太湖地区水稻土有机碳演变模拟的尺度效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤有机碳演变和全球气候变化息息相关,利用动态模型来模拟和预测土壤有机碳的演变现已成为研究的热点。但是,以前的研究多局限于中、小比例尺,对于大、中、小尺度系列制图尺度数据库的工作少有报道,而且对于使用不同系列制图尺度数据库对土壤有机碳模型模拟精度的影响还不清楚。在模型验证方面,也往往根据田间长期定位观测结果对模型进行验证,但从区域尺度上并没有对模型进行验证,这样的模拟或预测结果存在较大的不确定性。因此,本研究以模拟生物地球化学过程较为成熟的DNDC (DeNitrification and DeComposition)模型为例,选择基本上为水稻土的太湖流域作为研究区,通过模拟该地区230多万hm2水稻土在1:1400万、1:400万、1:100万、1:50万、1:20万和1:5万6种制图比例尺下1982~2000年19年间的土壤有机碳演变,并将不同制图尺度下的模拟结果与2000年该地区1000多个采样点实测值进行比较,尝试从区域角度验证并评价模型适宜性,以便为进一步修正模型和评估不同制图尺度下模拟精度提供理论依据。本文的主要研究结论如下:
     1)从不同制图尺度下的区域验证来看,太湖地区水稻土2000年土壤有机碳模拟值和实测值在1:20万、1:50万和1:400万3个制图尺度下相对误差都≤±5%,达到了模拟结果很准确的水平,其中在1:20万制图尺度下的相对误差最小,只有0.28%,模拟精度最高;1:5万和1:100万制图尺度下模拟值和实测值的相对误差分别为6.4%和5.1%,≤±10%,也达到了模拟结果可行的标准,而1:1400万的模拟值和实测值的相对误差为20.0%,说明模拟结果不可靠。从目前的大多数研究来看,我国的DNDC模型国家尺度模拟中土壤属性数据大多使用1:1400万土壤图和《中国土种志》资料,这有可能造成有机碳模拟的较大误差。
     2)太湖地区不同水稻土亚类6个制图尺度下的模型适宜性也有很大差异。漂洗型水稻土在1:20万制图尺度下的模拟精度最高,潴育型水稻土是太湖地区分布面积最大的亚类,1:400万是该亚类比较理想的模拟尺度。渗育型水稻土一般占到总水稻土面积的16%以上,该亚类在1:50万制图尺度下的模拟精度最高。潜育型水稻土的土壤有机碳含量是所有亚类中最高的,相对于其他亚类,DNDC模型对潜育型水稻土的有机碳模拟效果在各个制图尺度下都比较差,相对误差都超过10%,但相对而言,在1:50万制图尺度下的模拟精度最高。脱潜型水稻土分布面积一般占到总水稻土面积的18%以上,而且该亚类的土壤有机碳含量仅次于潜育型水稻土,在1:50万制图尺度下该亚类的模拟精度最高。淹育型水稻土是太湖地区分布面积最小的亚类,该亚类在1:5万制图尺度下模拟效果最好。
     3)不同制图尺度的数字化土壤图对碳储量模拟估算的影响也不同。从本研究来看,随着制图比例尺的减小,DNDC模型模拟的太湖地区水稻土2000年表层(0~30cm)有机碳总储量基本呈增加趋势,尤其在1:1400万制图尺度下的土壤有机碳总储量明显高于其他尺度。太湖地区土壤有机碳总储量主要受潴育型水稻土、潜育型水稻土、脱潜型水稻土和渗育型水稻土控制,这4个水稻土亚类的总储量占不同制图尺度下总储量的93%以上。但不同制图尺度影响最大的是潜育型水稻土和潴育型水稻土,尤其在1:1400万制图尺度下这2个水稻土亚类的有机碳总量明显高于其它尺度。
     4)不同制图尺度对太湖地区水稻土有机碳的年变化(dSOC)模拟也有很大影响,土壤属性数据最详细的1:5万制图尺度在1982~2000年19年来水稻土表层(0~30cm)有机碳总体呈升高趋势的面积达147万hm2,占总水稻土面积的63.4%,19年来固定土壤有机碳1.48 Tg;但在1:20万、1:50万、1:100万、1:400万和1:1400万5种制图比例尺下DNDC模型模拟的1982~2000年19年表层(0~30cm)水稻土分别亏损有机碳:0.78 Tg、2.86 Tg、2.33 Tg、0.44 Tg和7.86 Tg,说明由于不同类型土壤的有机碳属性特征不同,土壤制图比例尺的变化,使得区域内土壤总面积和各类型土壤的面积比例发生显著改变,从而导致土壤制图比例尺对有机碳模拟结果产生显著影响。
     5)不同管理措施和气候因子下太湖地区水稻土有机碳的情景分析表明,加大作物生物量还田、免耕或采取秸秆还田为基础的保护性耕作措施将有效的增加土壤有机碳含量,适度烤田和施用化肥也有利于土壤有机碳的积累。气候因子对土壤有机碳的影响较为复杂,总趋势是土壤有机碳随着温度的升高分解速度在加快,说明未来气候变暖必定会造成大量土壤有机碳的损失,这也与RothC模型模拟结果相一致。
     6)不同土壤数据单元对生物地球化学模型DNDC的土壤有机碳模拟精度有很大影响。目前国内应用最广泛的1:1400万“县级”单元法估算的太湖地区水稻土有机碳年变化(dSOC)与土壤属性最为详尽的1:5万“图斑”单元法模拟值在整个地区总量和“县级”单元水平上相差都很大,大多数“县级”单元之间的dSOC相对偏差高于300%;而1:5万“县级”单元法的模拟值与1:5万“图斑”单元法估算值之间dSOC差异相对较小,并且1:5万“图斑”单元法模拟的“县级”单元dSOC和整个地区dSOC总量基本都在1:5万“县级”单元法最大与最小值范围之间,这一方面验证了DNDC模型以“县”作为最小模拟单元,并用模拟值范围来表达区域dSOC方法的合理性,另一方面也说明了详细的土壤数据单元是保证地球生物化学过程模型模拟精度的重要因子。因此,在今后的国家和区域尺度有机碳模拟中使用更详细的土壤资料是非常必要的。
The dynamic of soil organic carbon (SOC) has a close relationship with global climate change. Simulating and forecasting the dynamic of SOC by model has now become a popular method. Previous studies were primarily limited to medium and small mapping scale, while studies on the series mapping scale databases of large, medium and small scale were rarely reported. Furthermore, the influence of usage of different series mapping scale databases on the simulation precision of SOC model was not clear. In terms of modeling verification, it was usually carried out based on the results of long-term observation at field rather than regional scale, thus the simulation and forecast results had a large uncertainty.
     In this paper, taking the DNDC (DeNitrification and DeComposition) model which is comparatively mature at modeling biogeochemical process for example, selecting the Taihu Lake region whose soil type is almost paddy soil as the study area.The dynamic of SOC on more than 2.3 M.hm-2 paddy soil between 1982 and 2000 under six kinds of mapping scales i.e.1:14,000,000,1:4,000,000,1:1,000,000,1:500,000,1:200,000 and 1:50,000 was simulated and the results under different mapping scales were compared with the measured values of more than 1000 sampling points at year 2000.The model suitability was verified and assessed from the entire region, in order to provide a theoretical basis for further amendment of the model and assessment of simulation accuracy under different mapping scales. The main research conclusions were as follows.
     1) From the regional verification under different mapping scales, the relative errors between the simulated and the measured values of paddy soil SOC in Taihu Lake region in the year 2000 under mapping scale of 1:200,000,1:500,000 and 1:4,000,000 were all less than±5%, which indicated that the simulation results reached accurate level. The mapping scale of 1:200,000 which had the minimum relative error of 0.28% had the highest simulation accuracy. The relative errors between the simulated and the measured values under mapping scale of 1:50,000 and 1:1,000,000 were 6.4% and 5.1% respectively, which indicated that the simulation results were feasible. The relative error between the simulated and the measured values under mapping scale of 1:14,000,000 was 20.0%, which indicated that the simulation result was unreliable. Viewed from most studies at the present time, soil attribute data used in the simulation of DNDC model at national scale were predominantly from 1:14,000,000 soil map and the Second National Soil Survey, which would bring about comparatively big error of SOC simulation.
     2) The model suitability of paddy soil subgroup in Taihu Lake region under six mapping scales had great differences. The bleaching paddy soil had the highest simulation accuracy under 1:200,000 mapping scale. The hydromorphic paddy soil had the largest distribution area in Taihu Lake region and 1:4,000,000 was its ideal simulation scale. The percolated paddy soil whose area accounted for 16% of the whole paddy soil area had the highest simulation accuracy under 1:500,000 mapping scale. The gleyed paddy soil had maximum SOC content and its SOC simulation results, whose relatively errors were all above 10%, were the worst under each mapping scale compared with other subgroup. Relatively speaking, its simulation accuracy under the mapping scale of 1:500,000 was the best. The degleyed paddy soil whose area accounted for 18% of the whole paddy soil area and whose SOC content was outranked only by the gelyed paddy soil had the highest simulation accuracy under 1:500,000 mapping scale. The submergic paddy soil had the least distribution area in Taihu Lake region and its simulation result was the best under the 1:50000 mapping scale.
     3) Digital soil map of different mapping scale had different influence on the simulated estimation of SOC storage. In this study, with the decrease of mapping scale, the total SOC storage of surface paddy soil (0-30cm) in Taihu Lake region in the year 2000 simulated by the DNDC Model shown a trend of increase basically, especially the total SOC storage of 1:4,000,000 mapping scale was apparently higher than any other scale. Overall, the total SOC storage of the Taihu Lake region was mainly controlled by the hydromorphic paddy soil, the gleyed paddy soil, the degleyed paddy soil and the percolated paddy soil, for the SOC storage of these four paddy soil subtypes accounted for more than 93% of the total SOC storage under each mapping scale. The gleyed paddy soil and the hydromorphic paddy soil had the greatest influence on different mapping scale and their SOC storage under the 1:14,000,000 mapping scale was apparently higher than any other scale.
     4) Different mapping scale had significant impact on dSOC in Taihu Lake region. The area with increased SOC of surface paddy soil (0-30cm) from 1982 to 2000 of the 1:50,000 mapping scale with the most detailed soil attribute data was 1.47 M.hm-2, up to 63.4% of the whole paddy soil area, and 1.48 Tg C were sequestered in the soil over the past 19 years. However,0.78 Tg C、2.86 Tg C、2.33 Tg C、0.44 Tg C and 7.86 Tg C were lost respectively in the surface paddy soil (0-30cm) from 1982 to 2000 at the mapping scale of 1:200,000, 1:500,000,1:1,000,000,1:4,000,000 and 1:14,000,000. This indicated that mapping scale had a notable impact on SOC simulation result because different soil type had different SOC attribute and the ratio between total soil area and area of each soil type changed significantly with variation of soil mapping scale.
     5) Scenario analysis of paddy soil SOC in Taihu Lake region with different management practice and different climate factor indicated that more crop biomass return in the filed, no-tillage and basic conservation tillage practice such as straw return could increase SOC content effectively and reasonable midseason drainage and fertilizer application would benefit the accumulation of SOC. Climate factors had a quite complex influence on SOC, but the general trend was that the decomposition velocity of SOC speeded up along with the rise in temperature. The result showed that global warming in the future would be bound to bring about loss of SOC. This was in line with the result simulated by the RothC model.
     6) Different soil data unit had remarkable impact on SOC simulation accuracy of the DNDC model. The dSOC estimated by county-based database under 1:14,000,000 scale differed widely from that estimated by 1:50,000 soil map-based databases at the level of both entire region and county. The relative deviation of dSOC between most county-based database was more than 300%. The difference between dSOC estimated by county-based database and estimated by 1:50,000 soil map-based database was relatively minor. The dSOC and its total change in the past 19 years estimated by 1:50,000 soil map-based databases varied between the maximum and the minimum value simulated by county-based database under 1:50,000 scale. The result indicated that it was reasonable for the DNDC model taking a county of the smallest simulation unit and expressing regional dSOC by the scope of simulation value on one hand and detailed soil data unit was the guarantee of simulation accuracy of the biogeochemical process model on the other hand. Therefore, it would be necessary to use more detailed soil data for SOC simulation of national and regional scale in the future studies.
引文
1. Admas, S.N., Jack, W.H., Dickson, D.A. The growth of Sitka Spruce on poorly sites in Northern Ireland [J]. Forestry.1970,43:125-133.
    2. Alvarez, R., Lavado, R.S. Climate organic matter and clay content relationships in the Pampa and Chaco soils, Argentina [J]. Geoderma,1998a,83:127-141.
    3. Alvarez, R., Russo, M.E., Prystupa, P. Soil carbon pools under conventional and no-tillage systems in the Argentine Rolling Pampa [J]. Agronomy Journal,1998b,90 (2):138-143.
    4. Askam, T., Choudhary, M.A., Saggar, S. Influence of land-use management on CO2 emissions from a silt loam in New Zealand [J]. Agriculture Ecosystem & Environment,2000,77(3): 257-262.
    5. Barry, R.T., Parkinson, D., Parsons F.J. Nitrogen and lignin content as predictors of litter decay rates:a microcosm test [J]. Ecology,1989,70(1):97-104.
    6. Batjes, N.H. Total carbon and nitrogen in the soils of the world [J]. European Journal of Soil Science,1996,47:151-163.
    7. Berg, B. Litter decomposition and organic matter turnover in northern forest soils [J]. Forest Ecology and Management,2000,133(1-2):13-22.
    8. Bosatta, E., Agren, G.L. Theoretical analysis of decomposition of heterogeneous substrates [J]. Soil Biology& Biochemistry,1985,16:63-67.
    9. Bouwman, A.F. Soils and the greenhouse effect [M]. Chichester:John Wiley & Sons,1990, pp 78.
    10. Brun, R., Reichert, P., Kunsch, H.R. Practical identifiability analysis of large environmental simulation models [J]. Water Resources Research,2001,37(4):1015-1030.
    11. Burke, I.C., Elliott, E.T., Cole, C.V. Influence of macro-climate, landscape position, and management on soil orgainic matter in agroecosystems [J]. Ecological Applications,1995a, 5:124-131.
    12. Burke, I.C., Lauenroth, W.K., Conffin, D.P. Soil organic matter recovery in semiarid grassland: implications for the conservation reserve program [J]. Ecological Monographs,1995b, 5:793-801.
    13. Cao, M.K., Gregson, S.J., Marshall, J.B.Dent., Heal, O.W. Global methane from rice paddies [J]. Chemosphere,1996,33,879-897.
    14. Chertov, O.G., Komarov, A.S. SOMM--a model of soil organic matter dynamics [J]. Ecological Modeling,1997,94(2-3):177-189.
    15. Cook, F.J., Orchard, V.A., Corderoy, D.M. Effects of lime and water content on soil respiration [J]. New Zealand Journal of Agricultural Research,1985,28:517-523.
    16. Doran, J.W.A., Jones, J., Arshad, M.A. Determinants of soil quality and health[M]. Soil Quality and Soil Erosion. CRC Press,1999, ppl7-36.
    17. Eswaran, H., Berg, E.V.D., Reich, P. Organic carbon in soil of the world [J]. Soil Science Society of America,1993,57:192-194.
    18. Eswaran, H., Reich, F., Kimble, J.M. Global soil carbon stocks [M]. In:Lal, R., Kimble, J. M., and Eswaran, H., Global Climate Change and Pedogenic Carbonates. Lewis Publishers, USA, 1999, pp 15-26.
    19. Field, C.B., Randerson, J.T., Malmstrom, C.M. Global net primary production:Combining ecology and remote sensing [J]. Remote Sensing of Environment,1995,51:74-88.
    20. Franko, U., Oelsechlagel, B. Simulation of temperature-, water-, and nitrogen- dynamics using the model CANDY [J]. Ecological modeling,1995,213-222.
    21. Franko, U. Modeling approaches of soil organic carbon turnover within the CANDY system. IN: Powlson D, Smith P, Smith J U (Eds.), Evaluation of Soil Matter Models using Existing Long-term Datasets [M]. NATO ASI Series Ⅰ,1996. Vol.38, Springer-Verlag, Heidelberg, 247-254.
    22. Freibauer, A.M., Rounsevell, D.A., Smith, P., Verhagen, J. Carbon sequestration in the agricultural soils of Europe [J]. Geoderma,2004,122(1):1-23.
    23. Gijsman, A.J., Oberson, A., Teissen, H., Friesen, D.K. Limited applicability of the CENTURY model to highly weathered tropical soils [J]. Agronomy Journal,1996,88:894-903.
    24. Halvorson, A.D., Peterson, G.A., Reule, C.A. Tillage system and crop rotation effects on dry-land crop yields and soil carbon in the central Great Plains [J]. Agronomy Journal,2002,94: 1429-1436.
    25. Harsen, S., Jensen, H.E., Nielsen, N.E., Svendsen, H. Simulation of nitrogen dynamics and biomass production in winter wheat using the Danish simulation model DAISY [J]. Nutrient Cycling in Agroecosystems,1991,27:245-259.
    26. Henriksen, T.M., Breland, T.A. Nitrogen availability effects on carbon mineralization, fungal and bacterial growth, and enzyme activity during decomposition of wheat straw in soil [J]. Soil Biology Biochemistry.1999,31:1121-1134.
    27. Homann, P.S., Sollins, P., Fiorella, M., Thorson, T., Kern, J.S. Regional soil organic carbon storage estimates for Western Oregon by multiple approaches [J]. Soil Science Society of America Journal,1998,62:789-796.
    28. Hontoria, C., Rodriguez-Murillo, J.C., Saa, A. Relationship between soil organic carbon and site characteristics in Peninsular Spain [J]. Soil Society of America Journal,1999,63:614-621.
    29. Hook, P.B., Burke, I.C. Biogeochemistry in short grass landscape:control by topography, soil texture, and microclimate [J]. Ecology,2000,81(10):2686-2703.
    30. Huang, Y., Sass, R.L., Fisher, F.M.A. Semi-empirical model of methane emission from flooded rice paddy soils [J]. Global Change Biology,1998,4:247-268.
    31. Huang Y., Yu Y.Q., Zhang W., Sun W.J., Liu S.L., Jiang J., Wu J.S., Yu W.T., Wang Y., Yang Z.F. Agro-C:A biogeophysical model for simulating the carbon budget of agroecosystems [J]. Agricultural and forest meteorology,2009,149:106-129.
    32. IPCC,2007. Climate change:synthesis report, contribution of working groups Ⅰ, Ⅱ and Ⅲ to the fourth assessment report of the Intergovernmental Panel on Climate Change [core writing team, Pachauri, R.K and Reisinger, A. (eds.)] [M]. IPCC, Geneva, Switzerland,104 pp,2007.
    33. Jagadeesh Babu, Y, Li, C.S., Frolking, S., Nayak, D.R., Adhya, T.K. Field validation of DNDC model for methane and nitrous oxide emissions from rice-based production systems of India [J]. Nutrient Cycling in Agroecosystems,2006,74:157-174.
    34. Jenkinson, D.S. The turnover of organic carbon and nitrogen in soil [M]. Phil. Trans. R. Soc. Lond.,1990, B329:361-368.
    35. Jenkinson, D.S., Adams, D.E., Wild, A. Model estimates of CO2 emissions from soil in response to global warming [J]. Nature,1991,351:304-306.
    36. Jenkinson, D.S., Rayner, J.H. The turnover of soil organic matter in some of Rothamsted classical experiments [J]. Soil Science,1977,125:298-305.
    37. Jerry, M.M. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics [J]. Ecology,1982,63(3):621-626.
    38. Jobbagy E.G., Jackson R.B. The vertical distribution of soil organic carbon and its relation to climate and vegetation [J]. Ecological Applications,2002,10(2):423-436.
    39. Kay, B.D. Soil structure and organic carbon:a review [C]. In:Lal R, Kimble J. M. Follett. R. F. Soil Processes and the carbon cycle. Boca Raton, Fl:CRC Press,1998,169-198.
    40. Kern, J.S. Spatial patterns of soil organic carbon in the contiguous United States [J]. Soil Science Society of America Journal,1994,58:439-455.
    41. Kirschbaum, M.U.F. The temperature dependence of soil organic matter decomposion, and the effect of global warming on organic C storage [J]. Soil Biology and Biochemistry,1995,27: 753-760.
    42. Korsaeth, A., Henriksen, T.M., Bakken, L.R. Temporal changes in mineralization and immobilization of N during degradation of plant material implications for the plant N supply and nitrogen losses [J]. Soil Biology Biochemistry,2002,34:789-799.
    43. Lal, R., Kimble, J., Levine, E., Whitman, C. World soils and greenhouse effect:An overview, in Soils and global change [M]. Edited by R. Lal et al., ppl-7, CRC press, Boca Raton, FL,1995.
    44. Lal, R. World soils and greenhouse effect [M]. IGBP Global Change Newsletter,1999,37:4-5.
    45. Li, C.S. Modeling trace gas emissions from agricultural ecosystems [J]. Nutrient Cycling in Agroecosystems,2000,58:259-276.
    46. Li, C.S. Quantifying greenhouse gas emissions from soils:Scientific basis and modeling approach [J]. Soil Science and Plant Nutrition,2007,53:344-352.
    47. Li, C.S., Frolking, S., Frolking, T.A. A model of nitrous oxide evolution from soil driven by rainfall events:1. Model structure and sensitivity [J]. Journal of Geophysical Research,1992a, 97(D9):9759-9776.
    48. Li, C.S., Frolking, S., Frolking, T.A. A model of nitrous oxide evolution from soil driven by rainfall events:2. Model applications [J]. Journal of Geophysical Research,1992b,97(D9): 9777-9783.
    49. Li, C.S., Frolking, S., Harriss, R. Modeling carbon biogeochemistry in agricultural soils [J]. Global Biogeochemical Cycles,1994,8:237-254.
    50. Li, C.S., Qiu, J.J., Frolking, S., Xiao, X.M., Salas, W., Moore Ⅲ, B., Boles, S., Huang, Y., Sass, R. Reduced methane emissions from large-scale changes in water management in China's rice paddies during 1980-2000 [J]. Geophysical Research Letters,2002,29(20):1972, doi: 10.1029/2002GL01 5370.
    51. Li, C.S., Mosier, A., Wassmann, R., Cai, Z.C., Zheng, X.H., Huang, Y., Tsuruta, H., Boonjawat, J., Lantin, R. Modeling greenhouse gas emissions from rice-based production systems: Sensitivity and upscaling [J]. Global Biogeochemical Cycles,2004,18:GB1043, doi: 10.1029/2003GB002045.
    52. Li, C.S., Narayanan, V., Harriss, R. Nitrous oxide emission from agriculture lands in the United States [J]. Global Biogeochemical Cycles,1996,10:297-306.
    53. Li, C.S., Salas, W., DeAngelo, B., Rose, S. Assessing alternatives for mitigating net greenhouse gas emissions and increasing yields from rice production in China over the next twenty years [J]. Journal of Environment Quality,2006,35:1554-1565.
    54. Liao, Q.L., Zhang, X.H., Li, Z.P., Pan, GX., Smith, P., Jin, Y, Wu, X.M. In Increase in soil organic carbon stock over the last two decades in China's Jiangsu Province [J]. Global Change Biology,2009,15,861-875, doi:10.1111/j.1365-2486.2008.01792.x.
    55. Linn, D.M., Doran, J.W. Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and non-tilled soils[J]. Soil Society of America Journal,1984,48: 1267-1272.
    56. Mchaniel, P.A., Munn, L.C. Effect of temperature on the relationship between organic carbon and texture in Mollisols and Aridisols [J]. Soil Society of America Journal,1998, 28:1365-1372.
    57. McGill, W.B. Review and classification of ten soil organic matter models [M]. In:Evaluation of soil organic matter models. Berlin, Heidelberg:Spring-Verlag.1996:111-132.
    58. Melillo, J.M., McGuire, D.A., Kicklighter, D.W., Moore, B., Vorosmarty, C.J., Schloss, A.L. Global climate change and terrestrial net primary production [J]. Nature,1993,363:234-240.
    59. Missfeldt, F., Erik, H. The potential contribution of sinks to meeting Kyoto Protocol commitment [J]. Environmental Science and Policy,2001,42:269-292.
    60. Monteith, J.L. Solar radiation and productivity in tropical ecosystems [J]. Journal of Applied Ecology,1972,9:74-766.
    61. Morgan, M.G., Henrion, M. Uncertainty:A guide to dealing with uncertainty in quantitative risk and policy analysis [M]. Cambridge:Cambridge University Press,1990.
    62. Morgan, J.A., Lecain, D.R., Mosier, A.R., Milchunas, D.G. Elevated CO2 enhances water relations and productivity and affects gas exchange in C3 and C4 grasses of the Colorado short-grass steppe [J]. Global Change Biology,2001,7:451-466.
    63. Molina, J.A.E., Clapp, C.E., Shaffer, M.J., Chichester, F.W., Larson, W. E. NCSOIL, a model of nitrogen and carbon transformations in soil:description, calibration and behavior [J]. Soil Science Society of America,1983,47:85-91.
    64. Nichols, J.D. Relation of organic carbon to soil properties and climate in the southern Great Plains [J]. Soil Science Society of America Journal,1984,48:1382-1384.
    65. Orchard, V.A., Cook, F.J. Relationship between soil respiration and soil moisture [J]. Soil Biology and Biochemistry,1983,15(4):447-453.
    66. Pacey, J.G., DeGier, J.P. The factors influencing land fill gas production. In:Energy from landfill gas [M]. Proceeding of a conference jointly sponsored by the United Kingdom Department of Energy and the United States Department of Energy (October 1986),1986, pp 51-59.
    67. Parton, W.J., Rasmussen, P.E. Long-term effects of crop management in wheat-fallow:Ⅱ CENTURY model simulations [J]. Soil Science Society of America,1994, (58):530-536.
    68. Parton, W.J., Schimel, D.S., Cole, C.V. Analysis of factors controlling soil organic matter level in Great Plain grassland [J]. Soil Science Society of America Journal,1987,51:1173-1179.
    69. Pathak, H., Li, C.S., Wassmann, H. Greenhouse gas emissions from Indian rice fields: calibration and upscaling using the DNDC model [J]. Biogeoscience,2005,2:113-123.
    70. Paul, K.I., Pologlase, P.J., Nyakuengama, J.G. Change in soil carbon following afforestation [J]. Forest Ecology and Mangement,2002,168:241-257.
    71. Paustian, K. Modelling soil organic matter dynamics-global challenges. Sustainable
    management of soil organic matter [C]. Published CAB International,2001,43-53.
    72. Post, W.M., Emanuel, W.R., Zinke, P. Soil carbon pools and world life zone [J]. Nature,1982, 298:156-159.
    73. Potter, C.S., Randerson, J.T., Field, C.B., Matson, P.A., Vitousek, P.M., Mooney, H.A., Klooster, S.A. Terrestrial ecosystem production:A process model based on global satellite and surface data [J]. Global Biogeochemical Cycles,1993,7:811-841.
    74. Pottor, C.S., Riley, R.H., Klooster, S.A. Simulation modeling of nitrogen trace gas emissions along an age gradient of tropical forest soils. Ecological Modeling [J],1997,179-196.
    75. Potter, K.N., Torbert, H.A., Jones, O.R. Distribution and amount of soil organic C in long-term management systems in Texas [J]. Soil and Tillage Research,1998,47 (3-4):309-321.
    76. Qiu, J.J., Li, C.S., Wang, L.G., Tang, H.J., Li, H., Ranst, E.V. Modeling impacts of carbon sequestration on net greenhouse gas emissions from agricultural soils in China [J]. Global Biogeochemical Cycles,2009,23:VOL.23, GB1007, doi:10.1029/2008GB003180.
    77. Raffy, M. Change of scale theory:a capital challenge for space observation of Earth [J]. International Journal of Remote Sensing,1994,15 (12):2353-2357.
    78. Ramaswamy, V., Boucher, O., Haigh, J., Hauglustaine, D., Haywood, J., Myhre, G., Nakajima, T., Shi, G.Y., Solomon, S. Radiative forcing of climate change. p.239-287. In J.T. Houghton et al. (ed.) Climate Change 2001:The scientific basis [M]. Cambridge Univ. Press, Cambridge, 2001.
    79. Rapalee, G, Trumbore, S.E., Davidson, E.A., Harden, J.W., Veldhuis, H. Soil carbon stocks and their rates of accumulation and loss in a boreal forest landscape [J]. Global Biogeochemical Cycles,1998,12:687-701.
    80. Ruth, B., Lennartz, B. Spatial variability of soil properties and rice yield along two catenas in southeast China [J]. Pedosphere,2008,18(4):409-420.
    81. Salehi, F., Prasher S.O., Amin, S., Madani, A., Jebelli, S.J., Ramaswamy, H.S., Tan, C., Drury, C.F. Prediction of annual nitrate -N losses in draion outflows with artificial neural networks [J]. Transactions of the ASAE,2000, (43):1137-1143.
    82. Schimel, D.S., Braswell, B.H., Holland, E.A., McKeown, R., Ojima, D.S., Painter, T.H., Parton, W.J., Townsend, A.R. Climatic, edaphic and biotic controls over storage and turnover of carbon in soils [J]. Global Biogeochemical Cycles,1994,8(3):279-293.
    83. Schimel, J.P., Gulledge, J. Microbial community structure and global trace gases [J]. Global Change Biology,1998,4:745-758.
    84. Shi, X.Z., Yu, D.S., Warner, E.D., Pan, X.Z., Petersen, G.W., Gong, Z.G., Weindorf, D.C. Soil database of 1:1,000,000 digital soil survey and reference system of the Chinese Genetic Soil Classification System [J]. Soil Survey Horizons,2004,45:129-136.
    85. Singh, J.S., Gupta, S.R. Plant decomposition and soil respiration in terrestrial ecosystems [J]. The Botanical Review,1977,43:449-528.
    86. Six, J., Elliott, E.T., Paustian, K. Aggregation and soil organic matter accumulation in cultivated and native grassland soils [J]. Soil Science Society of America Journal,1998,62(5):1367-1377.
    87. Smith, P., Smith, J.U., Powlson, D.S., Arah, J.R.M., Chertov, O.G., Coleman, K., Franko, W., Frolking, S., Gunnewiek, H.K., Jenkinson, D.S., Jensen, L.S., Kelly, R.H., Komarov, A.S., Li, C., Molina, J.A.E., Mueller, T. A comparison of the performance of nine soil organic matter models using datasets from seven long term experiments [J]. Geoderma,1997, (81):153-225.
    88. Sozanska, M., Skiba, U., Metcalfe, S. Developing an inventory of N2O emissions from British soils [J]. Atmospheric Environment,2002,36:987-998.
    89. Stefen, W.L., Waiker, B.H., Ungram, J.S (eds). Global changes and terrestrial ecosystems, The Operational Plan [M]. IGBP Report 21, International Geosphere-Biosphere Programme. Stockholm,1992.
    90. Soil Survey Staff (Eds.). Keys to soil taxonomy [M].6th ed. U.S. Gov. Print. Office, Washington, DC, pp 437,1994.
    91. Stotzky, G, Rem, L.T. Influence of clay minerals on microorganisms. Ⅲ. Effect of particle size, carbon exchange capacity and surface area on bacteria [J]. Canadian journal of Microbiology, 1996,12:1235-1246.
    92. Stuart, G.A., Porter, G.A., Erich, M.S. Orgianic amendment and rotation crop effects on the recovery of soil organic matter and aggregation in potato cropping systems [J]. Soil Science Society of America Journal,2002,66:1311-1319.
    93. Tang, H.J., Qiu, J.J, Ranst, E. V., Li, C.S. Estimations of soil organic carbon storage in cropland of China based on DNDC model [J]. Geoderma,2006,134,200-206.
    94. Tate, R.L. Soil organic matter:biological and ecological effects [M]. New York:John Wiley & Sons,1987,238-259.
    95. Thornley, J.H., Verberne, E.L.J. A model of nitrogen flows in grassland [J]. Plant soil and Environment.1989,12:863-886.
    96. Townsend, A.R., Vitousek, P.M., Desmarais, D.J., Tharpe, A. Soil carbon pool structure and temperature sensitivity inferred using CO2 and 13 CO2 incubation fluxes from five Hawaiian soils [J]. Biogeochemistry,1997,38:1-17.
    97. Trumbore, S.E., Chadwich, O.A., Amundoson, R. Rapid exchange of soil carbon and atmospheric CO2 driven by temperature change [J]. Science,1996,272:393-396.
    98. Van den Berg, M. SWEAP:a computer program for water erosion assessment applied to SOTER report [C].International soil reference and information center.1992. No.7.
    99. Van Veen, J.A., Amato, M., Ladd, J.N. Turnover of carbon and nitrogen through the microbial biomass in a sandy loam and a clay soil incubated with [C-14 (U)] glucose and [N-15] (NH4)2SO4 under different moisture regimes. Soil Biology Biochemistry,1985,17:747-756.
    100. Wang, L.G., Qiu, J.J., Tang, H.J., Li, C.S., Ranst, E.V. Modelling soil organic carbon dynamics in the major agricultural regions of China [J]. Geoderma,2008,147:47-55.
    101. Wang, S.Q., Tian, H.Q., Liu, J.Y., Pan, S.F. Pattern and change of soil organic carbon storage in China:1960s-1980s [J]. Tellus B,2003,55 (2):416-427.
    102. Watson, R.T., Zinyowera, M.C., Moss, R.H., Dokken, D.J. Climate Change 1995, impacts, adaptations and mitigation of climate change:Scientific-technical analyses [M]. Intergovernmental Panel on Climate Change, Cambridge University Press, USA,1996, pp 879.
    103. Weerakoon, W.M., Olszyk D.M., Moss D.N. Effects of nitrogen nutrition on responses of rice seedlings to carbon dioxide [J]. Agriculture, Ecosystems and Environment,1999,72:1-8.
    104. Whitmore A.P., Klein-Gunnewiek, H., Crocker, G.J., Klir, J., Korschens, M., and Poulton, P.R. Simulating trends in soil organic carbon in long-term experiments using the Verberne/MOTOR model [J]. Geoderma,1997,81:137-151.
    105. Wotawa, G, Stohl, A., Kromp-Kolb, H. Estimating the uncertainty of a largrangian photochemical air quality simulation model caused by inexact meteorological input data [J]. Reliability Engineering and System Safety,1997,89:457-477.
    106. Xiao, H.L. Climate change in relation to soil organic matter [J]. Soil and Environment Sciences, 1999,8(4):300-304.
    107. Yagi, K., Minami, K., Ogawa, Y. Effects of water percolation on methane emission from rice paddies:A lysimeter experiment [J]. Plant and Soil,1998,198(2):200-206.
    108. Zhao Y.C., Shi X. Z., Weindorf, D.C., Yu, D.S., Sun, W.X., Wang, H.J. Effects of map scale on estimation of soil organic carbon stocks, a case study of Hebei province, China [J]. Soil Science Society of America Journal,2006,70(4):1377-1386.
    109. Zhao, Y.C., Shi, X.Z., Yu, D.S., Wang, H.J., Sun, W.X. Uncertainty assessment of spatial patterns of soil organic carbon density using sequential indicator simulation, a case study of Hebei province, China [J]. Chemosphere,2005,59:(11):1527-1535.
    110. Zheng, X.H., Han, S.H., Huang, Y, Wang, Y.S., Wang, M.X. Re-quantifying the mission factors based on field measurements and estimating the direct N2O emission from Chinese croplands [J]. Global Biogeochemical Cycles,2004,18:GB201810.1029/2003GB002167.
    111. Zheng, X.H., Wang, M.X., Wang, Y.S., Shen, R.X., Gou, J., Li, J., Jin, J.S., Li, L.T. Impacts of soil moisture on nitrous oxide emission from croplands:A case study on rice-based agro-ecosystem in Southeast China [J]. Chemosphere-Globe Change Science,2000,2:207-224.
    112. Zheng, X.H., Wang, M.X., Wang, Y.S., Shen, R.X., Shangguan, X,J,, Kogge, M,, Heyer, J., Papen, H., Jin, J.S., Li, L.T. CH4 and N2O emissions from rice paddies in southeast China [J]. Chinese Journal Atmosphere Science,1997,21(2):167-174.
    113. Zou, J.W., Huang, Y., Zong, L.G., Jiang, J.Y., Zheng, X.H., Wang, Y.S. Effects of water regime and straw application in paddy rice season on N2O emission from following growing season [J]. Agricultural Sciences in China,2003,2(1):68-74.
    114. Zou, J.W., Huang, Y., Lu, Y.Y., Jiang, J.Y., Zheng, X.H., Wang, Y.S. Direct emission factor for N2O from rice-winter wheat rotation systems in southeast China [J]. Atmosphere Environment, 2005,39:4755-4765.
    115.陈华癸,李阜俪.土壤微生物学[M].上海科技出版社.1981.61-63.
    116.陈育峰,李克让.应用林窗模型研究全球变化对僧林群落的可能影响——以四川西部紫果云杉群落为例[J].地理学报,1996,51(增刊):73-80.
    117.陈利顶,吕一河,傅伯杰,卫伟.基于模式识别的景观格局分析与尺度转换研究框架[J].生态学报,2006,26(3):663-670.
    118.陈庆强,沈承德,易惟熙.土壤碳循环研究进展[J].地球科学进展,1998,13(6):555-563.
    119.陈佑启,何英彬.2005.论土地利用/覆盖变化研究中的尺度问题[J].经济地理,25(2):152-155.
    120.迟光宇,王俊,陈欣,史奕.三江平原不同土地利用方式下土壤有机碳的动态变化[J]._土壤,2006,38(6):755-761.
    121.傅伯杰,陈利顶,马克明,王仰麟.景观生态学原理与响应[M].科学出版社,2000,1-236.
    122.方精云,刘国华,徐嵩龄.中国陆地生态系统碳库:温室气体浓度和排放监测及相关过程[M].见:王庚辰,温玉璞主编.中国环境科学出版社,1996:109-128.
    123.方精云,唐艳鸿,林俊达.气候变化与生态相应[M].北京:高等教育出版社,2000,165-168.
    124.盖钧镒.试验统计方法[M].北京:中国农业出版社.2000,376.
    125.耿远波,章申,董云社,孟维奇,齐玉春,陈佐忠,王艳芬.草原土壤的碳氮含量及其温室气体通量的相关性[J].地理学报,2001,56(1):44-53.
    126.贾丙瑞,周广胜,王风玉,王玉辉.土壤微生物与根系呼吸作用影响因子分析[J].应用生态学报,2005,16(8):1547-1552.
    127.黄昌勇.土壤学[M].北京:中国农业出版社,2002.
    128.黄耀.地气系统碳氮交换——从实验到模型[M].北京:气象出版社,2003,215.
    129.黄耀,刘世梁,沈其荣,宗良纲.农田土壤有机碳动态模拟模型的建立[J].中国农业科学,2001,34(5):532-536.
    130.黄耀,沈雨,周密,马瑞升.木质素和氮含量对植物残体分解的影响[J].植物生态学报,
    2003,27(2):183-188.
    131.黄耀,张稳,郑循华,韩圣慧,于永强.基于模型和GIS技术的中国稻田甲烷排放估计[J].生态学报,2006,26(4):980-988.
    132.黄耀,周广胜,吴金水,延晓冬.中国陆地生态系统碳收支模型[M].科学出版社.2008:109-110.
    133.韩冰,王效科,欧阳志云.中国农田生态系统土壤碳库的饱和水平及其固碳潜力[J].农村生态环境,2005,21(4):6-11.
    134.蒋静艳,黄耀,宗良纲.水分管理与秸秆施用对稻田CH4和N20排放的影响[J].中国环境科学,2003,23(5):552-556.
    135.姜勇,梁文举,张玉革.田块尺度下土壤磷素的空间变异性[J].应用生态学报,2005,16(11):2086-2091.
    136.康国定.中国稻田甲烷排放时空变化特征研究[D].南京:南京大学,2003.52-64.
    137.李长生.陆地生态系统的模型模拟[J].复杂系统与复杂性科学,2004,1(1):49-57.
    138.李长生.生物地球化学的概念与方法——DNDC模型的发展[J].第四纪研究,2001,21(2):89-99.
    139.李长生.土壤碳储量减少:中国农业之隐患——中美农业生态系统碳循环对比研究[J].第四纪研究,2000,20(4):345-350.
    140.李长生,肖向明,Frolking S, Moore Ⅲ B, Salas W,邱建军,张宇,庄亚辉,王效科,戴昭华,刘纪远,秦小光,廖柏寒,Sass R.中国农田的温室气体排放[J].第四纪研究,2003,23(5):493-503.
    141.李虎,王立刚,邱建军.黄淮海平原河北省范围内农田土壤CO2和N20排放量的估算[J].应用生态学报,2007,18(9):1994-2000.
    142.李庆逵.中国水稻土[M].北京:科学出版社.1992,95-100.
    143.李忠佩,王效举.红壤丘陵地区土地利用方式变更后土壤有机碳动态变化的模拟[J].应用生态学报,1998,9(4):365-370.
    144.刘纪远,于贵瑞,王绍强,岳天祥,高志强.陆地生态系统碳循环及其机理研究的地球信息科学方法初探[J].地理研究,2003,22(4):397-405.
    145.刘庆花.中国水稻土有机碳空间分布及其主要影响因素研究[D].南京:中国科学院南京土壤研究所,2006.
    146.刘庆花,史学正,于东升,赵永存,孙维侠,王洪杰.中国水稻土有机和无机碳的空间分布特征[J].生态环境,2006,15(4):659-664.
    147.吕成文,沈德福,陈云丰.大比例尺土壤数据库的组织与设计研究[J].土壤通报,2004,35(2):122-125.
    148.马成泽,周勤,何方.不同肥料配合施用土壤有机质盈亏分布[J].土壤学报,1996,31
    (1):35-41.
    149.潘根兴,李恋卿,张旭辉.中国土壤有机碳库与农业土壤碳固定动态的若干问题[J].地球科学进展,2003,18(4):608-618.
    150.潘根兴,李恋卿,张旭辉,代静玉,周运超,张平究.中国土壤有机碳库量与农业土壤碳固定动态的若干问题[J].地球科学进展,2003,18(4):609-618.
    151.邱建军,王立刚,唐华俊,李红,Changsheng Li.东北三省耕地土壤有机碳储量变化的模拟研究[J].中国农业科学,2004,37(8):1166-1171.
    152.全国土壤普查办公室.中国土壤[M].北京:中国农业出版社,1998,1-746.
    153.全国土壤普查办公室.中国土种志(第四卷)[M].北京:中国农业出版社,1995.
    154.全国土壤普查办公室.中国1:2,500,000土壤图[M].西安:西安地图出版社,1996.
    155.全国二次土壤普查办公室.中国1:1,000,000土壤图[M].北京:地图出版社,1995.
    156.盛建东,肖华,武红旗,陈冰,王军,杨新建.不同取样尺度农田土壤速效养分空间变异特征初步研究[J].干旱地区农业研究,2005,23(2):63-67.
    157.沈宏,曹志洪,胡正义.土壤活性有机碳的表征及其生态效应[J].生态学杂志,1999,18(3):32-38.
    158.沈宏,曹志洪.长期施肥对不同农田生态系统土壤有效碳库及碳素有效率的影响[J].热带亚热带土壤科学,1998,7(1):1-5.
    159.沈雨.基于模型和GIS的江苏省农田土壤有机碳动态研究[D].南京:南京农业大学,2003.
    160.沈雨,黄耀,宗良纲,张稳,徐茂,刘林旺.基于模型和GIS的江苏省农田土壤有机碳变化研究[J].中国农业科学,2003,36(11):1312-1317.
    161.苏理宏,李小文,黄裕霞.遥感尺度问题研究进展[J].地球科学进展,2001,16(4):544-548.
    162.唐华俊,陈佑启,邱建军.中国土地利用/土地覆盖变化研究[M].北京:中国农业科学技术出版社.2004,247-302.
    163.唐万龙,Chen Mi, Andy D Ward. ADAPT模型在不同尺度土壤数据库中的预报精度——以美国俄亥俄州Darby Creek流域为例[J].水土保持学报,2000,14(2):15-18.
    164.童成立,吴金水,向万胜,刘子勇,蒋平,刘守龙.长江中游稻田土壤有机碳计算机模拟[J].长江流域资源与环境,2002,11(3):229-233.
    165.童成立,吴金水,郭胜利,向万胜,刘守龙.土壤有机碳周转SCNC模型的研究与开发[J].计算机与农业,2001,12:10-13.
    166.土壤质量演变规律与持续利用“973”项目G1999011810课题组.土壤肥力质量指标体系.2004.
    167.王效科,白艳莹,欧阳志云,苗鸿.陆地生物地球化学模型的应用和发展[J].2001,56(1):44-53.
    168.王效科,欧阳志云,苗鸿.DNDC模型在长江三角洲农田生态系统的CH4和N20排放量
    估算中的应用[J].环境科学,2001,22(3):15-19.
    169.汪业勋,赵士洞,牛栋.陆地土壤碳循环的研究动态[J].生态学杂志,1999,18(5):29-35.
    170.王周龙,刘晓枚,王大鹏,等.太湖流域地理数据库构建[J].水资源保护,2007,23(4):59-61.
    171.吴乐知.中国土壤有机碳含量的变异性及其影响因素[D].南京:中国科学院南京土壤研究所,2007.
    172.吴乐知,蔡祖聪.中国土壤有机质含量变异性与空间尺度的关系[J].地球科学进展,2006,21(9):965-972.
    173.徐华,邢光熹,张汗辉.太湖地区水田N20排放通量及其影响因素[J].土壤学报,1995,32:144-149.
    174.徐阳春,沈其荣,雷宝坤,储国量,王全洪.水旱轮作下长期免耕和使用有机肥对土壤某些肥力性状的影响[J].应用生态学报,2000,11(4):549-552.
    175.徐琪,陆彦椿,刘元昌.中国太湖地区水稻土[M].上海科学技术出版社.1980:37-40.
    176.许信旺,潘根兴.中国水稻土碳循环研究进展[J].生态环境,2005,14(6):961-966.
    177.杨茹玮.水稻土有机碳区域尺度的演变模拟与模型适宜性评价[D].南京:南京农业大学,2006.
    178.杨茹玮,史学正,于东升,黄耀,徐茂,潘贤章,金洋.基于1:5万数据库研究土壤空间分异及其影因素—以江苏省无锡和常州市为例[J].土壤学报,2006,43(3):369-375.
    179.喻长新.江苏土壤[M].中国农业出版社,1995,343-347.
    180.于东升,史学正,孙维侠,王洪杰,刘庆花,赵永存.基于1:100万土壤数据库的中国土壤有机碳密度及储量研究[J].应用生态学报,2005,16(12):2279-2283.
    181.于淑玲.腐生真菌在有机质分解过程中的作用研究进展[J].河北师范大学学报(自然科学版),2003,27(5):519-522.
    182.于永强,黄耀,张稳.华东地区农田土壤有机碳模拟研究——模型的验证与灵敏度分析[J].地理与地理信息科学,2006,22(6):83-88.
    183.于永强,黄耀,张稳.华东地区农田土壤有机碳模拟研究时空格局[J].地理与地理信息科学,2007,23(1):97-100.
    184.张福春,朱志辉.中国作物的收获指数[J].中国农业科学,1990,23(2):83-87.
    185.张付申.长期施肥条件下娄土和黄绵土有机质氧化稳定性研究[J].土壤肥料,1996,06:32-34.
    186.张琪,李恋卿,潘根兴,张旭辉,蒋定安,黄洪光.近20年来宜兴市域水稻土有机碳动态及其驱动因素[J].第四纪研究,2004,24(2):236-241.
    187.张学明,张晓平,方华军,朱平,任军,王立春,梁爱珍.用RothC-26.3模型模拟玉米连 作下长期施肥对黑土有机碳的影响[J].中国农业科学,2003,36(11):1318-1324.
    188.赵永存.土壤属性表征的空间尺度效应和不确定性研究—以河北省土壤有机碳为例[D].南京:中国科学院南京土壤研究所,2005,44.
    189.赵永存,史学正,于东升,赵彦锋,孙维侠,王洪杰.不同方法预测河北省土壤有机碳密度空间分布特征的研究[J].土壤学报,2005,42(3):379-385.
    190.郑循华,王明星,王跃思,沈壬兴,上官行健,金继生,李老土.华东稻田CH4和N20排放[J].大气科学,1999,21(2):231-237.
    191.中国科学院南京土壤研究所.中国1:4,000,000土壤图.北京:中国地图出版社,1978.
    192.周再兴,郑循华,王明星,Klaus B.B.华东稻麦轮作农田CH4、N2O和NO排放特征[J].气候与环境研究,2007,6(12):751-760.
    193.周广胜,张新时.自然植被净第一性生产力模型初探[J].植物生态学报,1995,19(3):193-200.
    194.朱琰.太湖流域实时洪水预报调度系统研究[D].南京:河海大学.2003:15-18.
    195.邹建文,黄耀,宗良纲,王跃思,Sass, R.L.不同种类有机肥施用对稻田CH4和N20排放的综合影响[J].环境科学,2005,26(3):7-21.