水、氮供应对作物根系生理特性及吸收养分的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为吸收水分和养分、合成多种生理活性物质的器官,根系生长发育状况直接影响作物的生长及产量形成,在土壤供水受到较大限制的旱作农业中,根系的作用显得更为突出。然而,由于分离根系技术上的困难,涉及根系各方面的研究还远没有地上部深入。本文以玉米和小麦为供试作物,在遮雨棚内进行了微区田间试验,在不同栽培措施及水、氮供应条件下,研究了根系生理特性与作物养分吸收、植株生长之间的关系,主要结果如下:
     1.氮素对玉米根系生理特性、养分吸收、光合作用及植株生长的影响受水分供应制约,水分供应较好(如本研究中的灌水处理)或水分胁迫较轻(如本研究中的未灌水、未限根处理)时,氮素供应促进了根系生长;增加了根系总吸收面积、活跃吸收面积和根系的TTC还原总量;增加了植株的伤流量和伤流液中硝、铵态氮、游离氨基酸及磷、钾含量;促进了根系对养分的吸收;改善了光合作用有关生理特性;从而增加了产量,减轻了限制根系生长的不良影响。水分胁迫严重时(如本研究中的未灌水、未覆膜、限制根系生长的处理),供氮导致了根系生长量、根系吸收面积和TTC还原总量降低;也导致了植株的伤流量和伤流液中硝、铵态氮、游离氨基酸及磷、钾含量下降;养分吸收减少;光合作用的气孔因素和非气孔因素限制均增加,光合速率下降;从而降低了作物养分吸收量与产量,加重了限制根系生长的不良影响。
     2.限制根系生长虽然严重抑制了根系发育,但却增加了根系的活跃吸收面积、提高了根系的TTC还原强度(单位根重TTC还原量)。在根系自然生长情况下,作物旺盛生长时期根系活跃吸收面积和TTC还原强度,与养分吸收量及地上部分的生物量密切相关。这说明,在限制根系生长的逆境条件下,作物并不是被动地忍受逆境的胁迫,而是主动地调节其生理代谢过程,增强其对水分和养分的吸收能力,减缓逆境伤害。但由于尼龙袋中原有的水分和养分早期已消耗殆尽,根系又无法透出袋外由其他地方获取这两种生长要素,内在吸收功能改善并未改变作物吸收养分下降和产量降低的结局。
     3.在不同水、氮供应条件下,植株氮、磷、钾吸收量与伤流量及其养分数量的变化趋势基本相同;植株氮、磷、钾吸收量与伤流吸收的养分量(伤流液养分浓度与植株消耗的水分乘积)呈显著正相关。这一结果表明,伤流量及其养分数量,既是作物生长势的反映,也是作物吸收、转运水分与养分能力的标志。
     4.玉米干物质和养分吸收量,随生育期持续增加,其变化动态可用S曲线方程描述。玉米生长期间干物质与养分吸收并非同一速率,前期上升快,至最高峰后缓慢
    
    2 水、氮供应对作物根系生理特性及吸收养分的影响
    下降。在氮、磷、钾三要素中,氮、钾吸收速率高,上升快,下降也快;磷吸收速率
    低,上升慢,下降亦慢。养分最大吸收速率出现的时间,钾最早,氮次之,磷最晚。
    但三者均早于干物质最大累积速率出现的时间。氮肥利用率与干物质累积、养分吸收
    速率有类似变化趋势;氮肥最高瞬时利用率与氮素最大吸收速率出现的时间基本一
    致。灌水明显提高氮肥累积和瞬时利用率;水分和氮素供应增加养分吸收及干物质累
    积速率,但未改变其变化趋势。水分和氮素供应促进了营养体养分向籽粒的运转,提
    高了养分在籽粒中的分配比例,从而提高了籽粒产量。
     5.玉米根系发育状况及水分供应明显影响硝态氮的迁移及分介。根系自然生长
    时,离主茎不同距离的各位点硝态氮浓度差异小;而限制根系生长时,各位点硝态氮
    浓度差异大。离主茎 0-10cm范围的耕层土壤中硝态氮含量的变化趋势是,d]远到近
    逐渐降低,这一变化趋势与耕层士壤中根系吸收面积的变化相反。灌水可缩小远、近
    不同位点的硝态氮浓度差异,而且限制根系生长时,各位点的硝态氮浓度与土壤水分
    有相当一致的变化规律。后者表明,硝态氮随着植物吸收水分的过程,作为溶质而向
    根面迁移。
     6.小麦根系及其生理特性的空问分布变化是:离主茎 0—10cm范围水平方向上,
    根系干重、土壤样方内全部根系的hC还原量(TTC还原量)和土壤样方内全部根
    系的吸收面积,随着离主茎距离的增加而逐渐减少。离地面0~60cm范围垂直方向上,
    根系干重、TTC还原量和根系吸收面积,随着土层深度的加深而逐渐降低;随生育
    期的后延,深层土壤的TTC还原强度有所加强。单位根重吸收面积,在上述范围的
    水平和垂直方向上,均变化较小。根系总吸收面积与TTC还原量的变化趋势相一致,
    二者呈极显著正相关。
Plant root, as an important organs absorbing water and nutrients and synthesizing growth regulation, have a direct influence on the crop growth and yield. Roots play a remarkable role in dryland agriculture with serious soil water restriction. Because of the difficulty in separating root techniques, the studies involved plant root system have not been deepened as against the studies of plant aboveground. Micro-plot field experiment was conducted under rain-proof shelter for studying the relationship to root physiological characteristics and nutrient uptake of crop, plant growth, with different N and water supply under different cultivating measures. The results are shown as follows:
    1. The effects of N on root physiological characteristics, nutrient uptake, photosynthesis and plant growth were limited by water supply. When water supply was relatively sufficient (irrigated water) or slightly stressed (non-irrigated water and grown naturally), N supply stimulated root growth development, increased total absorbing area, actively absorbing area and TTC reductive amounts of roots, raised the bleeding sap amounts and the contents of NOs", NH4+, free amino acid, P and K in the sap, promoted the nutrient uptake of root, improved the physiological characteristics of photosynthesis, and consequently resulted in increasing crop yields and easing the harmful effects of restricting root growth. In contrast, when water was seriously stressed (non-irrigated water and non-mulching and grown naturally), input of N did not only decline the root growth biomass, root absorbing area and TTC reductive amount of root but also decreased the bleeding sap amounts and the content of NOs", NH/, free amino acid, P and K in the sap, reduced the nutrient uptake, inhibited the stomatal factors and the non-stomatal factors of photosynthesis, decreased the photosynthesis rates, therefore, this reduced nutrient absorbing amounts and crop yields, aggravated the harmful effects of restricting root growth.
    2. Although restricting root growth seriously inhibited the root development, it increased root actively absorbing area and improved TTC reductive intensity of root. Under the natural growth condition, the root actively absorbing area and TTC reductive intensity closely related to the nutrient uptake and aboveground biomass during crop vigorous growth stages. It showed that crop did not passively suffer stress, but initiatively adjust its physiological metabolism processes, strengthened its absorbing ability to water and nutrients, reduced the injure of root with the stressed environment. Being early consumed water and nutrient in the nylon bags, root could not go through nylon bags, and not assimilate the water and nutrients, hence the improvement of root inherent adsorptive ability can not change the decrease of nutrient uptake amounts and yields.
    3. Under the condition of different water and N supply, the trend was almost same for N, P and K uptake of crop and bleeding sap amount as well as nutrients in sap, the amounts of taking up N, P, K had remarkable positive correlation with the nutrients in bleeding sap. The results strongly suggested that the bleeding sap was not only the indication of plant
    
    
    
    growth vigor, but also the capacity of plant absorbing, and transferring water and nutrients.
    4. The total dry matter of maize and N, P, K uptake amounts were continuously increased with plant growth, and the dynamics of its change could be described by S-curve equations. The dry matter accumulation and nutrient uptake was not in the same rate at all time, the rate was increased fast at early stage, and gradually decreased after reaching their peak. Of N, P and K, the uptake rate for N and K was higher, and their increase and decrease were both fast while P was in reverse case. The time for maximum absorbing rate appeared earlier for K, followed by N, then by P. In any case, the time for maximum nutrient uptake rate appeared earlier than did the dry matter. The N recovery rate was similar in trend to those of dry mat
引文
第一章
    [1]曹爱琴,廖红,严小龙.低磷土壤条件下菜豆根构型的适应性变化与磷效率.土壤学报,2002,39(2):276-281
    [2]陈际型,钾素营养对水稻根系生长和养分吸收的影响.土壤学报,1997,34(2):182-187
    [3]陈培元,詹谷宇,谢伯泰.冬小麦根系的研究.山西农业科学,1980,(6):1-6
    [4]戴敬,不同施肥水平的棉花根系生长及生理活性.上海农业学报,1998,14(2):56-60
    [5]杜建军,田霄鸿,王朝辉,李生秀,高亚军,李世清,王喜庆.根系吸收水分和养分的作用以及以肥促根的效应.王德水主编.旱地农田肥水关系原理与调控技术,北京:中国农业科技出版社,1995,106-110
    [6]杜建军,王朝辉,田霄鸿,王喜庆,李生秀,李世清,高亚军.施肥对作物吸取、转运、利用土壤水分的影响.王德水主编.旱地农田肥水关系原理与调控技术.北京:中国农业科技出版社,1995,182-186
    [7]段舜山,谷文祥,张大勇,李凤民.半干旱地区小麦群体的根系特征与抗旱性的关系.应用生态学报,1997,8(2):134-138
    [8]樊小林,李生秀.植物根系的提水作用.西北农业大学学报,1997,25(5):75-81
    [9]冯广龙,刘吕明.土壤水分对作物根系生长及其调控作用.生态农业研究,1996,(3):5-9
    [10]高必达,吴晨,程晖.小麦SOD类型及分布.湖北农业学院学报,1991,17(2):106-111
    [11]高亚军,王喜庆,杜建军,李世清,李生秀.施肥对提高水分利用效率的影响.王德水主编.旱地农田肥水关系原理与调控技术.北京:中国农业科技出版社,1995,191-194
    [12]郭贤仕.谷子早后的补偿效应研究,应用生态学报,1999,10(5):563-566
    [13]赫晓玲.小麦不同根群对产量形成的作用.中国小麦栽培研究新进展.北京:农业出版社,1993,473-479
    [14]胡荣海.作物根系特征及其抗旱性研究的进展.邹琦,王学臣主编.作物主产高效生理学研究进展.北京:科学出版社,1994,269-275
    [15]姜东,于振文,苏波,许玉敏,余松烈.不同施氮时期对冬小麦根系衰老的影响.作物学报,1997,23(2):181-190
    [16]金明现,王天铎.玉米根系生长向水性的模拟.植物学报,1996,38(5):384-390
    [17]康绍忠,张建华,梁宗锁.控制性分根交替灌溉—一种新的农田节水调控思路.干旱地区农业研究,1997,15(1):1-6
    [18]康纠忠,梁银丽,蔡焕杰著.旱区水—作物关系及其最优调控原理.北京:中国农业出版社,1989,21-29
    [19]李少昆,涂华坊,张旺峰,杨刚.玉米根系在土壤中的分布及与地上部分的关系.新疆农业科学,1992,(3)99-103
    
    
    [20]李生秀,高亚军,王喜庆,李世清,杜建军.水分对土壤养分迁移的影响.旱地农田肥水关系原理与调控技术.北京:中国农业科技出版社,1995,6-11
    [21]李生秀,李世清,高亚军,王喜庆,杜建军.水分对肥料效果的影响.旱地农田肥水关系原理与调控技术.北京:中国农业科技出版社,1995,74-77
    [22]李生秀,李世清,高亚军,王喜庆,贺海香,杜建军.施用氮肥对提高旱地作物利用土壤水分的作用机理和效果.干旱地区农业研究,1994,12(1):38-46
    [23]李秧秧,邵明安.小麦根系对水分和氮肥的生理生态反应.植物营养与肥料学报,2000,6(4):383-388
    [24]李秧秧,钾营养对玉米抗旱性的影响.华北农学报,1993,8(4):94-98
    [25]李秧秧.无机营养提高作物抗早性的生理基础.山仑,陈培元主编.早地农业生理生态基础.北京:科学出版社,1998,222-232
    [26]李英,陈培元,陈建军.水分胁迫下不同抗早类型品种对氮素营养反应的比较研究.西北植物学报,1991,11(4):309-315
    [27]李英,陈培元,范德纯.水分胁迫下钾素营养对小麦渗透调节税和光合作用的影响.西北植物学报,1992,12(5):92-97
    [28]李友军.旱地小麦根系生育与调控效应的研究,干旱地区农业研究,1997,15(3):6-16
    [29]梁银丽.土壤水分和氮磷营养对冬小麦根苗生长的效应.生态学报,1996,16(3):275-281
    [30]梁银丽,康绍忠.坡地施肥水平对谷子根系生长和生产力的作用.干旱地区农业研究,1998,16(2):53-57
    [31]凌启鸿,凌励.水稻不同层次根的功能及对产量形成作用的研究.中国农业科学,1984,(4):3-11
    [32]凌启鸿,陆卫平,蔡建中,曹显祖.水稻根系分布与叶角关系的研究初报.作物学报,1989,15(2):123-135
    [33]刘殿英,石立岩,董庆裕.不同时期追施肥水对冬小麦根系、根系活性和植株性状的影响.作物学报,1993,19(2):149-115
    [34]刘殿英,黄炳茹,董庆裕.土壤水分对冬小麦根系的影响.山东农业大学学报,1991,22(2):103-110
    [35]刘来华,李韵珠,蔡雪梅,黄元仿.冬小麦水氮有效利用的研究.中国农业大学学报,1996,1(5):67-73
    [36]刘培利,林琪,隋方功,孙作启.紧凑型玉米根系高产特性的研究.1994,2(1):59-63
    [37]刘为红,孙黛珍,卢布,白丽仙.谷子根系生长发育规律及环境条件对其影响的研究.干旱地区农业研究,1996,14(2):20-25
    [38]刘芷宁.根际土壤的氮素状况.朱兆良,文启孝编.中国土壤氮素.杭州:杭州科学技术出版社,1990,197-212
    
    
    [39]马瑞昆,蹇家利,贾秀领,刘淑贞.供水深度与冬小麦根系生长发育的关系.干旱地区农业研究,1991,9(3):1-10
    [40]马元喜.不同土壤小麦根系生长动态的研究.作物学报,1987,13(1)37-44
    [41]苗果园,张云亭,尹钧,侯跃生.黄土高原旱地冬小麦根系生长发育规律的研究.作物学报,1989,15(2):104-115
    [42]苗果园,尹钧,张云亭,张爱良.中国北方主要作物根系生长的研究.作物学报,1998,24(1)1-6
    [43]潘庆民,于振文,田奇卓,王月福,刘万兴,王瑞英.追氮时期对超高产冬小麦旗叶和根系衰老的影响.作物学报,1998,24(6):924-929
    [44]彭永欣,严六零,郭文善,封超年.小麦根系生长发育规律的研究.江苏农学院学报,1992,13(4):1-5
    [45]钦绳武,刘芷宇.土壤—根系微区养分状况的研究.Ⅲ.水稻根际氮的变化.土壤学报,1984,21(3):238-246
    [46]饮绳武,刘芷宇.土壤—根系微区养分状况的研究.Ⅵ.不同形态肥料氮素在根际的迁移规律.土壤学报,1989,26(2):117-123
    [47]茹天祥,曹瑞宗,常满仓,王思源,杨拴芬,王瑞祥.红土旱地冬小麦根系生长动态观测.干旱地区农业研究,1996,14(3):47-52
    [48]山仑.黄土高原主要作物对干旱的适应性.山仑主编,黄土高原旱地农业的理论与实践.北京:科学出版社,1993,115-127
    [49]山仑.节水农业及其生理生态基础.应用生态学报,1991,2(1):70-76
    [50]邵明安,杨文治,李玉山.植物根系吸收土壤水分的数学模型.土壤学报,1987,24(4):285-305
    [51]史瑞和主编.植物营养学原理.南京:江苏农业出版社,1989,61-62
    [52]史奕,邹邦基,陈利军,党连超,朱玺.从施肥促进促进小麦根系活力看以肥调水的效果.王德水主编.旱地农田肥水关系原理与调控技术.北京:中国农业科技出版社,1995,111-115
    [53]孙广玉,何庸,张荣华,张代平.大豆根系生长和活性特点的研究.大豆科学,1996,15(4):317-320
    [54]唐才贤,孙羲.磷对棉花根系生育的影响.浙江农业大学学报,1987,13(1):45-50
    [55]田佩占.大豆品种根系生态类型的研究.作物学报,1984,10(3):173-178
    [56]王晨阳,马元喜.不同土壤水分条件下小麦根系生态生理反应.华北农学报,1992,7(4):1-8
    [57]王法宏,大豆抗旱品种特性的研究.1990,2(3):196-199
    [58]王金陵.大豆根系的初步研究.《王金陵大豆论文集》.哈尔滨:东北林业大学出版社,1992,238-241
    [59]王空军,董树亭,胡吕浩,刘开昌,张吉旺.我国玉米品种更替过程中根系生理特性的演进.作物学报,2002,28(2):185-189
    
    
    [60]王韶唐.植物抗旱的生理机理.植物生理生化进展,1983,(2):120-133.
    [61]王绍辉,张福墁.局部施肥对植株生长及根系形态的影响.土壤通报,2002,33(2):153-155
    [62]王绍中,茹天祥.丘陵红粘土旱地冬小麦根系生长规律的研究.植物生态学报,1997,21(2):175-190
    [63]王余龙,姚友礼,刘宝玉,吕贞龙,黄建晔,徐家宽,蔡建中.不同生育时期氮素供应水平对杂交水稻根系生长及其活力的影响,作物学报,1997,23(6):699-706
    [64]王玉贞,李维岳,尹枝瑞.玉米根系与产量关系的研究进展.吉林农业科学,1999,24(4)6-8
    [65]王志芬,陈学留,余美炎,中秀珍,王奎波,王同燕.冬小麦根系活力变化动态的研究.华北农学报,1993,8(增刊):70-73
    [66]王志芬,陈学留,余美炎,申秀珍,王奎波,王同燕,雷鹏.冬小麦根系~(32)p吸收活力的变化规律及其与器官建成关系的研究.作物学报,1995,21(4)458-462
    [67]魏其克.冬小麦不同群体根系发育规律的研究.西北农业大学学报,1987,15(3):49-56
    [68]徐恒平,汪沛洪.土壤干旱条件下小麦根系蛋白组分变化及其与抗旱性关系.全国植物水分与抗旱生理第六次学术讨论会文摘汇编,1991,994
    [69]徐萌,山仑.无机营养对春小麦抗旱适应性的影响.植物生态学与地植物学学报1991,15(1):79-87
    [70]徐萌,山仑.不同土壤水分条件下无机营养对春小麦水分状况和渗透调节的影响.植物学报,1992,34(8):596-602
    [71]徐萌,山仑.不同土壤水分条件下无机营养对小麦物质生产利水分利用的影响,西北植物学报,1991,11(4):299-308
    [72]严小龙.“根系生物学”一个新兴的研究领域.广东科技,2002,12:32
    [73]颜振德.甘薯品种的耐旱性及其鉴定方法的研究.作物学报,1964,3(2):183-193
    [74]杨方人,旱作大豆高产综合技术对根系发育及生理功能影响的研究.大豆科学,1987,6(3):225-230
    [75]杨根平,王韶唐.渗透胁迫对小麦幼苗根系呼吸的影响.植物生理学报,1989,15(2)179-183
    [76]杨经略,芦永兴,裴兰英.春小麦初生根与生长发育关系的研究.华北农学报,1988,3(3):13-18
    [77]杨秀红,吴宗璞,张国栋.大豆品种根系性状与地上部性状的相关性研究.作物学报,2002,28(1):72-75
    [78]杨兆生,张立桢.小麦开花后根系衰退及分布规律的初步研究.华北农学报,1999,14(14):28-31
    [79]杨兆生,阎素红.不同类型小麦根系生长发育及分布规律的研究.麦类作物学报,2000,20(1):47-50
    
    
    [80]张和平,刘晓楠.华北平原冬小麦根系生长规律及其与氮肥磷肥和水分的关系.华北农学报,1993,8(4):76-82
    [81]张和平,刘晓楠.黑龙港地区冬小麦生产中水肥关系及优化施肥模型研究.干旱地区农业研究,1992,10(1):32-38
    [82]张继澍主编.植物生理学,西安:世界图书出版西安公司,1999,298
    [83]张敬贤,崔四平.干旱对不同抗旱性小麦幼苗根系呼吸的影响力.植物生理学报,1989,15(2):179-183
    [84]张立新,吕殿表,王九军,赵二龙,徐福利,李立科.渭北平原不同水肥配比冬小麦根系效应的研究.干旱地区农业研究,1996,14(4):22-28
    [85]张岁岐,山仑,薛青武.氮磷营养对小麦水分关系的影响.植物营养与肥料学报,2000,6(2):147-151
    [86]张喜英,袁小良.冬小麦根系吸水与土壤水分条件关系的田间实验研究.华北农学报,1995,10(4):99-104
    [87]张喜英.土壤环境条件对冬小麦根系生长及在土壤中分布的影响.生态农业研究,1994,2(3):91-96
    [88]张喜英,N,P,K对冬小麦苗期根系生长的影响.土壤通报,1998,6:38-41
    [89]张喜英编著.作物根系与土壤水利用.北京:气象出版社,1999,122-147
    [90]张喜英编著.作物根系与土壤水利用.北京:气象出版社,1999,75-75
    [91]赵炳梓,徐富安 水肥条件下对小麦、玉米N,P,K吸收的影响植物营养与肥料学报,2000,6(3):260-266
    [92]赵立新,荆家海,王韶唐.不同施肥水平对旱地冬小麦水分利用效率的影响.植物生态学与地植物学学报,1991,154:330-343
    [93]郑丕尧,王法宏,王瑞舫,王树安.大豆不同抗旱性品种根系形状的比较研究.中国油料,1989,(2):6-9
    [94]Abrami L., Tacnet F., Ripoche P. Evidence for a glycerol pathway through aquaporin 1(CHIP28) channels. Pflugers Archiv European Journal of physiology, 1995, 430 (3): 447-458
    [95]Ackerson R. C. Osmoregalation in cotton in response to water stress. 3. Effects of phosphorus fertility. Plant physiol., 1985, (77): 309-312
    [96]Adalsteinsson S. Compensatory root growth in winter wheat: effects of copper exposure on root geometry and nutrient distribution. Journal of plant nutrition (USA)., 1994, 17 (9): 1501-1512
    [97]Agre P., Browm D., Nielsen S. Aquaporin water channels: unanswered questions and unresolved controversies. Current Opinion in Cell Biology, 1995, (7): 427-483
    [98]Aiken R. M., Smucker A. J. M. Root system regulation of whole plant growth. Annual review of phytopathology (USA)., 1996, (34): 325-346
    [99]Arslan A., Kurdali F. Rainfed vetch-barley mixed cropping in the Syrian semi-arid conditions.2.
    
    Water use efficiency and root distribution. Plant and Soil (Netherlands)., 1996, 183 (1) : 149-160
    [100] Baker J. M., van Bavel C.H.M. Resistance of plant roots to water loss. Agron. J, 1986, 78: 641-644
    [101] Bariola P. A., Howard C. J., Taylor C. B., Verburg M. T., Jaglan V. D., Green P. J. The Arabidopsis ribonuclease gene RNSI is tightly controlled in response to phosphate limitation. Plant J., 1994,6:673-685
    [102] Barta V., Mala S. Sugar beet cultivar root yield and quality under non-irrigation and irrigation conditions. Vedecke Prace Vyskumneho Ustavu Zavlahoveho Hospodarstva v Bratislave (Slovak Republic)., 1994, (21) : 13-24
    [103] Bates T. R., Lynch J. P. Stimulation of root hair elongation in Arabidopsis thaliana by low phosphorus availability. Plant Cell Environ., 1996,19: 529-538
    [104] Bavel C.H.M. van, Baker J.M., Water transfer by plant roots from wet to dry soil. Narurwissenschaften, 1985, 72: 606
    [105] Bennett J.M., ones J. W, Zur B., Hammond L. C. Interactive effects of nitrogen and water stress on water relations of field-corn leaves. Agron. J., 1986, 78: 273-280
    [106] Bhat K. K. S. Nye P.H., Bereton A.J. The possibility of predicting solute uptake and plant growth responses from independently measured soil and plant characteristics. VI. The growth and uptake rape in solutions of constant nitrate concentration. Plant Soil., 1979, 53: 137-167
    [107] Bieloral H. et al. Recovery of leaf water potential, transpiration, and photosynthesis of cotton during irrigation cycles. Agro J., 1975, 67 (5) : 629-932
    [108] Bleslky A.J. Overcompensation by plant : herbivore optimization or red herring Evolu. Ecol., 1993, (7) : 109-112
    [109] Boner A. M. Lynch J., Snapp S. Effect of phosphorus deficiency on growth angle of basal roots in phaseolus vulgaris. New Phytol., 1996, 132: 281-288
    [110] Boot R. G. A., Mensink M. Size and morphology of root systems of perennial grases from contrasting habitats as affected by nitrogen supply. Plant and Soil, 1990, 129: 291-299
    [111] Bray E. A. Plant response to water deficit. Trend in plant Sci., 1997,2 (2) : 48-54
    [112] Brown P. L. Water use and soil water depletion by dryland wheat as affected by nitrogen fertilization. Agron. J., 1972,63:43-46
    [113] Brown S. C., Keatinge J. D. H., Fregory P. J., Cooper P. J. M. Effect of fertilier, Variety and location on barley production under rain fed conditions in Northern Syria. I. Root and shoot growth. Field crops Res., 1987, 16: 53-66
    [114] Burleigh S. H., Harrison M. J. The down-regulation of Mt4-like genes by phosphate fertilization occurs systemically and involves phosphate translocation to the shoots. Plant Physiol., 1999, 119: 241-248
    
    
    [115] Cahn M. D., Zobel R. W., Bouldin D. R. Relationship between root elongation rate and diameter and duration of growth of lateral roots of maize. Plant Soil, 1989, 1 19: 271-279
    [116] Caldwell MM., Richards J.H., Hydraulic lift: water efflux from upper roots improves effectiveness of water uptake by deep roots. Oecologia, 1989, 79: 1-5
    [117] Carrol B. J., Gresshoff P. M. Nitrate inhibition of nodulation and nitrogen-fixation in white clover. Z. Pflanzenphysiol., 1983,110; 77-88
    [118] Carroll B. J., Mathews A. Nitrate inhibition of nodulation in legumes. Gresshoff, P. M. (Ed.). In Molecular Biology of Symbiotic Nitrogen Fixation. CRC Press. Boca Raton. F.L., 1990: 159-180
    [119] Chapin F. S. I. The mineral nutrition of wild plants. Annu. Rev. Ecol. Syst., 1980, 1 1 ; 233-260
    [120] Claassen N., Syring M., Jungk A. Verification of a mathematical medil by simulating potassium uptake from soil. Plant and Soil, 1986, 95: 209-220
    [121] Clausnitzer V., Hopmans J. W. Simultaneous modeling of transient three dimensional root growth and soil water flow. Plant and Soil (Netherlands)., 1994, 164 (2) : 299-314
    [122] Coale F.J., Grove J. H. Effects of soil potassium availability on soybean root and shoot growth under unrestrained rooting conditions. J of Plant Nutrition, 1986, 9: 1565-1584
    [123] Coelho E. F., Or D. Root distribution and water uptake patterns of corn under surface and subsurface drip irrigation. Plant-and-Soil (Netherlands)., 1999, 206 (2) : 123-136
    [124] Comfort S. D., Maler G. L., Busch R. H. Nitrogen fertilezer of spring wheat genotypes influence on root growth and soil water depeletion Agron. J., 1990, 80: 1 14-120
    [125] Cooper H. D., Clarkson D. T. Cycling of amino Nitrogen and other nutrients between shoots and roots in cereals: a possible mechanism integrating shoot and root in the regulation of nutrient uptake. J. Exp. Bot, 1989, 4 0: 753-762
    [126] Cosle F. J. Grove J. H., Effects of soil potassium availability on soybean root and shoot growth under unrestrained rooting conditions, J of Plant Nutrition, 1986, 9: 1565-1584
    [127] Couot-Gastelier J., Vananian N. Drought-induced short roots in Arabidopsis thaliana: structural characteristics. Bot. Acta, 1995, 108: 407-413
    [128] Culter J. M. et al. Effect of irrigation history on response of cotton to subsequent water stress. Crop Sci., 1977, 17 (2) : 329-335
    [129] Deng M. D., Moureaux T., Caboche M. Tungstate, a molybdate analog inactivating nitrate reductase, deregulates the expression of the nitrate reductase structural gene. Plant Physiol., 1989,91:304-309
    [130] Djnkelaker B., Hengeler C., Marschner H. Distribution and function of proteoid roots and other root clusters. Bot. Acta, 1995, 108: 183-200
    [131] Drew M. C., Saker L. R. Nutrient supply and the growth of the seminal root system of barley. II.
    
    Localized, compensatory increases in lateral root growth and rates of nitrate uptake when nitrate supply is restricted to only part of the root system. J. Exp. Bot. 1975, 26: 79-90
    [132] Drew M. C., Saker L. R. Nutrient supply and the growth of the seminal root system in barley. III. Compensatory increases in growth of lateral roots, and in rates of phosphate uptake in response to a localized supply of phosphate. J. Exp. Bot., 1978,29: 435-451
    [133] Drew M. C. Comparison of the effects of alocalized supply of phosphate, nitrate, ammonium and potassium on the growth of the seminal root systems and the shoot in barley. New Phytol., 1975, 75: 479-490
    [134] Durieux R.P., Kamprath E.J., Jackson W.A., Moll R.H. Root distribution of corn: the effect of nitrogen fertilization. Agronomy journal (USA)., 1994, 86 (6) : 958-962
    [135] Ericsson T. Growth and shoot: root ratio of seedlings in relation to nutrient availability. Plant Soil, 1995, 168-169:205-214
    [136] Entz M.H. Root growth and soil water estraction by winter and spring wheat. Canadian Journal of plant science., 1992, 72 (4) : 1109-1120
    [137] Ferris P. J., Goodenough U. W. Mating type in Chlamydomonas is specified by Mid, the minus dominance gene. Genetics, 1997, 146: 859-869
    [138] Foehse D., Jungk A. Influence of phosphate and nitrate supply on root hair formation of rape, spinach and tomato plants. Plant Soil, 1983,74: 359-368
    [139] Forde B. G., Clarkson D. T. Nitrate and ammonium nutrition of plants: physiological and molecular perspectives. Adv. Bot. Res., 1999, 30: 1-90
    [140] Gahoonia T. S., Nielsen N. E. Variation in root hairs of barley cultivars doubled soil phosphorus uptake. Euphytica, 1997, 98: 177-182
    [141] Ge Z. Y., Rubio G., Lynch J. P. The importance of root gravitropism for inter-root competition and phosphorus acquisition efficiency: results from a geometric simulation model. Plant Soil, 2000,218: 159-171
    [142] Gesch R. W., Keneficd D. G., Koepke J. A. Leaf water adjustment and maintenance in hardred winter wheat. Crop Sci., 1992,32 (1) : 180-186
    [143] Gilbert G. A., Knight J. D., Vance C. P., Allan D. L. Proteoid root development of phosphorous deficient lupin is mimicked by auxin and phosphonate. Ann. Bot., 2000, 85: 921-928
    [144] Gilroy S., Jones D. L. Through form to function: root hair development and nLitrient uptake. Trends Plant Sci., 2000, 5: 56-60
    [145] Goss M. J., Miller M. H., Bailey L.D., Grant C.A. Root growth and distribution in relation to nutrient availability and uptake. European Journal of Agronomy (France)., 1993, 2 (2) : 57-67
    [146] Gregory P. J. Plant and management factors affecting the water use efficiency of Dryland Crops. In: Proceedings of the international conference on Dryland Farming. Challenge in Dryland
    
    Agriculture A global Perspective. Amarillo/Bushland. Texas., 1988, 171-175
    [147] Grusak M. A., Pezeshgi S. Shoot-to-root signal transmission regulates root Fe (III) reductase activity in the dgl mutant of pea. Plant Physio]., 1996, 110: 329-334
    [148] Gudinva L. G. The Study of a Collection of Spring Bread Wheat for Characters of the Root System. Thoretich-eskie Osnovy Selektsii Semenovodstva Sel' skohozyaisvennykh Kultar V Zapadnoi Sibiri, 1988,9-15
    [149] Gutierrez Boem F. H. G.W. Phosphorus nutrition effects wheat response to water deficit. Agro. J., 1998, 90: 375-383
    [150] Habib R., Lafolie F. Water and nitrate redistribution in soil as affected by root distribution and absorption. Atkinson, D. (Ed.). Plant root growth: an ecological perspective. Oxford (United Kingdom). Blackwell Scientific Publications, 1991, 131-146
    [151] Hackett C. A study of the root system of barley. I. Effects of nutrition on two varieties. New Phytol., 1967,67:287-289
    [152] Heard J., Caspi M., Dunn K. Evolutionary diversity of symbolically induced nodule MADS box genes: characterization of mmhC5. a member of a novel subfamily. Mol. Plant-Microbe Interact. 1997, 10:665-676
    [153] Heidstra R., Geurts R., Franssen H., Spaink H. P., van Kammen A., Bisseling T. Root hair deformation activity of nodulation factors and their fate on Vicia saliva. Plant Physiol., 1994, 105:787-797
    [154] Heidstra R., Nilsen G., Martinez Abarca F., van Kammen A, Bisseling T. Nod factor-induced expression of leghemo-globin to study the mechanism of NH4NO3 inhibilion on root hair deformation. Mol. Plant-Microbe Interact. 1997, 10: 215-220
    [155] Hinson K. Nodulation responses from nitrogen applied to soybean half-root systems. Agron. J., 1975, 67: 799-804
    [156] Hodge A., Robinson D., Griffiths B. S., Fitter A. H. Why plants bother: rool proliferalion results in increased nitrogen caplure from an organic patch when two grasses compele. Plant Cell Environ., 1999,22:811-820
    [157] Hsieh M H., Lam H. M., Van De Loo F. J., Coruzzi G. A. PII-like prolein in Arabidopsis: pulalive role in nitrogen sensing. Proc. Natl Acad. Sci. USA, 1998, 95, 13965-13970
    [158] Hudak C. M., Patterson R.. P. Root distribution and soil moislure depletion pattern of a drought-resistant soybean plant introduction. Agronomy journal (USA), 1996, 88 (3) : 478-485
    [159] Hutchings M. J., de Kroon H. Foraging in plants: the role of morphological plasticity in resource acquisition. Adv. Ecol. Res., 1994, 25: 159-238
    [160] Imsande J., Touraine B. N demand and the regulalion of nitrate uptake. Plant Physiol., 1994,105: 3-7
    
    
    [161] Jackson L. E., Stivers L. J. Root distribution of lettuce under commercial production: implications for crop uptake of nitrogen. Biological Agriculture and Horticulture (United Kingdom), 1993,9 (3) : 273-293
    [162] Jamison V. C. Changes in air-water relation-ships due to structural improvement of soils. Soil Sci., 1953,76: 143-151
    [163] Jesko T., Navara J., Dekankova K. Root growth and water uptake by flowering maize plants, under drought conditions. Biology of root formation and development. New York (USA). Plenum Press., 1997,270-271
    [164] Jia Wensuo, Wang Xuechen, Zhang Shuqiu. The transport of ABA from root to shoot and its distribution in response to water stress in Vicia faba L. Acta Phytophysiologica-Sinica, 1996, 22 (4) : 363-367
    [165] Jodari karimi F. et al. Root distribution and water use efficiency of alfalfa as influenced by depth of irrigation. Agro J, 1983, 75: 207-211
    [166] Johnson F., Allan D. L., Vance C. P. Phosphorus stress-induced proteoid roots show altered metabolism in Lupinus albus. Plant Physiol., 1994, 104: 657-665
    [167] Keerthisinghe G., Hocking P. J., Ryan P. R., Delhaize E. Effect of phosphorus supply on the formation and function of proteoid roots of white lupin (Lupinus albus L.). Plant Cell Environ., 1998,21:467-478
    [168] Kohls S. J., Baker D. D. Effects of substrate nitrate concentration on symbiotic nodule formation in actinorhizal plants. Plant Soil, 1989,118,171-179
    [169] Kosslak R. M., Bohlool B. B. Suppression of nodule development of one side of a split-root system of soybeans caused by prior inoculation of the other side. Plant Physiol., 1984, 75: 125-130
    [170] Kuchenbuck R., Jungk A. Influence of potassium supply on the availability of potassium in the rhizosthere of rape. Z. Pflanzenernahr. Bodenkd., 1984, 147: 435-448
    [171] Kuz' min, N.A. The Root system of Spring Wheat and the Possibility of Improving Varieties by Strengthening Its Development. Selektsiya I semenovodstvo, USSR, 1985, (3) : 14-16
    [172] Laine P. Ourry A. Boucaud J. Shoot control of nitrate uptake rates by roots of Brassica napus L . Effects of localized nitrate supply. Planta, 1995, 196: 77-83
    [173] Li Shengxiu. Management Soil Nutrients on Drylands in China for Sustainable Agriculture. Soil and Environ., 1999, 2 (4) : 293-316
    [174] Li M., Shinano T, Tadano T. Distribution of exudates of lupin roots in the rhizosphere under phosphorus deficient conditions. Soil Science and Plant Nutrition (Japan). 1997, 43 (1) : 237-245
    [175] Liao H., Yan X. L. Adaptive changes and genotypic variation for root architecture of common bean in response to phosphorus deficiency. Acta Boi. Sin., 2000, 42: 158-163
    
    
    [176] Ligero R, Caba J. M., Lluch C., Olivares J. Nitrate inhibition of nodulalion can be overcome by the ethylene inhibitor aminoethoxyvinylglycine. Plant Physiol., 1991, 97: 1221-1225
    [177] Ligero F. Poveda J. L., Gresshoff P. M., Caba J. M. Nitrate and inoculation-enhanced ethylene biosynthesis in soybean roots as a possible mediator of nodulation control. J. Plant Physiol., 1999,154:482-488
    [178] Ling H. Q., Pich A., Scholz G., Ganal M. W. Genetic analysis of two tomato mutants affected in the regulation of iron metabolism. Mol. Gen. Genet., 1996, 252: 87-92
    [179] Lynch J. Brown K. M. Ethylene and plant responses to nutritional stress. Physiol. Plant., 1997, 100:613-619
    [180] Lynch J. Root architecture and plant productivity. Plant physiology (Lancaster, Pa.) (USA), 1995, 109(1) : 7-13
    [181] Majdi H., Persson H. Effects of ammonium sulphate application on the chemistry of bulk soil, rhizosphere, fine roots and fine-root distribution in a Picea abies (L.) Karst. stand. Plant and Soil (Netherlands), 1995, 168/169(1-2) : 151-160
    [182] Malik N. S. A., Calvert H. E., Bauer W. D. Nitrate-induced regulation of nodule formation in soybean. Plant Physiol., 1987, 84: 266-271
    [183] Marschner H. Mineral Nutrition of Higher Plants. 1995, Academic Press. London. Melcior W., Steudle E. Water transport in onion (Allium cepa L.) roots: changes of axial and radial hydraulic conductivities during root development. Plant Physiol., 1993, 101: 1305-1315
    [184] Mengel K., E. A. Kirby. Principles of Plant nutrition (third edition). International potash Institute,Bern,Switzerland, 1987, 68-79
    [185] Mollier A., Pellerin S. Maize root system growth and development as influenced by phosphorus deficiency. J. Exp. Bot., 1999, 50: 487-497
    [186] Moog P. R., Vanderkooij T. A. W., Bruggemann W., Schiefelbein J. W., Kuiper P. J. C. Responses to iron deficiency in Arabidopsis thaliana: the turbo iron reductase does not depend on the formation of root hairs and transfer cells. Planta, 1995,195: 505-513
    [187] Morgan J. A. Interaction of water supply and N in wheat. Plant Physiol., 1984,76: 112-117
    [188] Morgan J. A. The effect of N nutrition on the water relation and gas exchange characteristics of wheat. Plant Physiol., 1986, 80 (1) : 52-58
    [189] Narayan D. Root growth and productivity of wheat culu vals under different soil moisture condition. International Journal of Ecology and environmental sciences, 1991, 17 (1) : 19-26
    [190] Newman E.I., Interaction between osmotic and pressure-induced water flow in plant roots. Plant Physiol., 1976, 57: 738-739
    [191] Nobbe F. Uber die feinere Veriastelung der Pflanzenwurzeln. Landwirtschaft. VersStat, 1862, 4: 212-224
    
    
    [192] Nobel P. S. J., Cuim, Shrinkage of attached roots of Opuntia ficus-indica in response to lowed water potential-predicted consequences for water uptake of loss to soil. Annuls of Botany, 1992, 70 (6) : 485-491
    [193] Noland T. L., Mohammed G. H., Scott M. The dependence of root growth potential on light level, photosynthetic rate, and root starch content in jack pine seedlings. New-for. Dordrecht: Kluwer Academic Publishers, 1997, 13 (1/3) : 105-119
    [194] Seiffert S., Kaselowsky J., Jungk A., Claassen N. Observed and calculated potassium uptake by maize as affected by soil water content and bulk density. Agronomy journal (USA), 1995, 87 (6) : 1070-1077
    [195] Oikeh S.O., Kling J.G., Horst W.J., Chude V.O., Carsky R.J. Growth and distribution of maize roots under nitrogen fertilization in plinthite soil. Field-Crops-Research (Netherlands). 1999, 62(1) : 1-13
    [196] Paige K.N., Whitham T. G. Overcompensation in response to mammalian herbivory : the advantage of being eaten. The American Naturalist, 1987, 129 (3) : 407-416
    [197] Parasher A. Effect of Pre-sowing Seed Soading in Gibberellic Acid Growth of Wheat undir Differint Saline Conditions. Indian Journal of Experimental Biology, 1986, 26 (6) : 437-475
    [198] Persson H., Fircks Y. Von, Majdi H., Nilsson L.O. Root distribution in a Norway spruce (Picea abies (L.) Karst.) stand subjected to drought and ammonium-sulphate application. Plant and Soil (Netherlands), 1995, 168/169(1-2) : 161-165
    [199] Pettersson S. Low root zone temperature effects on net mineral nutrient uptake and distribution in barley (Hordeum vulgare). Journal-of-plant-physiology (Germany), 1995, 145 (4) : 459-464
    [200] Peuke A. D., Hartung W., Jeschke W. D. The uptake and flow of C, N and ions between roots and shoots in Ricinus communis L. II. Grown with low or high nitrate supply. J. Exp. Bot., 1994, 45: 733-740
    [201] Pozuelo M., Merchan F., Macias M. I., Beck C. F., Galvan A., Fernandez E. The negative effect of nitrate on gametogenesis is independent of nitrate assimilation in Chlamydomonas reinhardti. Planta 2000, 211, 287-292
    [202] Psssioura. J. B., Water transport across maize roots. Plant Physiol. Plant Mol. Biol., 1988, 39: 245-265
    [203] Radin J. W, parker L. L. Water relation of cotton plants under nitrogen deficiency. I : Dependence upon leaf structure. Plant physiol., 1979, 64: 495-498
    [204] Reiger M. Offsetting effects of reduced root hydraulic conductivity and osmotic adjustment following drought. Tree-physiology (Canada), 1995, 15 (6) : 379-385
    [205] Richards J. H., Caldwell M.M., Hydraulic lift: substantial nocturnal water transport between soil layers by Artemisia tridentate roots. Oecologia, 1987, 73: 486-48
    
    
    [206] Robinson D., The responses of plants to non-uniform supplies of nutrients. New Phytol., 1994, 127:
    [207] Robinson D., Rorison I. H. Root hairs and plant growth at low nitrogen availabilities. New Phytol, 1987,107:681-693
    [208] Robinson D., Hodge A., Griffiths B. S., Filter A. H. Plant root proliferation in nitrogen-rich patches confers competitive advantage. Proc. R. Soc. London Ser. B, 1999, 26: 431-435
    [209] Robson A.D., Longnecker N. E., Osborne L. D. Effects of heterogeneous nutrient supply on root growth and nutrient uptake in relation to nutrient supply on duplex soils [review]. Australian Journal of Experimental Agriculture (Australia), 1992, 32 (7) : 879-886
    [210] Russell J.S., Nitrogen fertilizer and wheat in semiarid environment. Aust. J. Exp. Agric. and An. Husb., 1967, 7: 453-462
    [211] Ryser P., Verduyn B., Lambers H. Phosphorus allocation and utilization in three grass species with contrasting response to N and P supply. New Phytol., 1997, 137: 293-302
    [212] Sattelmacher B., Thorns K. Morphology and physiology of the seminal root system of young maize (Zea mays L.) plants as influenced by a locally restricted nitrate supply. Z, Pflanzen. Bodenk, 1995, 158:493-497
    [213] Scheible W. R., Gonzalez-Fontes A., Lauerer M., Muller-Rober B., Caboche M., Stitt M. Nitrate acts as a sigal to induce organic acid metabolism and repress starch metabolism in tobacco. Plant Cell,1997, 9: 783-798
    [214] Schauser L., Roussis A., Stiller J., Stougaard J. A plant regulator controlling development of symbiotic root nodules. Nature, 1999,402. 191-195.
    [215] Scheible W. R., Lauerer M., Schuize E. D., Caboche M., Stitt M. Accumulation of nitrate in the shoot acts as a signal to regulate shoot-root allocation in tobacco. Plant J., 1997b, 11: 671-691
    [216] Schiefelbein J., Galway M., Masucci J., Ford S. Pollen tube and root hair tip growth is disrupted in a mutant of Arabidopsis thaliana. Plant Physiol., 1993, 103: 979-985
    [217] Schmidt W. Mechanisms and regulation of reduction-based iron uptake in plants. New Phytol., 1999, 141: 1-26
    [218] Schmidt W., Tittel J., Schikora A. Role of hormones in the induction of iron deficiency responses in Arabidopsis roots. Plant Physiol., 2000,122: 1109-1118
    [219] Scholz G., Becker R., Pich A., Stephan U. W. Nicotianamine: a common constituent of strategy I and strategy II of iron acquisition by plants-a review. J. Plant Nutr., 1992, 15: 1647-1065
    [220] Schortemeyer M., Feil B., Stamp P. Root morphology and nitrogen uptake of maize imultaneously supplied with ammonium and nitrate in a split-root system. Ann-hot. London ; New York : Academic Press, 1993, 72 (2) : 107-115
    [221] Schultze M., Kondorosi A. Regulation of symbiotic root nodule development. Ann. Rev. Genet.
    
    1998,32:33-57
    [222] Sharp R. E., Davies W. J., Root growth and water uptake by maize plants in drying soil. J. Exp, Bot, 1985,36: 1441-1456
    [223] Shore P., Sharrocks A. D., The MADS-box family of transcription factors Eur. J. Biochem., 1995,229: 1-13
    [224] Skene K. R. Cluster roots: their physiology, ecology and developmental biology. Ann. Bot., 2000, 85: 899-899
    [225] Smith G. E. Soil fertility-the basis higher Crop production.Bulletin Crops., 1954, 38: 22-30
    [226] Steudle E., Oren R., Schulza E. D., Water transport in maize roots. Plant Physiol., 1987, 84: 1220-1232
    [227] Stiraker R.J., Passioura J.B. The water relations of the root-soil interface Plant. Cell and Environment, 1996, 19:201-208
    [228] Takahashi H., Soott T. K., Hydrotropism an its interaction with gravitropism in maize roots. Plant Physiol, 1991,96:558-564
    [229] Tardieu F. et al. Root clumping may affect the root water potential and the resistance to soel-root water transport. Plant and Soil, 1992, 140: 291-301
    [230] Taylor H. M., Gardner H. R. Penetration of cotton seeding Taproots al influenced by bulk dencity, moisture content and strength of soil. Soil Sci., 1963, 96: 153-156
    [231] Taylor H. M., Hlepper B. Rooting density and water extraction for corn. Agron. J. 1973, 65: 965-968
    [232] Tesha A. J., kumar D. Effects of fertilizer nitrogen on drought resistance of coffea arabica L. J. Agri. Sci., 1978,90:625-631
    [233] Thaler P., Pages L. Root apical diameter and root elongation rate of rubber seedlings (Hevea brasiliensis) show parallel responses to photoassimilate availability. Physiol. Plant, 1996, 97: 365-371
    [234] Thornton H. G. The action of sodium nitrate upon the infection of luceme root-hairs by nodule bacteria. Proc. R. Soc. London Ser. B, 1936, 119: 474-491
    [235] Tillard P., Passama L., Gojon A. Are phloem amino acids involved in the shoot to root control of NO3-uptake in Ricinus communis plants? J. Exp. Bot., 1998, 49: 1371-1379
    [236] Trull M. C., Guiltinan M. J., Lynch J. P., Deikman J. The responses of wild-type and ABA mutant Arabidopsis thaliana plants to phosphorus starvation. Plant Cell Environ., 1997, 20: 85-92
    [237] Turner N.C. Crop water deficits:A decade of progress. Adv. Agron., 1986,39(1) : 1-51
    [238] van Noordwijk M., van de Geijin S.C. Root, shoot and soil parameters required for process-oriented models of crop growth limited by water or nutrients. Plant and soil, 1996, 183:
    
    1-25
    [239] Vos J., Putten P.E.L., vander Hussein M. H., Dam A. M.,van Leffelaar P. A. Field observations on nitrogen catch crops. 2. Root length and root length distribution in relation to species and nitrogen supply. Plant and Soil (Netherlands), 1998,201 (1) : 149-155
    [240] Wang X.T., Below F.E. Tillering, nutrient accumulation, and yield of winter wheat as influenced by nitrogen form. Journal of plant nutrition (USA), 1995, 18 (6) : 1177-1189
    [241] Wang Huaxin, Fu Shuhui, Zhang Zhongliang. Study on the root activity, phosphorus distribution and grain plumpness of two-line intersubspecific hybrid rice. Acta Agriculturae Nucleatae Sinica 1997, 11 (1) :31-38
    [242] Wang Zhifen, Chen Xueliu, Yu Meiyan. Comparison on changes of root absorption activity, canopy apparent photosynthesis rate and nutrient distribution of two winter wheat varieties with different spike type. Acta Agronomica Sinica, 1997, 23 (5) : 607-614
    [243] Watt M., Evans J. R. Proteoid roots. Physiology and development. Plant Physiol., 1999, 121: 317-323
    [244] Wheeler R.M., Berry W. L., Mackowiak C., Corey K. A., Sager J.C., Heeb M. M., Knott W. M., A data base of crop nutrient use, water use, and carbon dioxide exchange in a 20 square meter growth chamber. I. Wheat as a case study. Journal of plant nutrition (USA), 1993, 16 (10) : 1881-1915
    [245] Whiting S. N, Leake J. R., McGrath S. P., Baker A. J. M., Positive responses to Zn and Cd by roots of the Zn and Cd hyper-accumulator Thlapi caerulescens. New Phytol., 2000, 145: 199-210
    [246] Wiersum L. K., Density of root branching as affected by substrate and separate ions. Acta Bol. Neerl. 1958,7:174-190
    [247] Wilson J. K., Physiologica] studies of Bacillus radicicola or soybean (Soja max Piper) and factors influencing nodule production. Cornell Univ. Agric. Exp. Stn. Bull, 1917, 386-369
    [248] Wilson J. R., Ludlow M. M. Time trend of solute accumulation and the influence of potassium fertilizer on osmotic adjustment of water stressed leaves of three tropical grasses. Aust. J. Plant physiol., 1983, 110:523-527
    [249] Wraith J.M., Wright C. K. Soil water and root growth. Hort Science, 1998, 33 (6) : 951-959
    [250] Zaklina Buljovcic, Christof Engels. Nitrate uptake ability by maize roots during and after drought stress. Plant and soill, 2001, 229: 125-135
    [251] Zaongo C.G.L., Hossner L.R., Wendt C.W. Root distribution, water use, and nutrient uptake of millet and grain sorghum on West Africa soils. Soil science (USA), 1994, 157 (6) : 379-388
    [252] Zhane H., Forde B. G. An Arabidposis MADS box gene that controls nutrient-induced changes in root architecture. Science, 1998, 279. 407-409
    
    
    [254]Zhang H., Jennings A. J., Barlow P. W., Forde B. G. Dual pathways for regulation of root branching by nitrate. Proc. Natl Acad. Sci. USA, 1999, 96:6529-6534
    [255]Zhu G. L., Steadle E., Water transport across maize roots. Plant Physiol., 1991, 95:305-315
    第二章
    [1]段舜山,谷文祥,张大勇等.半干旱地区小麦群体的根系特征与抗旱性的关系.应用生态学报,1997,8(2):134-138
    [2]赫晓玲,小麦不同根群对产量形成的作用.中国小麦栽培研究新进展.北京:农业出版社,1993,473-479
    [3]李生秀,李世清,高亚军,王喜庆,贺海香,杜建军.施用氮肥对提高旱地作物利用土壤水分的作用机理和效果.干旱地区农业研究,1994,12(1):38-46
    [4]李永山.棉花根系的生长特性及其与栽培措施和产量关系的研究.Ⅰ.棉花根系的生长和生理活性与地上部分的关系.棉花学报,1992,4(1):49-56
    [5]李永山.棉花根系的生长特性及其与栽培措施和产量关系的研究.Ⅱ.栽培措施对棉花根系生长的影响及其与地上部和产量的关系.棉花学报,1992,4(2):17-22
    [6]凌启鸿,凌励.水稻不同层次根的功能及对产量形成作用的研究.中国农业科学,1984(4):3-11
    [7]凌启鸿,陆卫平,蔡建中.水稻根系分布与叶角关系的研究初报.作物学报,1989,15(2):123-135
    [8]王玉贞,李维岳,尹枝瑞.玉米根系与产量关系的研究进展.吉林农业科学,1999,24(4):6-8
    [9]张岁岐,李秧秧.施肥促进作物水分利用机理及对产量影响的研究.水土保持研究,1996,3(1):18-191
    [10]朱德峰,林贤青,曹卫星.水稻深层根系对生长和产量的影响.中国农业科学,2001,34(4):429-432
    [11]邹琦.植物生理生化实验指导.邹琦主编.北京:中国农业出版社,1995,30-31
    [12]Durieux R. P., Kamprath E. J., Jackson W. A. Root distribution of corn: the effect of nitrogen fertilization. Agronomy journal, 1994, 86(6): 958-962
    [13]Oikeh S. O., Kling J. G., Horst W. J. Growth and distribution of maize roots under nitrogen fertilization in plinthite soil. Field Crops Research, 1999, 62(1):1-13
    [14]Passioura J. B. The interaction between the physiology and the breeding of wheat. In: L.T. Evans, W. J. Peacock (eds). Wheat Science Today and Tomorrow. Cambridge University Press,Cambridge,1981, 191-201
    [15]Zaongo C. G. L., Hossner L. R., Wendt C. W., Root distribution water use and nutrient uptake of millet and grain sorghum on west Africa soils. Soil Science, 1994, 157(6): 379-388
    
    
    第三章
    [1]杜金哲,李文雄,胡尚连.春小麦不同品质类型氮的吸收、转化利用及与籽粒产量和蛋白质含量的关系.作物学报,2001,27(2):253-260
    [2]郭景伦,张智猛,李伯航.不同高产夏玉米品种养分吸收特性的研究.玉米科学,1997,5(4):50-52,59
    [3]何萍,金继运.氮钾互作对春玉米养分吸收动态及模式的影响.玉米科学,1999,7(3):68-72
    [4]何萍,金继运,林葆.不同氮磷钾用量下春玉米生物产量及其组分动态与养分吸收模式研究.植物营养与肥料学报,1998,4(2):123-130
    [5]李永孝,崔如,丁发武.夏大豆植株氮、磷、钾含量与水肥的关系.作物学报,1992,18(6):463-473
    [6]潘庆民,于振文,王月福.公顷产9000kg小麦氮素吸收分配的研究.作物学报,1999,25(5):541-547
    [7]佟屏亚,凌碧莹.夏玉米氮、磷、钾积累和分配态势的研究.玉米科学,1994,2(2):65-69
    [8]王小彬,蔡典雄,张镜清.旱地玉米N吸收及其N肥利用率的研究.中国农业科学,2001,34(2):179-186
    [9]张颖.不同产量类型春玉米养分吸收特点及其分配规律的研究.玉米科学,1997,5(3):70-72
    [10]Gordon W. B., Tillage and nitrogen effects on growth, nitrogen content, and yield of corn.Commun. Soil Sci.Plant Anal.,1993, 24 (5&6): 421-442
    [11]Kuchenbuch R., Claassen N., Jungk A. Potassium availability in relation to soil moisture. Plant and Soil, 1986, 95:221-231
    [12]Osaki M. Comparison of productivity between tropical and temperate maize Ⅱ. Parameters determining the productivity in relation to the amount of nitrogen absorbed. Soil Sci .Plant Nutr.,1995, 41(3): 451-459
    第四章
    [1]陈范骏,米国华,刘建安,张福锁.玉米自交每木质部伤流液中氮素形态差异及其与氮效率的关系.中国水稻科学,1999,32(5):43-48
    [2]陆定志.杂交水稻根系生理优势及其与地上部性状的关联研究.中国水稻科学,1987,1(2):81-94
    [3]元新华,董树亭,小麦伤流液及其与地上部关系.中国农业科学,1981,(3):33-38
    [4]赵全志,高尔明,黄丕生,水稻穗颈基部节间伤流的比较及其氮素调控的研究,作物学报,2001,27(1):103-109
    
    
    [5] Andreas D. peuke. American journal of enology and viticulture. The chemical composition of xylem sap in vitis vinifera L.cv. Riesling during vegetative vineyard soils and as influenced by nitrogen fertilizer, 2000,51(4):329-339
    [6] Bialczyk J., Lechowski Z..Chemical composition of xylem sap of tomato grown on bicarbonate containing medium. Journal of plant nutrition (USA), 1995, 18(10): 2005-2021
    [7] Hiroaki Hayashi, Yoshihisa Okada, Hironori Mano et al, Plant nutrition for sustainable food production and environment. Detection and characterization of nitrogen circulation through the sieve tubes and xylem vessels of rice plants. Printed in Japan: Kluwer Academic publishers, 1997.141-145
    [8] Kramer P. J., Water relations of plants, Academic Press, INC, (London) LTD, 1983, 120-145
    [9] Marshner H. Mineral nutrition of higher plants. London: Academic Press Inc, LTD 1986, 411-428
    [10] Mengel K., Kirby F. A., Principles of plants nutrition. International Potash Institute. Bern,Switzerland, 1987, 25-112
    [11] Morita A., Iwahashi M. Effects of fertilizer application on the levels of nutrients of xylem sap of tea plants. Proceedings of the International symposium on tea science, 1991, (9): 26-29
    [12] Takashi Sato, Hiroyuki Yashima, Norikuni Ohtake et al. Determination of Leghemoglobin components and xylem sap composition by capillary electrophoresis in Hypernodulation soybean Mutants cultivated in the Field. Soil sci. Plant nurt.,1998, 44 (4): 635-645
    第五章
    [1] 陈建新,韩锦峰,王瑞新,林学语.水分胁迫下烟草光合作用的气孔与非气孔限制,植物生理学通讯,1991,27(6):415-418
    [2] 高俊凤主编.植物生理学实验技术.西安:世界图书出版公司,2000,117-118
    [3] 李潮海,刘奎,周苏玫,栾丽敏.不同施肥条件下夏玉米光合对生理生态因子的响应,作物学报,28(2):265-269
    [4] 李秧秧.氮磷钾营养与作物的水分—光合作用的关系.汪德水主编.旱地农田肥水关系原理与调控技术.北京:中国农业科技出版社,1995,136-144
    [5] 上官周平,陈培元.水分胁迫对小麦叶片光合作用的影响及其与抗旱性的关系,西北植物学报,1990,10(1):1-7
    [6] 王锡帮,何军贤,黄久常.水分胁迫导致冬小麦光合作用下降的非气孔因素.植物生理学报,1992,18(1):77-84
    [7] 薛崧,汪沛洪,许大全,李立人.水分胁迫对冬小麦CO_2同化作用的影响.植物生理学报,1992,18(1):1-7
    [8] 张岁岐,山仑.氮素营养对春小麦抗旱适应性及水分利用的影响,汪德水主编.旱地农田肥水关系原理与调控技术.北京:中国农业科技出版社,1995,129-135
    
    
    [9] Cechin, I. Photosynthesis and chlorophyll fluorescence in two hybrids of sorghum under different nitrogen and water regimes. Photosynthetica, 1998, 35 (2): 233-240
    [10] Centritto M., Magnani F., Lee H. S. J., Jarvis P. G. Interacteve effects of elevated [CO_2] and drought on cherry (Prunus avium) seedlings. ll. Photosynthetic capacity and water relations. New Phytologist, 1999, 141(1): 141-153
    [11] Escalona J. M., Fiexas J., Medrano H. Stomatal and non-stomatal limitations of photosynthesis under water stress in field-grapevines. Australian Journal of plant physiology,1999, 26(5):421-433
    [12] Livingston N. J., Guy, R. D., Sun, Z. J., Ethier G. J. The effects of nitrogen stress on the stable carbon isotope composition, productivity and water use efficiency of white spruce (Picea glauca [Moench] Voss) seedlings. Plant, cell and Environment, 1999, 22 (3): 281-289
    [13] Tadahiko Mae. Physiological nitrogen efficiency in rice: Nitrogen utilization photosynthesis and yield potential. Plant Soil, 1997, 196:201-210
    [14] Wang J. R., Hawkins C. D. B., Letchford T. Photosynthesis, water and nitrogen use efficiencies of four paper birch (Betula papyrifera) populations grown under different soil moisture and nutrient regimes. Forest Ecology and Management, 1998, 112 (3): 233-244
    第六章
    [1] 季国亮,王敬华.用微电极研究碳铵粒肥在水稻土中的释放扩散问题.土壤学报,1978,15(2):182-186
    [2] 李生秀,高亚军,王喜庆,李世清,杜建军.水分对土壤养分迁移的影响.汪德水主编.旱地农田肥水关系原理与调控技术.北京:中国农业科技出版社,1995,6-11
    [3] 刘芷宇.根际土壤的氮素状况.朱兆良,文启孝编.中国土壤氮素.杭州:杭州科学出版社,1990,197-212
    [4] 钦绳武,刘芷宇.土壤—根系微区养分状况的研究.Ⅲ.水稻根际氮素的变化.土壤学报,1984,21(3)238-246
    [5] 钦绳武,刘芷宇.土壤—根系微区养分状况的研究.Ⅵ.不同形态肥料氮素在根际的迁移规律.土壤学报,1989,26(2)117-123
    [6] 施卫明,徐梦熊,刘芷宇.土壤—植物根系微区养分状况的研究.Ⅳ.电子探针制样方法的比较及其应用.土壤学报,1987,24(3):286-290
    [7] 许曼丽,刘芷宇.土壤—根系微区养分状况的研究.Ⅱ.钾离子的富集与亏缺.土壤学报,1983,20(3)295-301
    [8] Mengel K. E. A. Kirby. Principlcs of Plant nutrition (third edition). International potash lnstitute, Bern, Switzerland.,1987, 68-79
    [9] Naoki Moritsuka, Junta Yanai, Takashi Kosaki. Effect of plant growth on the distribution and forms of soil nutrients in the rhizosphere. Soil Sci. Plant Nutr., 2000, 46 (2): 439-447
    
    
    [10] Stanford, G and E Epstein. Nitrogen mineralization water relations in soils. Soil Sci. Soc. Am. Proc., 1974, 38:103-106
    第七章
    [1] 马元喜.不同土壤小麦根系生长动态的研究.作物学报,1987,13(1)37-44
    [2] 苗果园,张云亭,尹钧,侯跃生.黄土高原早地冬小麦根系生长发育规律的研究.作物学报,1989,15(2):104-115
    [3] 史奕,邹邦基,陈利军,从施肥促进小麦根系活力看以肥调水的效果.汪德水主编.旱地农田肥水关系原理与调控技术.北京:中国农业科技出版社,1995,111-115
    [4] 王晨阳,马元喜.不同土壤水分条件下小麦根系生态生理效应的研究.华北农学报,1992,7(4):1-8
    [5] 王志芬,陈学留,余美炎,刘益同,王同燕,任凤山,徐兵.大田冬小麦根系吸收活力的空间分布及其变化动态的研究.作物学报,1998,24(3):354-360
    [6] 王志芬,陈学留,余美炎,王同燕,两个不同穗型的冬小麦品种根系吸收活力空间分布变化的差异.华北农学报,1997,12(4):57-61
    [7] 王志芬,陈学留,余美炎,中秀珍,王奎波,王同燕.冬小麦根系活力变化动态的研究.华北农学报,1993,(增刊):70-73
    [8] 邹琦主编.植物生理生化实验指导.北京:中国农业出版社,1995,30-31
    [9] Andr(?) Chassot, Peter Stamp, Walter Richner. Root distribution and morphology of maize seedlings as affected by tillage and fertilizer placement. Plant and soil, 2001, (231): 123-135
    [10] Ito O., Matsunaga R., Tobita S., Rao T.P., Devi Y.G. Spatial distribution of root activity and nitrogen fixation in sorghum/pigeonpea intercropping on an Indian alfisol. Plant and Soil (Netherlands), 1993, (155/156): 341-344