: Decapoda: Brachyura: Portunidae) [J]. Raffles Bull Zool, 1998,46:217-245.
    [30] 马凌波,张凤英,乔振国等.中国东南沿海青蟹线粒体COI基因部分序列分析[J].水产学报,2006,30,(4):463-468.
    [31] 张凤英,马凌波,乔振国等.青蟹线粒体COI假基因的分离和特征分析[J].遗传,2006,28(1):43-49.
    [32] 王玉江,高天翔,韩志强等.中国和越南青蟹线粒体16S rRNA基因序列分析[J].中国海洋大学学报,2005,35(4):554-558.
    [33] Ma L.B., Zhang F.Y., Ma C.Y. et al. Scylla paramamosain (Estampador) the most common mud crab (Genus Scylla) in China: evidence from mtDNA [J].Aquaculture Research,2006, 37(16): 1694-1698.
    [34] 林琪,李少菁,黎中宝等.中国东南沿海青蟹属(Scylla)的种类组成[J].水产学报,2007,31(2):211-219.
    [35] 林琪,李少菁,黎中宝等.中国东南沿海青蟹属(Scylla)不同种类的mtDNA COI基因序列分析及其系统发育.厦门大学学报,2008,47(2):268-273.
    [36] Shaklee J.B., Bentzen P.. Genetic indentification of stocks of marine fish and shellfish[J]. Bull. Mar. Sci.,1998,62(2):589-621.
    [37] Merrell D.J.. Ecological genetics[M].Longman,London,1981.
    [38] Russle P.J.. Genetic[M]. Pearson Education,Inc,2001.
    [39] Luikart G, England P.R., Tallmon D. et al The power and promise of population genomics: from genotyping to genome typing[J]. Nat. Rev. Genet.,2003,4: 981-994.
    [40] Linda L., Stefan P., Nils R.. Genetic population structure of fishes: implications for coastal zone management[J].Ambio,2005,34(2):108-115.
    [41] Utter F., Aebersold P. Winans G. Interpreting genetic variation detected by electrophoresis[M]. Population Genetics and Fishery Management. Washington Sea Grant Program/University of Washington Press, Seattle and London. 1987:21-45.
    [42] May B.. Starch gel electrophoresis of allozymes[M]. Molecular Genetic Analysis of Populations: A Practical Approach. Hoelzel A.R.(ed.). IRL. Press. 1992,1-27.
    [43] Avise J.C.. Molecular Markers, Natural History and Evolution[M]. Chapman & Hall, New York. 1994.
    [44] Estoup A., Angers B.. Microsatellites and minisatellites for molecular ecology: theoretical and empirical considerations[M]. Advances in Molecular Ecology, IOS Press. 1998,55-86.
    [45] Goldstein D.B., Schlotterer C Microsatellites: Evolution and Applications[M]. Oxford University Press. 1998.
    [46] Morin P.A., Luikart G., Wayne R.K., SNP workshop group. SNPs in ecology, evolution and conservation[C]. 2004,19,208-216.
    [47] Van Tienderen P.H., de Haan, A.A., van der Linden, C.G. et al. Biodiversity assessment using markers for ecologically important traits[C].2002,17:577-582.
    [48] Luikart G., England P.R., Tallmon D. et al The power and promise of population genomics: from genotyping to genome typing[C]. Nat. Rev. Genet.2003, 4:981-994.
    [49] Gopurenko D., Hughes J. M.. Regional patterns of genetic structure among Australian populations of the mud crab, Scylla serrata (Crustacea : Decapoda): evidence from mitochondrial DNA[J]. Mar. Freshwater Res, 2002, 53(3):849-857.
    [50] Fratini S., Vannini M.. Genetic differentiation in the mud crab Scylla serrata (Decapoda: Portunidae) within the Indian Ocean[J]. J.E.M.B.E. 2002, 272(1): 103-116.
    [51] 黎中宝,李少菁,王桂忠.锯缘青蟹(Scylla serrata)不同种群的杂合性研究.海洋与湖沼,2004,35:358-363.
    [52] Li Z.B., Li S.J., Wang GZ.. Genetic diversity and differentiation of mud crab Scylla serrata populations from southeastern China. Acta Oceanologica Sinica, 2004,23:309-316.
    [53] 黎中宝,李少菁,王桂忠等.锯缘青蟹等位酶的生化遗传研究.中国生态农业学报,2004,12:61-64.
    [54] 黎中宝,李少菁,王桂忠.中国东南沿海锯缘青蟹群体的形态判别分析.厦门大学学报(自然科学版),2004,1:102-106.
    [55] Ayala F.J., Valentine J.W.. Evolution: The theory and progress of organic evolution[M]. Menlo Park: Benjamin-Cummings, 1979.
    [56] Dobzhansky T.谈家桢等译.遗传学与物种起源[].北京:科学技术出版社,1964
    [57] Stebbins,G.L.复旦大学遗传学研究所译.植物的变异和进化[M].上海:上海科学技术出版社,1963.
    [58] Hubby J. L., Lewontin R. C. A molecular approach to the study of genetic heterozygosity in natural populations, Ⅰ. The number of alleles at different loci in Drosophila psudoobscura[J]. Genetics, 1966,54:577-594.
    [59] 葛颂,洪德元.遗传多样性及其检测方法[M].生物多样性研究的原理与方法.北京:中国科学技术出版社,1994.
    [60] Moritz C, Hillis D. M.. Molecular systematic: contest and controversies[M]. Molecular systematic. Sunderland: Sinauer, 1990,1-11.
    [61] Williams J.G.K., Kubelik A.R., Livak K.J. et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers[J]. Nucleic Acids Res, 1990, 18:6531-6535.
    [62] Lin J., Kuo J.. AFLP: a new PCR-based assay for plant and bacterial DNA fingerprinting[J]. Focus. 1995,17(2):66-70.
    [63] 张尧庭,方开秦.多元统计分析引论[M].北京:科学出版社,1982.393-401.
    [64] 钱荣华,李家乐,董志国等.中华五大湖三角帆蚌形态差异分析[J].海洋与湖沼,2003,34(4):436-443.
    [65] 谢仲桂,谢从新,张鹗.我国华鳊属鱼类形态差异及物种有效性研究[J].动物学研究,2003,24(5):321-330.
    [66] Ellis T., Howell B.R., Hayes J.. Morphological differences between wild and hatchery-reared turbot[J]. Fish Biol, 1997,50:1124-1128.
    [67] 周伟,李明会,潘晓赋.滇蛙和昭觉林蛙的形态差异及其潜在的适应意义[J].动物学研究,2003,24(6):445-451.
    [68] Capote J., Delgado J. V., Fresno M. et al. Morphological variability in the Canary goat population[J]. Small Ruminant Research, 1998,27:167-172.
    [69] 蔡庆华.武汉东湖浮游植物水华的多元分析[J].水生生物学报,1990,14(1):22-31.
    [70] 李勤生,蔡庆华,华俐等.东湖异养细菌群落的分类结构和聚类分析[J].水生生物学报,1991,15(3):242-253.
    [71] 堵南山.中华绒蟹的同属种类及其英文名称[J].水产科技情报,1988,25(3):108-133.
    [72] 王武,张文博,边文冀.绒螯蟹三个种群形态判别比较[J].水产科技情报,2005,32(2):81-83.
    [73] 许加武,任明荣,李思发.长江、辽河、瓯江中华绒螯蟹种群的形态判别[J].水产学报,1997,21(3):269-274.
    [74] 李勇,李思发,王成辉等.三水系中华绒螯蟹形态判别程序的建立和使用[J].水产学报,2001,25(2):120-126.
    [75] 李晨虹,李思发.中国大陆沿海六水系绒螯蟹(中华绒螯蟹和日本绒螯蟹)群体亲缘关系:形态判别分析[J].水产学报,1999,23(4):120-126.
    [76] 戴爱云.绒螯蟹属支序分类学的初步分析(甲壳总纲:十足目)[J].动物分类学报,1988,13(1):22-26.
    [77] Li G., Qi S., Zhenxiong X.. Morphometric and biochemical genetic variation of the mitten crab, Eriocheir, in southern China[J]. Aquaculture, 1993,111:103-115.
    [78] 赵晓勤,倪娟,陈立侨等.日本沼虾4种群的形态差异分析[J].2006,13(2):224-229.
    [79] 郭慧,陈立侨,杨国梁等.不同罗氏沼虾种群形态差异的比较研究[J].中国水产科学,2006,13(4):530-535.
    [80] 尤锋,王可玲,相建海等.山东近海褐牙鲆自然与养殖群体生化遗传结构及其遗传变异的比较分析[J].海洋与湖沼,2001,32(5):512-517.
    [81] 王伟继,孔杰,庄志猛等.真鲷野生群体和人工繁殖群体的同工酶遗传差异[J].生物多样性,2000,89(4):391-396.
    [82] Practor R., Marvink R., Lansford L. et al. Phosphogluco mutase polymorphis min brown shrimp , Penaeus aztecus[J]. J. Fish Res Boad Can, 1974, 31: 1405-1407.
    [83] Lestre L. J.. Population genetics of penaeid shrimp from the Gulf of Mexico [J]. Hered, 1979,70:175-180.
    [84] Sugama K., Haryanti J., Benzie H. et al. Genetic variation and population structure of the giant tiger prawn, Penaetus monodon, in Indonesia[J]. Aquaculture, 2000,205:37-48.
    [85] Forbes T., Demetriades T., Benzie J.. Allozyme frequencies indicate little geographic variation among stocks of giant tiger prawn,Penaeus monodon in the South-West Indian Ocean[J].South African journal of marine science, 1999, 21: 271-277.
    [86] Wang W.J., Kong J., Bao Z.M. et al. Isozyme variation in four populations of Penaeus chinensis shrimp [J]. Biodiversity Science,2001,9(3):241-246.
    [87] 赵金良,李思发.中国大陆沿海六水系绒螯蟹(中华绒螯蟹和日本绒螯蟹)群体亲缘关系:生化遗传差异分析[J].水产学报,1999,23(4):332-336.
    [88] 宋微微,王春琳,母昌考.用同工酶和RAPD技术分析黑斑口虾蛄的遗传多样性[J].水产科学,2006,25(4):189-193.
    [89] 倪娟,赵晓勤,陈立侨等.日本沼虾4种群肌肉营养品质的比较[J].中国水产科学.2003,10(6):212-215.
    [90] Zabeau M., Pieter V.. Selective restriction fragment amplification:A general method for DNA finger-printing[R]. European Patent Application No.9240269.7. 1993, Publication No.EP 0534858 A1.
    [91] 李思发,邹曙明.中国大陆沿海六水系绒螯蟹(中华绒螯蟹和日本绒螯蟹)群体亲缘关系:RAPD指纹标记[J].水产学报,1999,23(4):325-330.
    [92] 宋林生,相建海,李晨曦等.用RAPD标记研究对虾属六个种间的亲缘关系[J].动物学报,1998,44(3):353-359.
    [93] 何舜平,王伟,陈宜瑜.低等鲤科鱼类RAPD分析及系统发育研究[J].水生生物学报,2000,24(2):101-106.
    [94] 邹曙明,楼允东,孙效文等.用RAPD方法研究草鱼、柏氏鲤和3个地理种群鲤的亲缘关系[J].中国水产科学,2000,7(1):6-11.
    [95] 夏德全,曹萤.用RAPD方法分析太湖大银鱼,太湖新银鱼和寡齿新银鱼的亲缘关系[J].中国水产科学,2000,7(1):12-15.
    [96] 蒙子宁,庄志猛,金显仕等.黄海和东海小黄鱼遗传多样性的RAPD分析[J].生物多样性,2003,11(3):197-203.
    [97] 沈怀舜,许璞,丁亚平等.四种淡水鱼的RAPD分析[J].水产养殖,2002,(2):30-33.
    [98] 常重杰,周荣家,余其兴.两种泥鳅不同群体遗传变异的RAPD分析[J].动物学报,2001,47(1):89-93.
    [99] Hedgecock D.. Biochemical genetic markers for brood-stock identification in aquaculture[J]. Proc World Maricul See, 1977(8):523-532.
    [100] Mulley J.C., Latter B.D.. Genetic variation and evolutionary relationships within a group of thirteen species of Penaeid prawns[J]. Evolution, 1980(34):904-916.
    [101] Lester L.J.. Developing a selective breeding program for Penaeid shrimp mariculture[J]. Aquaculture, 1983(33):41-50.
    [102] Harris S.F.G., Dillion R.T.J., Sandifer P.A. et al. Electrophoresis of isozyme in cultured Penneus vannamei[J]. Aquaculture, 1990,85(1-4):330-338.
    [103] Sudden S.L.F., Davis S.K.. Evoluation of genetic variation in a domestic population of Penneus vannamei (Boone): a comparison with three natural populations[J]. Aquaculture, 1991(97):131-142.
    [104] 易犁,王伟,李墨怡等.基于RAPD分析的高体鳑(鱼皮)地理分化研究[J].水生生物学报,2001,25(3):301-304.
    [105] 孟宪红,孔杰,庄志猛等.真鲷自然群体和人工繁殖群体的遗传多样性.生物多样性,2000,8(3):248-252.
    [106] 刘必谦,喻子牛.RAPD标记在大连湾牡蛎种群研究中的应用[J].青岛海洋大学学报,1998,28(1):82-88.
    [107] 王晓梅,宋文芹.鲫鱼种群的随机扩增多态DNA与遗传多样性分析[J].中国水产科学,1999,6(2):26-28.
    [108] 张四明,邓怀,晏勇等.中华鲟随机扩增多态性DNA及遗传多样性研究[J].海洋与湖沼,2000,31(1):1-7.
    [109] 权洁霞,戴继勋.梭鱼人工养殖群体与自然群体的随机扩增多态DNA(RAPD)分析[J].海洋学报,2000,22(5):82-87.
    [110] 刘萍,徐怀恕.中国对虾黄渤海沿岸群沿岸群亲本及子一代RAPD分析[J].海洋水产研究,2000,21(1):13-21.
    [111] Patwary M. U., Kenchinton E. L. Bird C. J. et al. The use of random amplified polymorphic DNA markers in genetic studies of the sea scallop Placopecten magellanicus (Gmelin, 1971) [J]. Shellfish Res., 1994,13 :547-553.
    [112] Garcia D.K., Benzie A.H.. RAPD markers of potential use in penacid prawn(Penaeus monodon) breeding programs[J]. Aquaculture, 1995(130):137-144.
    [113] Garcia D.K., Faggart M.A., Rhodes L. et al. Genetic diversity of cultured Penaeus vannamei shrimp using three molecular genetic techniques[J]. Mol. Mar. Biotechnol, 1994,3(5):270-280.
    [114] Alcivar-Warten A., Overstreet R.M., Dhar A.K. et al. Genntic susceptibility of cultured shrimp(Penaeus vannamei) to infection hypodermal and hematopoictic necrosis vinus and Baculvious penaet: Possible relationship with grouth and metabolic gene expression[J]. Invertebe Pathol, 1997,70(3): 190-197.
    [115] 邱高峰,常林瑞.我国近海中国对虾种群遗传差异的RAPD分析[J].上海水产大学学报,2001,10(1);1-5.
    [116] 高志千,周开亚.中华绒螯蟹遗传变异的RAPD分析[J].生物多样性,1998,6(3):186-190.
    [117] 甘西,邓凤姣,陈晓汉等.罗氏沼虾遗传多样性的RAPD研究[J].武汉大学学报(自然科学版),2000,46(2):215-218
    [118] 宋林生,相建海,李晨曦等.日本对虾野生种群和养殖种群遗传结构的RAPD标记研究[J].海洋与湖沼,1999,30(3):261-266.
    [119] 庄志猛,孔杰,石拓等.日本对虾野生种群和养殖种群遗传多样性的RAPD分析[J].自然科学进展,2001,11(3):250-255.
    [120] 石拓,孔杰,刘萍等.中国对虾遗传多样性的RAPD分析-朝鲜半岛西海岸群体的DNA多态性[J].海洋与湖沼,1999,30(6):609-615.
    [121] 刘振辉,孔杰,石拓等.中国对虾两个不同地理种群遗传结构的RAPD分析[J].应用与环境生物学报,2000,6(5):440-443.
    [122] 项超美,陆仁后,谢浩等.四种十足目甲壳动物遗传差异的RAPD分析[J].水生生物学报,1998,22(3):251-256.
    [123] 许玉德,孙晨.6个虾种基因组DNA多态性分析[J].海洋科学,2001,25(1):9-11.
    [124] 赵姝华,张胜利,温恩涛等.中华绒螯蟹RAPD扩增条件及个体间遗传差异[J].水产科学,1998,17(5):3-6.
    [125] 王军,全成干,苏永全等.官井洋大黄鱼遗传多样性的RAPD分析[J].海洋学报,2001,23(3):87-91.
    [126] Postlethwait J.H., Faggart M., Benzie A. et al. Zebrafish comparative genomics and the origins of vertebrate chromosomes[J]. Genome Res,2000,10:1890-1902.
    [127] 王志勇,王艺磊,林利民等.福建官井大黄鱼AFLP指纹多态性的研究[J].中国水产科学,2002,9(3):198-201.
    [128] Liu Z., Nichols A., Li P. et al. Inheritance and usefulness of AFLP markers in channel catfish (Ictalurus punctatus) ,blue catfish (I.frucaus) , and their F1,F2, and backcross hybrids[J]. Molecular and General Genetics, 1998,258: 260-268.
    [129] 孙易,宋文芹,钟贻诚等.用RAPD和AFLP的方法对中国卤虫(Artemia)种及亲缘关系的研究[J].遗传学报,2000,27(3):210-218.
    [130] 杨锐,刘必谦,骆其君等.利用扩增片段长度多态性(AFLP)研究坛紫菜的遗传变异[J].高技术通讯,2002,1:83-86.
    [131] 潘洁,包振民,赵洋等.栉孔扇贝不同地理群体的遗传多样性分析[J].高技术通讯,2002,12:78-82.
    [132] Kim D. H., Heber D., Still D.W.. Genetic diversity of Echinacea species based upon amplified fragment length polymorphism markers[J]. Genome, 2004, 47 (2): 102-111.
    [133] Mechanda M., Baum B.R., Johnson D.A. et al. Sequence assessment of comingratingAFLP(TM) bands in Echinacea-amplications for comparative biological studies[ J ]. Genome, 2004,47 (2): 15-25.
    [134] Kusumo, H.T., Druehl, L.D.. Genetic structure variability of kelp Alaria marginata over space and time[J]. Journal of Phycology,2000,36:39-40.
    [135] Scheffler E.. Mitochondria[M]. John Wiley,Sons, Inc. 1999. 51.
    [136] 王存芳,曾勇庆,杜立新等.线粒体DNA(mtDNA)的研究进展[J].动物科学与动物医学,2001,73:16-18.
    [137] Brown W. M. Evolution of animal mitochondrial DNAs[M].In Nei M, Koehned R K eds. Evolution of genes and proteins [M].Sinauer:sunderland MA, 1983.
    [138] Lu G, Li S.. Advances in the study and application of fish mitochondrial DNA polymorphism[J]. Journal of Fisheries of China,1998,3:94-103.
    [139] 孔晓瑜,喻子牛,刘亚军等.中华绒螯蟹与日本绒螯蟹线粒体COI基因片段的序列比较研究[J].青岛海洋大学学报,2001,31(6):861-866.
    [140] 郭天慧,孔晓瑜,陈四清等.三疣梭子蟹线粒体DNA 16SrRNA和COI基因片段序列的比较研究[J].中国海洋大学学报,2004,34(1):022-028.
    [141] 徐敬明,方华华,高天翔.两种相手蟹线粒体COI基因序列的比较研究[J].海洋通报,2007,26(6):26-31.
    [142] 林元烧,方旅平,曹文清等.中华哲水蚤线粒体DNA COI基因序列分析[J].厦门大学学报(自然科学版),2005,44(1):90-93.
    [143] 林元烧,曹文清,方旅平等.中华假磷虾线粒体DNA COI基因片段序列分析[J].厦门大学学报(自然科学版),2004,43(6):482-486.
    [144] 左荣升.四种蟳大眼幼体在外部型态及族群动态上之差异[D].国立中山大学海洋生物研究所硕士论文.2002.
    [145] Lewis C, J.D.. Campbell. The Oxford Atlas[M]. Oxford University Press. London, 1967.
    [146] Brown I. W.. Mangrove Crabs. In: A. Wright & L. Hill(Eds), Inshore Marine Resources of the South Pacific: Information for Fishery Development and Management[M]. University of the South Pacific, Suva,Fiji. 1993,19.
    [147] Hill B. J.. Offshore spawning by the portunid crab Scylla serrata (Crustacea: Decapoda)[J].MarineBiol.l994,120:379-384.
    [148] Nei M.. Analysis of gene diversity in subdivided populations[J]. Proc Natl Acad Sci USA,1973,70:3321-3323.
    [149] Shannon C.E., Weaver W.. The mathematical theory of communication[C]. Univ. of Illinois Press, Urbana,1949.
    [150] Nei M.. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 1978,89:583-590.
    [151] Liu X.D.. Study on the biochemical genetics of the Penaeus chinensis in the Huanghai and Bohai Seas and genetic markers of isozyme analysis of seven shrimp species [D]. Institute of Oceanology, Chinese Academy of Science ,1995.
    [152] 马春艳,孔杰,孟宪红等.中国对虾5个地理群体的RAPD分析.水产学报,2004,283:245-249.
    [153] Vos P., Hoger R., Blecker M. et al. AFLP: a new technique for DNA fingerprinting.Nucleic Acids Res,1995,23(4):407.
    [154] 张雯,刘晓,张国范.利用AFLP技术研究海湾扇贝不同养殖群体的遗传结构及其分化.高技术通讯,2005,15(4):84-88.
    [155] Nakajima Y., Oeda K., Yamamoto T..Characterization of genetic diversity of nuclear and mitochondrial genomes in Daucus varieties by RAPD and AFLP.Plant Cell Reports, 1998,17:848-853.
    [156] Thierry M. L., Panaud O., Toupance B. et al. Assessment of genetic relationships between Setaria italica and its wild relative S.viridis using AFLP markers. Theor Appl Genet,2000,100:1O61-1066.
    [157] 孟宪红,马春燕,刘萍等.黄渤海中国对虾6个地理群的遗传结构及其遗传分化.高技术通讯,2004,4:97-102.
    [158] 高志千,周开亚。中华绒螯蟹遗传变异的RAPD分析.生物多样性,1998,63:186-190.
    [159] 邱高峰,常林瑞.我国近海中国对虾种群遗传差异的RAPD分析.上海水产大学学报,2001,10(1):1-5.
    [160] Mulldy J.C., Latter B.D.. Genetic variation and evolution relationships within a group of thirteen species of Penaeus prawns[J].Evolution, 1980,34:904-916.
    [161] Hedgecock D., Traccy M. L, Nelson K.. Genetic In: Abele L G ed[C]. The biology of Crustacea 2, New York: Academic press, 1982:284-403.
    [162] Laikre L. Ryman N.. Effects on intraspecific biodiversity from harvesting and enhancing natural populations [J]. Ambio, 1996,25:504-509.
    [163] Laikre L.. Conservation Genetic Management of Brown Trout (Salmo trutta) in Europe. Report by the Concerted action on identification, management and exploitation of genetic resources in the brown trout (Salmo trutta)[C]. TROUTCONCERT; EU FAIR CT97-3882.91PP.
    [164] Hindar K., Ryman N., Uttrer F.. Genetic effects of cultured fish on natural fish populations[J]. Can J. Fish,Aquat. Sci, 1991,48:945-957.
    [165] McDowell N.. Stream of escaped farm fish raises fear for wild salmon[J]. Nature, 2002,416-571.
    [166] Myers R. A., Levin S.A., Lande R.. Hatcheries and endangered salmon[J]. Science, 2004,303:1980.
    [167] Fleming LA., Hindar K., Mjolnerod I.B. et al. Lifetime success and interactions of farm salmon invading a native population[J]. Proc. R. Soc. Lond. B,2000,267:1517-1523.
    [168] Mcginnity P., Prodohl P., Ferguson A. et al. Fitness reduction and potential extinction of wild populations of Atlantic salmon, Salmo salar, as a result of interactions with escaped farm salmon[J]. Proc. R. Soc.Lond. B.2003, 270: 2443-2450.
    [169] Ryman N., Laikre L. Effects of supportive breeding on the genetically effective population size[J]. Cons. Biol, 1991,5:325-329.
    [170] Wang J., Ryman N.. Genetic effects of multiple generations of supportive breeding[J].Cons.Biol,2001,15:1619-1631.
    [171] Lynch M. O'Hely M.. Captive breeding and the genetic fitness of natural populations[J]. Cons. Gen., 2001,2:363-378.
    [172] Ford M.J.. Selection in captivity during supportive breeding may reduce fitness in the wild[J]. Cons. Biol, 2002,16:815-825.
    [173] Swedish National Board of Fisheries[Z]. The threatened Baltic salmon. f-Fakta nr. 2. Fiskeristyrelsen, G(?)teborg,1991,4pp. (In Swedish).
    [174] Sandqvist H.G. Let the salmon spawn[M]. Swedish society for Nature Conservation and Swedish National Sportfishing Association, 1991,29pp.(In Swedish)
    [175] 刘振辉,孔杰,石拓等.冲国对虾两个不同地理种群遗传结构的RAPD分析[J].应用与环境生物学报,2000,6(5)440-443.
    [176] 沈怀舜,朱建一,丁亚平等.我国沿海三个文蛤地理群的RAPD分析[J].海洋学报,2003,25(5):97-102.
    [177] 么宗利,周凯,来琦芳等.我国五个青蛤地理群体遗传变异的RAPD分析.海洋渔业,2005,Vol.27(2):102-108.
    [178] Lewis L. V., Vu Ngoc U., David A.. Seasonal abundance and recruitment in an estuarine population of mud crabs, Scylla paramamosain, in the Mekong Delta, Vietnam[J]. Hydrobiologia, 2001,449:231-240.
    [179] 朱(岁羽)声.琼州北部及雷州半岛火山论[C]//矿业特刊.广州:广东省建设厅出版.1931:461-471.
    [180] 张杰人,刘南威,周裕生等.对雷州半岛海岸地貌类型划分问题的意见[C]//中国地理学会1961 年地貌学术讨论会论文摘要.北京:科学出版社,1962:109-111.
    [181] 陈洪禄.海南岛地貌区划[C]//中国地理学会1963 年会议论文集(地貌专业).北京:科学出版社,1965:95-99.
    [182] 姚清尹.对琼州海峡形成的探讨[J].热带地理,1980,3(1):21-25.
    [183] 张虎男,陈伟光.琼州海峡成因探讨[J].海洋学报,1987,9(5):594-602.
    [184] 曾昭璇,曾宪中.海南岛自然地理[M].北京:科学出版社,1989:63-73.
    [185] 黄镇国,蔡福祥,韩中元等.雷琼第四纪火山[M].北京:科学出版社,1993:271-279.
    [186] 方瑞濂.从海南岛现代哺乳动物讨论本岛与大陆分离和华南海岸下沉的时代[C]//中国地质学会第32 届学术年会论文选集(地质、煤田地质).北京:中国科学技术情报研究所出版,1963:61-66.
    [187] 中国科学院南海海洋研究所海洋地质研究室.华南沿海第四纪地质[M].北京:科学出版社,1978:43245,128,155-156.
    [188] 林晓东,宗永强.再论琼州海峡成因[J].热带地理,1987,7(4):338-345.
    [189] 匡耀球.琼州海峡成因及雷州半岛中部水土流失发展趋势[J].广东地质,1998,13(2):55-64.
    [190] 赵焕庭,王丽荣,袁家义.琼州海峡成因与时代[J].海洋地质与第四纪地质,2007,27(2):33-40.
    [191] 俞慕耕,刘金芳.南海海流系统与环流形势[J].海洋预报,1993,10:13-17.
    [192] 容志明.南海冬季表层海流特征及分析[J].海洋预报,1994,11:47-51.
    [193] 刘至治,蔡完其,李思发.中华鳖五群体遗传变异的RAPD分析[J].水产学报,2004,28(2):119-126.
    [194] Allendorf F.W., Phelps S.R.. Loss of genetic variation in a hatchery stock of cutthroat trout[J]. Fish Soc.,1980,109:537-543.
    [195] Ryrnan N., Stahl G.. Genetic changes in hatchery stocks of brown trout Salmo trutta[J]. Aquat. Sci..1980,37:82-87.
    [196] Allendorf F.W., Utter F.M.. Population genetics.In: W.S. Hoar.Fish Physiology. Vol. Ⅷ. Academic Press, New York, 1979:407-454.
    [197] Gosling E.M.. Genetic variability in hatchery produced Pacific oysters (Crassostrea gigas Thunberg)[J]. Aquaculture,1982,26:273-287.
    [198] Dillon R.T.J., Manzi J.J.. Hard clam, Mercenaria mercenaria, broodstocks: genetic drift and loss of rare alleles without reduction in heterozygosity[J]. Aquaculture, 1987,60:99-105.
    [199] Hedgecock D., Sly F.L.. Genetic drift and effective population sizes of hatchery propagated stocks of the Pacific oyster Crassostrea gigas[J]. Aquaculture, 1990,88:21-38.
    [200] Wright S.. Evolution in mendelan populations[J]. Genetics, 1931,16:97-159.
    [201] Lewontin R.C.. The genetic basis of evolutionary change[C].Columbia University Press, New York, 1974,346.
    [202] Nei M. Roychoudhury A.K.. Sampling variances of heterozygosity and genetic distance[J]. Genetics, 1974,76:379-390.
    [203] Watterson G.A.. Allelic frequencies after a bottleneck[J]. Theor Popul. Biol.,1984,26:387-407.
    [204] Skaala O., Hbyheim B., Glover K. et al. Microsatellite analysis in domesticated and wild Atlantic salmon(salmo salar L): allelic diversity and identification of individuals[ J]. Aquaculture,2004,240:131-143.
    [205] 王建华.2个青虾群体生长的比较研究[J].水产科学.2005,24(3):19-20.
    [206] 尤锋,王可玲,相建海等.山东近海褐牙鲆自然与养殖群体生化遗传结构及其遗传变异的比较分析[J].海洋与湖沼,2001,32(5):512-518.
    [207] 宋林生,相建海,李晨曦等.日本对虾野生种群和养殖种群遗传结构的RAPD标记研究.海洋与湖沼,1999,30(3):261-266.
    [208] 庄志猛,孔杰,石拓等.日本对虾野生种群和养殖种群遗传多样性的RAPD分析.自然科学进展,2001,11(3):250-255.
    [209] 尹绍武,李建中,周工健等.黄鳝野生群体和养殖群体遗传结构的RAPD分析[J].应用与环境生物学报,2005,11(3):328-332.
    [210] 方展强,陈军,郑文彪等.鳜野生群体与养殖群体的RAPD分析[J].大连水产学院学报,2005,20(1):16-19.
    [211] 李莉,孙振兴,杨树德等.用微卫星标记分析皱纹盘鲍群体的遗传变异[J].遗传,2006,28(12):1549-1554.
    [212] 王冬群,李太武,苏秀榕.象山缢蛏养殖群体和野生群体遗传多样性的比较[J].中国水产科学,2005,12(2):138-143.
    [213] 孟宪红,孔杰,庄志猛等.真鲷自然群体和人工繁殖群体的遗传多样性[J].生物多样性,2000,8(3):248-252.
    [214] 张全启,徐晓斐,齐洁等.牙鲆野生群体与养殖群体的遗传多样性分析[J].中国海洋大学学报,2004,34(5):816-820.
    [215] 张俊彬,黄良民.紫红笛鲷遗传多样性的AFLP分析[J].热带海洋学报,2004,23(5):50-55.
    [216] Mallet A.L., Haley L.E.. Effects of inbreeding on larval and spat performance in the American oyster[J]. Aquaculture, 1983,33:229-235.
    [217] Beaumont A.R., Abdul-Matin A., Seed R... Early development, survival and growth in pure and hybrid larvae of Mytilus edulis and M. galloprovincialis[J]. Molluscan Stud. 1993,59:120-123.
    [218] Ibarra A.M., Cruz P. Romero B.A.. Effects of inbreeding on growth and survival of self-fertilized catarina scallop larvae, Argopecten circularis[J]. Aquaculture, 1995,134:37-47.
    [219] 万俊芬,包振民,汪小龙等.亲本数目对鲍养殖群体AFLP标记位点及其遗传结构的影响.水产学报,2004,28(2):127-132.