直接数据域GNSS抗干扰关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球导航卫星系统(GNSS:Global Navigation Satellite Systems)具有大范围全天候高精度定位测速和定时服务的能力,在国防和国民经济各个领域得到了广泛应用目前,卫星导航系统抗干扰能力较弱,已成为其在复杂战场环境下作战使用的严重限制因素之一,提高卫星导航系统的抗干扰能力是赢得未来导航战的重要保证因此,深入研究和实现复杂电磁环境下的GNSS抗干扰技术,具有非常重要的军事价值
     传统统计型抗干扰方法以阵列接收数据协方差矩阵为基础,需要较多快拍数实现对协方差矩阵的估计,一般计算量偏大,工程实现较困难;同时统计型方法假设工作过程中环境稳定,主要适用于平稳环境但实际复杂电磁环境中信号往往是非平稳或时变的,可能导致统计型方法性能下降;为更好地适应非平稳环境,可以使用直接数据域处理方法直接数据域算法相对统计型算法来说,是一种单快拍处理算法,避免了样本协方差矩阵估计等运算本文系统地研究了基于直接数据域的GNSS阵列误差校正干扰抑制子空间跟踪干扰信号波达方向估计以及波束形成等关键理论和算法;在具体工程实践方面完成了相应的算法验证和技术方案实现,对GNSS实时抗干扰设计具有一定参考价值
     研究了直接数据域自适应GNSS抗干扰算法提出了改进的最小均方(LMS:Least Mean Square)算法:VS_NLMS算法,具有较好的收敛速度和收敛稳定性;提出了基于VS_NLMS算法的GNSS阵列误差校正方法,对校正前后性能进行了分析比较;对基于VS_NLMS算法的GNSS空时抗干扰处理进行了性能仿真分析;阵列误差校正和干扰抑制都在直接数据域完成,便于时变环境应用
     研究了直接数据域子空间跟踪算法及其抗干扰应用通过深入研究数据投影方法(DPM:Data Projection Method)类OJA类子空间跟踪方法的物理意义,提出了一种基于最小空间距离准则的低复杂度子空间跟踪(STSD:Subspace Trackingbased on Subspace Distance)算法,算法复杂度仅有3NL+O(N),在同类算法中复杂度最低;并对STSD算法在信号子空间跟踪和噪声子空间跟踪中的数值稳定性进行了理论证明和仿真验证,在有限字长条件下,该算法对舍入误差累积不敏感,能保证子空间基的标准正交收敛,算法稳健;对STSD算法应用于GNSS空时抗干扰处理进行了性能仿真分析STSD算法为子空间跟踪算法的发展开拓了新思路,应用于GNSS干扰抑制取得了较好效果
     研究了直接数据域相干干扰波达方向(DOA:Direction ofArrival)估计方法提出了两种直接数据域干扰DOA估计方法:基于低复杂度自适应算法得到不同噪声子空间矢量,或基于子空间跟踪方法得到噪声子空间基估计,从而分别构建空间谱,通过谱峰搜索得到干扰DOA估计进而,为了对相干干扰进行DOA估计,分别提出了直接数据取对称共轭向量和直接数据虚拟空间平滑的解相干算法提出的直接数据域相干信号DOA估计算法都不需协方差矩阵估计和特征分解,大大减少了算法计算量,可应用于复杂时变环境
     研究了直接数据域GNSS稳健波束形成方法提出了一种基于直接数据域子空间跟踪结合解扩处理和一阶恒模算法的GNSS盲波束形成算法首先通过噪声子空间跟踪投影完成强干扰抑制;然后利用指定卫星PRN(Pseudorandom Noise)码对干扰抑制后的信号进行解扩处理,突出卫星信号;最后结合一阶恒模算法实现对卫星信号的盲波束形成提出的直接数据域稳健波束形成算法复杂度低,易于实时实现;而且算法不需要知道传输的导航符号以及卫星方位,是一种盲自适应波束形成算法并提出了一种多波束形成方式,针对多个卫星信号进行波束形成
     研究了适合GNSS抗干扰实现的系统级联结构和模块设计,完成了GNSS抗干扰处理系统应用VS_NLMS算法进行了GNSS空时自适应处理机的设计和实现;基于子空间跟踪结合解扩处理和恒模算法,以及直接数据域DOA估计算法进行了数字多波束GNSS抗干扰系统设计完成了系统模块设计算法验证和功能测试等工作,相关研究成果具有一定的工程实用价值
     本文部分相关成果已被用于某型舰载接收机改造某航空炸弹设计定型某新型超高速导弹设计;作为一种重要的抗干扰措施,也已经被用于北斗二代抗干扰接收机系统论证和实现
Global Navigation Satellite Systems (GNSS) have the abilities of providing highprecision positioning, speed and timing service in wide range and all weather. Theyhave been widely applied in the national defense and the national economy. Meanwhile,the weak anti-interference ability is one of the serious restriction factors of GNSSapplying in the complex battlefield environment; and improving the anti-jammingability of GNSS is the important guarantee to win the future navigation warfare. As aresult, to study and realize the technologies of ensuring the reliability for GNSSreceivers in the complex electromagnetic circumstances is of great importance inmilitary field.
     The classical statistical anti-jamming methods are based on the covariance matrixof array receiving data. To get the estimate of covariance matrix, a series of snapshotdata are required. And the big amount of calculation brings the difficulties inengineering realizing. Statistical methods assume that the environment is stable, so it isapplied only in the steady environment. But in the actual environment especially in thecomplex electromagnetic environment, the signal is usually unsteady and time-varying,which would lead to the performance degradation with the statistical method. In order tobe better adapted in the non-stationary environment, the algorithms in direct datadomain (DDD) should be proposed and applied. The DDD algorithm is a signalsnapshot processing method, which avoids the statistical operation, such as the samplecovariance matrix estimates. In this thesis, the key and theoretical problems, whichrelate to GNSS array error correction, interference suppression, subspace tracking,estimation of direction of arrival (DOA), as well as beam forming, are systematicallystudied in the direct data domain; The corresponding algorithm validation andimplementation in engineering practice are also investigated.
     The GNSS adaptive algorithms belonging to the direct data domain is studied. Theimprovement is emphasis on the stability of the least mean square (LMS) algorithm andits convergence speed. A kind of calibration technique to GNSS array error is proposedin this thesis and the influence of GNSS anti-jamming performance is also analyzed. Asimulation analysis of GNSS space-time processing based on the improved LMSalgorithm is accomplished. All the processing is carried out in direct data domain, whichis convenient in time-varying environmental engineering application.
     The subspace tracking algorithms belonging to the direct data domain is studied.Through in-depth study on the physical meaning of data projection method (DPM) andOJA algorithms, the subspace tracking based on subspace distance (STSD) is proposed,which is based on the minimum space distance criterion. The STSD algorithm has thelowest computational complexity of3NL+O(N) in the congener algorithms. The numerical stability theory proof and simulation verification is also carried out for theproposed algorithm in the signal subspace and noise subspace tracking. In finiteprecision conditions, this algorithm is not sensitive to rounding error accumulation, andcan guarantee orthogonal convergence to the subspace base. A simulation analysis ofGNSS space-time processing based on the proposed STSD algorithm is alsoaccomplished. The STSD algorithm exploits a novel view to the development ofsubspace tracking algorithms, and simulation results reveal that it has good performancein GNSS anti-jamming application.
     The DOA estimation of coherent signals in direct data domain is studied. First ofall, this thesis proposes two DOA estimation methods. One of the novel approachsconstructs the spatial spectrum by utilizing the steady-state weights from the improvedLMS algorithm; the other constructs the spatial spectrum by utilizing the estimation ofnoise subspace base. Then the DOA estimation of interference signal could be obtainedfrom searching spectral peak. Furthermore, in order to deal with coherent interferencesignals, the symmetric conjugate vector method and the virtual space smooth algorithmin direct data domain are proposed, respectively. The proposed approaches do not needto estimate the source number or the covariance matrix. Also, they do not need theeigendecomposition, meanwhile the computational complexity is greatly reduced, andthe proposed approaches can be applied to complex time-varying environment.
     The GNSS robust beamforming method in direct data domain is studied. Amulti-beamforming method, which form beam to each satellite, is proposed. The stronginterference suppression is finished through the noise subspace projection. Then, thedespread processing which uses the designated satellite pseudorandom noise (PRN)code is carried out to outstanding the satellite signal. The blind beamforming methodcombines with the one-order constant modulus (CM) algorithm. The proposed methodis a blind adaptive beamforming algorithm which does not require the information aboutnavigation symbols or satellite orientations. It also adopts the low complexity algorithmin direct data domain, which mitigates the computational consumption of the receiverand guarantees the real time implementation.
     A cascaded structure and module design for GNSS anti-jamming are studied andtwo GNSS anti-jamming systems have been implemented. Based on the improved LMSalgorithm, the GNSS space-time adaptive processor is designed and implemented. Amulti-beam GNSS anti-jamming system is also be proposed, which combines thesubspace tracking algorithm, the CM algorithm and the DOA estimation method indirect data domain. Experimental results show that such a cascaded scheme could bringsignal-to-noise-ratio improvement for the space-time processing. The system design,algorithm validation and functional testing are completed, and relevant research resultsare significant in both theory and engineering application.
     Partial correlation results of this thesis have been used to a certain type of carrier receiver transformation, aviation bomb finalize the design, a new type of high speedmissile design. In addition, as important anti-jamming measures, they have been used indemonstration and realization of the second generation “beidou” anti-jamming receiversystem.
引文
[1]干国强,邱致和.导航与定位:现代战争的北斗星[M].北京:国防工业出版社,2002.
    [2] Kaplan Elliott D.著,寇艳红译. GPS原理与应用(第二版)[M].北京:电子工业出版社,2007.
    [3] Fontana R D, Cheung W, Stansell T. The New L2Civil Signal[J]. GPS World.2001(9):28-34.
    [4] Barker B. Overview of the GPS M Code Signal[C]. Anaheim,California:2000.
    [5] Betz J W. The Offest Carrier Modulation for GPS Modernization[C]. ION:1999.
    [6] Weiler R M, Blunt P, Hodgart S. The Effect of Cosine Phased BOC Modulationon the GNSS Receiver Search Process[J]. Journal of Navigation.2008,61(4):591-611.
    [7] http://210.82.31.84:9000/rp/fs/cp/98/36/20100120/3/icontent_1.htm[Z].2010.
    [8] Kaplan E D, Hegarty C J. Understanding GPS: Principles and Applications,Second Edition[M]. Second Edition ed. Norwood, MA: Artech House,2006.
    [9]吴勤.透视俄罗斯军用卫星发展现状[J].现代军事.2008(12):40-44.
    [10]白华.国外导航飞行能够系统的最新发展[J].电子信息对抗技术.2009,24(2):41-46.
    [11]郑睿.中国卫星导航系统的最新进展[J].卫星与网络.2009,82(4):60-63.
    [12] Kawano I, Mokuno M, Kogure S, et al. Japanese Experimental GPS AugmentationUsing Quasi-Zenith Satellite System (QZSS)[C].2004.
    [13] Kogure S, Sawabe M, Kishimoto M. Status of QZSS Navigation System inJapan[C].2006.
    [14] Navstar CPS Space Segment/Navigation User Interfaces(Public Release Version)
    [S]. Maryland,1991.
    [15] Johannessen R, Cole S J, Asbury J A. Potential Interference Sources to GPS andSolutions Appropriate for Applications to Civil Aviation[J]. IEEE AES Magazine.1990,26(1).
    [16] Dibenedetto M B A M. Spread spectrum ranging multipath model and validation[J].IEEE Transactions on Aerospace and Electronic Systems.2001,37:298-303.
    [17]费华连.导航战中的GPS干扰与抗干扰技术[J].航空电子技术.2001,32(1):18-43.
    [18] Beser J, Parkinson B W. The application of NAVSTAR differential GPS in thecivilian community[J]. Navigation.1982,29(2):107-136.
    [19] Klein D, Parkinson B W. The use of pseudo-satellites for improving GPSperformance[M]. Global Positioning System,1986: Institute of Navigation,135-146.
    [20] T C P, J H B, M H T, et al. A Single-Chip Narrow-Band Frequency-DomainExcisor for a Global Positioning System (GPS) Receiver[J]. IEEE Journal ofSolid-State Circuits.2001,35(3):401-411.
    [21] B B, S. S A. Partial Band Interference Excision for GPS Using Frequency-DomainExponents[Z].20024-3936.
    [22] C S D, L. N C. Adaptive Interference Canceller for Narrowband and WidebandInterferences Using Higher Order Statistics[J]. IEEE Transactions on SignalProcessing.1994, SP-42(10):2715-2728.
    [23] Fante R L, Vaccaro J J. Wideband cancellation of interference in a GPS receivearrayy[J]. IEEE Trans. AES.2000,36(2):549-564.
    [24] Brown A, Tseng H, Kurtz R. Test results of a digital beamforming GPS receiverfor mobile applications[C]. Anaheim California:2000.
    [25] Fante R L, Vaccaro J J. Evaluation of Adaptive Space-Time-PolarizationCancellation of Broadband Interference in GPS Systems[C]. PalmSprings,California:2002.
    [26] Amin M G, Zhao L, Lindsey A R. Subspace Array Processing for the Suppressionof FM Jamming in GPS Receivers[J]. IEEE Transactions on Aerospace andElectronic Systems.2004,40(1):80-92.
    [27]孙晓昶. GPS接收机联合空时抗干扰技术研究[D].国防科学技术大学,2003.
    [28]狄旻珉. GPS抗干扰接收技术研究[D].国防科学技术大学,2006.
    [29]郭艺. GPS接收机空时抗干扰理论与实现关键技术研究[D].国防科学技术大学,2007.
    [30]冯起.卫星导航接收机抗干扰自适应天线设计与弹载应用研究[D].国防科学技术大学,2009.
    [31]张文明.卫星导航系统干扰抑制技术[D].国防科技大学,2002.
    [32]李双勋.导航信号空时抗干扰关键技术研究[D].国防科技大学,2007.
    [33]钱林杰.基于子空间跟踪与多波束技术的GNSS抗干扰处理研究[D].国防科技大学,2010.
    [34]石斌斌.高自由度GNSS抗干扰技术研究[D].国防科技大学,2011.
    [35]段亚峰.数字多波束GNSS抗干扰处理机实现[D].国防科技大学,2010.
    [36]王赵.阵列优化布阵及导航抗干扰信号处理设计与实现研究[D].西安电子科技大学,2010.
    [37]刘聪锋.稳健的自适应波束形成与空时自适应处理算法研究[D].西安电子科技大学,2008.
    [38]包慧东.空时域导航系统抗干扰算法研究及FPGA设计[D].西安电子科技大学,2009.
    [39]喻晓玲.导航信号多维域抗干扰技术及其实现研究[D].西安电子科技大学,2010.
    [40]李旭朝.基于自适应天线的GPS抗干扰技术研究[D].西安电子科技大学,2008.
    [41]万瑞. GPS接收机天线阵列抗干扰算法研究及其FPGA实现[D].电子科技大学,2008.
    [42]杨克元. GPS接收机抗干扰算法及其实现研究[D].电子科技大学,2010.
    [43]翟永刚.导航接收机空域自适应干扰抑制技术研究及实现[D].电子科技大学,2009.
    [44]王长生.导航接收机时频域干扰抑制技术研究及实现[D].电子科技大学,2009.
    [45]李大鹏.导航接收机空域抗干扰及通道校正技术的研究与实现[D].电子科技大学,2010.
    [46]徐立.卫星导航接收机时频联合干扰抑制算法研究[D].电子科技大学,2008.
    [47]王李军. GPS接收机抗干扰若干关键技术研究[D].南京理工大学,2006.
    [48]唐培培. GPS信号建模及空时抗干扰技术研究[D].南京理工大学,2010.
    [49]卢艳娥,谈展中,杨军,等.用于双卫星导航系统用户接收机抗干扰的自适应干扰正交约束下的最佳信号增强算法[J].电子学报.2004,32(8):1239-1243.
    [50]卢艳娥,谈展中,丁子明.通道失配和天线互耦对GPS抗干扰天线的影响[J].北京航空航天大学学报.2005,31(10):1110-1115.
    [51]宋洪涛. GPS接收机抗干扰技术研究[D].哈尔滨工程大学,2009.
    [52]钟晓玲. GPS接收机的自适应抗干扰系统研究[D].成都理工大学,2008.
    [53]郑治国. GPS信号特性及其干扰技术的研究[D].大连理工大学,2007.
    [54]黄栓成. Galileo数字接收机关键技术研究[D].东南大学,2008.
    [55]李延辉.压制干扰下GPS接收机的捕获与跟踪性能分析[D].华中科技大学,2005.
    [56]冯延乐. GPS导航对抗方法研究[D].山东大学,2007.
    [57]李磊. GPSSINS深度组合导航系统研究[D].上海交通大学,2009.
    [58]施伟明. Galileo信号仿真与捕获跟踪算法的验证[D].上海交通大学,2009.
    [59]刘春德. GPS接收机工作原理及其干扰因素的影响分析[D].沈阳理工大学,2008.
    [60]郑宏磊. GPS在干扰环境下的可用性研究[D].天津理工大学,2006.
    [61]武玉琨.伪卫星增强卫星定位系统的研究[D].西北工业大学,2006.
    [62]隋艺.北斗卫星和伪卫星组合定位系统研究[D].西北工业大学,2004.
    [63]李平.基于周期平衡特性的GPS自适应抗干扰技术研究[D].中国民航大学,2008.
    [64] Jing W, G. A M. GPS interference cancellation performance in single and multipleMVDR beamforming methods[C].2006.
    [65]郭艺,张尔扬,沈荣骏. GPS接收机联合空时抗干扰简化方法[J].信号处理.2007,23(5):662-665.
    [66]战永红,李双勋,王展,等.均匀线阵条件下的MSNWF空时处理快速实现方法[J].系统工程与电子技术.2008,30(1):19-23.
    [67] Feldman D D, Griffiths L J. A Projection Approach for Robust AdaptiveBeamforming[J]. IEEE Transactions on Signal Processing.1994,42(4):867-876.
    [68] Gershman A B. Robust Adaptive Beamforming in Sensor Arrays[J]. Int. JournalElectron. Comm.1999,53:305-314.
    [69] K S T, N S. An adaptive nulling system for narrowband signal with alook-direction constraint utilizing the conjugate gradient method[J]. IEEETrans.on Antennas and Propagation.1989,37(7):940-944.
    [70]张贤达.矩阵分析与应用[M].清华大学出版社,2004.
    [71]皇甫堪,陈建文,楼生强.现代信号处理[M].北京:电子工业出版社,2003.
    [72]王永良,丁前军,李荣锋.自适应阵列处理[M].北京:清华大学出版社,2009.
    [73] Widrow B, Stearns S D. Adaptive Signal Processing[M]. Englewood Cliffs, NJ:Prentice Hall,1985.
    [74] Applebaum S P. Adaptive Antenna[J]. IEEE Transactions on Antenna andPropagation.1976,24:585-598.
    [75] Hudson J E. Adaptive Array Principles[M]. LTd, London: Peter Peregrinus,1981.
    [76]沈福民.自适应信号处理[M].西安电子科技大学出版社,2001.
    [77]皇甫堪,陈建文,楼生强.现代数字信号处理[M].电子工业出版社,2003.
    [78]宁平,王紫婷.一种改进变步长因子LMS算法的研究[J].计算机与数字工程.2010,38(6):19-21.
    [79]李盈颖,万建伟,周良柱.一种改进的变步长归一化LMS算法[J].国防科技大学学报.1999,21(1):94-97.
    [80]吕振肃,黄石.一种改进的变步长ELMS算法[J].电子与信息学报.2005,27(10):1524-1526.
    [81] Mayyas K, Momani F. An LMS adaptive algorithm with a new step-size controlequation[J]. Journal of the Franklin Institute348(2011).2011:589-605.
    [82] Wang P, Kam P. An automatic step-size adjustment algorithm for LMS adaptivefilters and an application to channel estimation[J]. Physical Communication5(2012).2012:280-286.
    [83] Hui H T. Compensating for the Mutual Coupling Effect in Direction Finding Basedon a New Calculation Method for Mutual Impedance[J]. IEEE Antennas andWireless Propagation Letters.2003,2:26-29.
    [84] Sellone F, Serra A. A Novel Online Mutual Coupling Compensation Algorithm forUniform and Linear Arrays[J]. IEEE Transactions on Signal Processing.2007,55(2):560-573.
    [85]俄广西,龚耀寰.一种新的阵列天线校正方法[J].信号处理.2003,19(5):404-406.
    [86]俄广西,蒋谷峰.基于MUSIC的阵列天线通道误差的盲估计算法[J].电子与信息学报.2006,28(4):667-670.
    [87] Friedlander B, Weiss A J. Performance of Direction Finding with Sensor Gain andPhase Uncertainties[J]. Circuits, Systems, and Signal Processing.1990,9(3):271-300.
    [88]王永良,陈辉,彭应宁,等.空间谱估计理论与算法[M].北京:清华大学出版社,2004.
    [89] Hung E K L. A Critical Study of a Self-Calibrating Direction-Finding Method forArrays[J]. IEEE Transactions on Signal Processing.1994,42(2):471-474.
    [90]王鼎,张莉,吴瑛.改进的阵列幅相差和阵元位置误差自校正算法[J].数据采集与处理.2008,23(2):176-181.
    [91] See C M S. Sensor Array Calibration in the Presence of Mutual Coupling andUnknown Sensor Gains and Phases[J]. Electronics Letters.1994,30(5):373-374.
    [92] Poh B, T Q C S. Suppression of Strong Narrowband Interference Using anEigen-Structure Based Algorithm[C].1995.
    [93] Owsley N L. Adaptive Data Orthogonalization[C].1978.
    [94] Doukopoulos X G, Moustakides G V. Fast and Stable Subspace Tracking[J]. IEEETransactions on Signal Processing.2008,56(4):1452-1465.
    [95] Comon P, Golub G H. Tracking a Few Extreme Singular Values and Vectors inSignal Processing[C].1990.
    [96] Hua Y, Xiang Y, Chen T, et al. A New Look at the Power Method for FastSubspace Tracking[C].1999.
    [97] Yang J F, Kaveh M. Adaptive Eigensubspace Algorithms for Direction orFrequency Estimation and Tracking[J]. IEEE Transactions on Acoustics, Speechand Signal Processing.1988,36(2):241-251.
    [98] Xu G, Kailath T. Fast Subspace Decomposition[J]. IEEE Transactions on SignalProcessing.1994,42(3):539-551.
    [99] Xu G, Kailath T. Fast Estimation of Eigenspace Using Lanczos Algorithm[J].SIAM Journal on Matrix Analysis&Applications.1994,15(3):974-994.
    [100] Parlett B N. The Symmetric Eigenvalue Problem[M]. Englewood Cliffs, NJ:Prentice-Hall,1980.
    [101] Stewart G W. A Jacobi-like Algorithm for Computing the Schur Decompositionof a Non-Hermitian Matrix[C].1985.
    [102] Stewart G W. An Updating Algorithm for Subspace Tracking[J]. IEEETransactions on Signal Processing.1992,40(6):1535-1541.
    [103] Chan T F. Altermative to the SVD: Rank Revealing QR Factorization[C]. SanDiego:1986.
    [104] Chan T F. Rank Revealing QR Factorization[J]. Linear Algebra Applications.1987,88-89:67-82.
    [105] Anderson A, Broman H. A Second-Order Recursive Algorithm with Applicationsto Adaptive Filtering and Subspace Tracking[J]. IEEE Transactions on SignalProcessing.1998,46(6):1720-1725.
    [106] Strobach P. Square-root QR inverse iteration for tracking the minor subspace[J].IEEE Trans. Signal Process.2000,48:2994-2999.
    [107] Karasalo I. Estimating the Covariance Matrix by Signal Subspace Averaging[J].IEEE Transactions on Acoustics, Speech and Signal Processing.1986,34(1):8-12.
    [108] Dowling E M, Ammann L P, Degroat R D. A TQR-Iteration Based AdaptiveSVD for Real Time Angle and Frequency Tracking[J]. IEEE Transactions onSignal Processing.1994,42(4):914-926.
    [109] Strobach P. Low-rank adaptive filters[J]. IEEE Trans. Signal Process.1996,44:2932-2947.
    [110] Real E C, Tufts D W, Cooley J W. Two Algorithms for Fast ApproximateSubspace Tracking[J]. IEEE Transactions on Signal Processing.1999,47(7):1936-1945.
    [111] Strobach P. Square Hankel SVD Subspace Tracking Algorithms[J]. SignalProcessing.1997,57(1):1-18.
    [112] Abed-Meraim K, Chkeif A, Hua Y. Fast Orthonormal PAST Algorithm[J]. IEEESignal Processing Letters.2000,7(3):60-62.
    [113] Abed-Meraim K, Chkeif A, Hua Y, et al. On a Class of Orthonormal Algorithmsfor Principal and Minor Subspace Tracking[J]. Journal of VLSI SignalProcessing.2002,31:57-70.
    [114] Yongfeng M, Yingbo H. Fast Subspace Tracking and Neural Network Learningby a Novel Information Criterion[J]. IEEE Transactions on Signal Processing.1998,46(7):1967-1979.
    [115] Riou C, Chonavel T. Fast Adaptive Eigenvalue Decomposition: A MaximumLikelihood Approach[C].1997.
    [116] Champagne B, Liu Q G. Plane Rotation-Based EVD Updating Schemes forEfficient Subspace Tracking[J]. IEEE Transactions on Signal Processing.1998,46(7):1886-1990.
    [117] Badeau R, David B, Richard G. Fast approximated power iteration subspacetracking[J]. IEEE Trans. Signal Process.2005,53:2931-2941.
    [118] Yang B. Projection Approximation Subspace Tracking[J]. IEEE Transactions onSignal Processing.1995,43(1):95-107.
    [119] Yang B. An Extension of the PASTd Algorithm to Both Rank and SubspaceTracking[J]. IEEE Signal Processing Letters.1995,2(9):179-182.
    [120] Yang B. Asymptotic Convergence Analysis of the Projection ApproximationSubspace Tracking Algorithms[J]. Signal Processing.1996,50:123-136.
    [121] Dehaene J, Moonen M, Vandewalle J. An Improved Stochastic GradientAlgorithm for Principal Component Analysis and Subspace Tracking[J]. IEEETransactions on Signal Processing.1997,45(10):2582-2586.
    [122] Yu J L. A Novel Subspace Tracking Using Correlation-Based ProjectionApproximation[J]. Signal Processing.2000,80:2517-2525.
    [123] Golub G H, Van Loan C F. Matrix Computations,3rd edn.[M]. Baltimore, MD:The John Hopkins University Press,1996.
    [124] Attallah S, Abed-Meraim K. Low-cost adaptive algorithm for noise subspaceestimation[J]. Electronics Letters.2002,38(12):609-611.
    [125] Attallah S. The Generalized Rayleigh s Quotient Adaptive Noise SubspaceAlgorithm: A Householder Transformatio based Implementation[C]. Perth,Western Australia:2005.
    [126] Bartelmaos S, Abed-Meraim K. Principal and Minor Subspace Tracking:Algorithms and Stability Analysis[C]. Toulouse, France:2006.
    [127] Wang R, Yao M, Zhang D, et al. A Novel Orthonormalization Matrix Based Fastand Stable DPM Algorithm for Principal and Minor Subspace Tracking[J]. IEEETransactions on Signal Processing.2012,60(1):466-472.
    [128] Oja E. Principal Components, Minor Components, and Linear Neural Networks[J].Neural Networks.1992,5:927-935.
    [129] Doukopoulos X G, Moustakides G V. The fast data projection method for stablesubspace tracking[C]. Antalya,Turkey:2005.
    [130] Abed-Meraim K, Attallah S, Chkeif A, et al. Orthogonal Oja Algorithm[J]. IEEESignal Processing Letters.2000,7(5):116-119.
    [131] Wang R, Yao M, Zhang D, et al. Stable and Orthonormal OJA Algorithm WithLow Complexity[J]. IEEE Signal Processing Letters.2011,18(4):211-214.
    [132] Badeau R, Richard G, David B. Fast and Stable YAST Algorithm for Principaland Minor Subspace Tracking[J]. IEEE Transactions on Signal Processing.2008,56(8):3437-3446.
    [133] Arjomandi-Lari M, Karimi M. Stability and convergence analysis of the YASTsubspace tracking algorithm[Z]. Kish Island, Iran, Dec.2010:679-684.
    [134]王永良,陈辉,彭应宁,等.空间谱估计理论与算法[M].北京:清华大学出版社,2004.
    [135] Kumaresan R, Tufts D W. Estimating the Angles of Arrival of Multiple PlaneWaves[J]. IEEE Transactions on Aerospace and Electronic Systems.1983,19(1):134-139.
    [136] Hung H, Kaveh M. On the Statistical Sufficiency of the Coherently AveragedCovariance Matrix for the Estimation of the Parameters of WideBand Sources[C].1987.
    [137] Evans J E, Johnson J R. High Resolution Angular Spectrum EstimationTechniques for Terrain Scattering Analysis and Angle of Arrival Estimation[C].1981.
    [138]徐友根,刘志文.修正的虚拟空间平滑算法[J].电子学报.2009,37(12):2646-2650.
    [139]刘志刚,汪晋宽,王福利.虚拟空间平滑算法[J].电子学报.2007,35(9):1762-1765.
    [140] Chen H, Huang B, Wang Y, et al. Direction-of-arrival estimation based on directdata domain(D3) method[J]. Journal of Systems Engineering and Electronics.2009,20(3):512-518.
    [141] Azarbar A, Dadashzadeh G. A new DOA estimation based on direct data domainalgorithm[Z]. Dubai, United Arab Emirates:2011.
    [142] Jingmin Xin A S. Efficient subspace-based algorithm for adaptive bearingestimation and tracking[J]. IEEE Transactions on Signal Processing.2005,53(12):4485-4505.
    [143] Belkacemi H, Semira H, Marcos S. Interference Cancellation using a SingleSnapshot[J].2006.
    [144] Limpakuntorn V, Suleesathira R. MIMO Adaptive Beamforming for MC-CDMASystem[C].2007.
    [145] Cheng N, Ni S, Ni Z. A Direction Constrained Eigenspace-Based BeamformingAlgorithm[C].2010.
    [146] Ottersten B. Array Processing for Wireless Communications[C]. Greece:1996.
    [147] Miyauchi H, Shinonaga M, Takeya S, et al. Development of DBF Radars[C].Boston:1996.
    [148] Haykin S, Reilly J P. Some Aspects of Array Signal Processing[J]. IEEProceeding.1992,139(1):1-26.
    [149] Howells P W. Intermediate Frequency Sidelobe Canceller[P]. May.
    [150] Widrow B, Mantey P E, Griffiths L J, et al. Adaptive Antenna System[C].1967.
    [151] Capon J. High-Resolution Frequency-Wave Number Spectrum Analysis[C].1969.
    [152] Applebuam S P, Chapman D J. Adaptive Arrays with Main Beam Constraints[J].IEEE Transactions on Antennas and Propagation.1976,24(5):650-662.
    [153] Griffiths L J, Jim C W. An Alternative Approach to Linearly ConstrainedAdaptive Beamforming[J]. IEEE Transactions on Antennas and Propagation.1982,30(1):27-34.
    [154] Carlson B D. Covariance Matrix Estimation Errors and Diagonal Loading inAdaptive Arrays[J]. IEEE Transactions on Aerospace and Electronic Systems.1988,24(4):397-401.
    [155] Gershman A B. Robust Adaptive Beamforming: An Overview of Recent Trendsand Advances in the Field[C]. Sevastopol: IEEE Press,2003.
    [156] Li J, Stoica P, Wang Z S. On Robust Capon Beamforming and DiagonalLoading[J]. IEEE Transactions on Signal Processing.2003,51(7):1702-1715.
    [157] Song H. Null Broadening with Snapshot-Deficient Covariance Matrices inPassive Sonar[J]. IEEE Journal of Oceanic Engineering.2003,28(2):250-261.
    [158] Zatman M. Production of Adaptive Array Troughs by Dispersion Synthesis[J].Electronics Letters.1995,31(25):2141-2142.
    [159] Guerci J R. Theory and Application of Covariance Matrix Tapers for RobustAdaptive Beamforming[J]. IEEE Transactions on Signal Processing.1999,47(4):977-985.
    [160] Gershman A B, Nickel U, Bohme J F. Adaptive Beamforming Algorithms withRobustness against Jammer Motion[J]. IEEE Transactions on Signal Processing.1997,45(7):1878-1885.
    [161] Myrick W L, Goldstein J S, Zoltowski M D. Low complexity anti-jam space-timeprocessing for GPS[C]. Salt Lake City,Utah:2001.
    [162]李双勋.复杂约束条件下空时自适应抗干扰方法[J].信号处理.2008,24(1),36-39.
    [163] Wang L, de Lamare R C, Yukawa M. Adaptive Reduced-Rank ConstrainedConstant Modulus Algorithms Based on Joint Iterative Optimization of Filters forBeamforming[J]. IEEE Transactions on Signal Processing.2010,58(6):2983-2997.
    [164]程翥,李双勋,薛鸿印,等.一种简化的单约束波束形成方法[J].系统仿真学报.2007,19(12):2673-2676.
    [165]张小飞,徐锟,徐大专.一种改进的广义旁瓣相消的波束形成算法[J].中国空间科学技术.2006(5):6-9.
    [166]郭庆华,廖桂生.一种稳健的自适应波束形成器[J].电子与信息学报.2004,26(1):146-150.
    [167] de Lamare R C. Adaptive reduced-rank LCMV beamforming algorithms based onjoint iterative optimization of filters[J]. Electron. Lett.2008,44(9).
    [168] Townsend J P, Donohue K D. Stability Analysis for the Generalized SidelobeCanceller[J]. IEEE Signal Processing Letters.2010,17(6):603-606.
    [169] Yu J L, Yeh C C. Generalized Eigenspace-Based Beamformers[J]. IEEETransactions on Signal Processing.1995,43(11):2453-2461.
    [170] Feldman D D. An Analysis of the Projection Method for Robust AdaptiveBeamforming[J]. IEEE Transactions on Antennas and Propagation.1996,44(7):1023-1030.
    [171] Lee C C, Lee J H. An Efficient Technique for Eigenspace-Based AdaptiveInterference Cancellation[J]. IEEE Transactions on Antennas and Propagation.1998,46(5):694-699.
    [172] Lee J H, Lee C C. Analysis of the Performance and Sensitivity of AnEigenspace-Based Interference Canceler[J]. IEEE Transactions on Antennas andPropagation.2000,48(5):826-835.
    [173] Feldman D D, Griffiths L J. A Constraint Projection Approach for RobustAdaptive Beamforming[C]. Toronto:1991.
    [174] Yu J L, Yeh C C. Generalized Eigenspace-Based Beamformers[J]. IEEETransactions on Signal Processing.1995,43(11):2453-2461.
    [175] Van Trees H L. Optimum Array Processing[M]. New York: John Wiley&Sons,2002.
    [176] Liu D, Tong L. An Analysis of Constant Modulus Algorithm for Array SignalProcessing[C].1999.
    [177]郭艳.恒模算法及其在盲波束形成中的应用[D].西安电子科技大学,2002.
    [178] Gonen E, Mendel J M. Applications of Cumulants to Array Processing-Part III:Blind Beamforming for Coherent Signals[J]. IEEE Transactions on SignalProcessing.1997,45(9):2252-2264.
    [179] Agee B G, Schell S V, Gardner W A. Spectral Self-Coherence Restoral: A NewApproach to Blind Adaptive Signal Extraction Using Antenna Arrays[J].Proceedings of the IEEE.1990,78(4):753-767.
    [180] Wu Q, Wong K M. Blind Adaptive Beamforming for Cyclostationary Signals[J].IEEE Transactions on Signal Processing.1996,44(11):2757-2767.
    [181]张林让,廖桂生,罗丰.有限次快拍下自适应波束形成[J].西安电子科技大学(自然科学版).2000,27(5):542-545.
    [182]宋昕,汪晋宽,薛延波,等.鲁棒约束恒模自适应波束形成算法[J].电子学报.2006,34(10):1833-1836.
    [183] Hwang S, Cagley R E, Shynk J J. A blind interference canceler for GPS signalsbased on the CM array[Z].2003192-196.
    [184] Suk-Seung Hwang J J S. Blind GPS Receiver with a Modified Despreader forInterference Suppression[J]. IEEE TRANSACTIONS ON AEROSPACE ANDELECTRONIC SYSTEMS.2006,42(2):503-513.
    [185] Haykin S. Adaptive Filter Theory. Upper Saddle River, NJ: Prentice-Hall,1996[Z].
    [186]王诚,吴继华,范丽珍,等. Altera FPGA/CPLD设计(基础篇)[M].人民邮电出版社,2005.
    [187] Corp. Altera. Stratix II器件系列/日期.
    [188] Corp. A. AD6644Analog-to-Digital Converter/日期.
    [189] Clock Driver&Clock Buffer Clock Distribution-ON Semiconductor.htm
    [DB/OL][Z].
    [190] Ti C. DAC2904Digital-to-Analog Converter[DB/OL][Z].
    [191] IEEE Standards Department: Draft Standard for Low Voltage Differential Signals(LVDS) for Scalable Coherent Interface (SCI), Draft1.3IEEE P1596.3[S][Z].1995.
    [192]罗乃冬.基于LVDS技术的传输接口设计[J].声学与电子工程.2008(1):35-36.
    [193]倪春波,应建华,刘三清,等. LVDS高速I/O接口电路设计[J].华中科技大学学报:自然科学版.2003,31(10):16-18.
    [194] Altera Corp. Stratix II器件系列[DB/OL][Z].