MazF基因治疗猕猴艾滋病模型的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
SHIV病毒感染艾滋病动物模型是目前国外艾滋病模型研究的趋势,被认为是比现阶段普遍应用的SIV模型针对性更强、更有意义的动物模型。国内也已开始SHIV病毒感染艾滋病动物模型的研究,本研究以SHIV-KB9(以SIVmac239病毒基因组和HIV B亚型env、tat、rev和vpu基因为主体构建的一株SHIV病毒)感染已导入MazF基因和未导入MazF基因的中国猕猴,进行了包括临床表现、病毒血症、免疫学和基因拷贝数等方面研究。
     本研究共选用了9只中国猕猴,实验前经血清学间接免疫荧光抗体检查法(IFA)检查排除猴免疫缺陷病毒(SIV)、猴T淋巴细胞性I型病毒(STLV-1)和猴逆转录D型病毒(SRV-1、2、5)的感染和B病毒感染。分三组进行,空白对照组1只(只进行SHIV-KB9病毒攻击),编号T-bc,实验对照组2只(未导入基因),编号KUCD4+T01(T01)和KUCD4+T02(T02);实验组6只(导入基因),编号T-Mar、T-Jun、KUCD4+T03(T03)、KUCD4+T04(T04)、KUCD4+T05(T05)和KUCD4+T06(T06),T-Mar和T-Jun动物进行了基因导入未用SHIV-KB9病毒攻击。采用体外循环采集猕猴外周血PBMC和直接抽取猕猴外周血75mL分离PBMC,再进行CD4+T细胞分离培养并导入基因,培养结束后收获细胞静脉回输猴体后再进行SHIV-KB9病毒感染。分别在感染前和感染后第0、3、8、11、14、17、21、24、28、35、49、56、63、70、84、98天用EDTA抗凝管采集猴静脉血3mL,取100ul抗凝血进行血常规分析,其余抗凝血离心分离血浆用于病毒载量检测,以监测SHIV-KB9在猴体内的复制;分离PBMC用于CD4~+/CD8+值测定,以监测SHIV-KB9感染实验猴后体内免疫损伤情况。实验结果显示导入基因和回输细胞的实验猕猴其血浆病毒载量峰值都与已报道的推迟2周左右出现,比空白对照组推迟11天出现,其血浆病毒载量峰值比空白对照组峰值低约100倍,流式结果表明其CD4+T细胞计数也稳定在一定水平,CD4/CD8比值未出现明显倒置。实验组猕猴在试验结束时均未发展为猴AIDS。结论:导入CD4+T细胞的MzaF基因在治疗猕猴AIDS模型中显示了一定的效果,能延缓血浆病毒载量出现的时间,但更确定的效果还有待进一步的研究。
SHFV infection of rhesus macaques provides a reliable and popular model to study HIV/ADDS on abroad, and it is better than SFV infection animal models. SHIV animal models are now undertook in our country. In this research, rhesus macaques of Chinese origin, which were transduced MazF gene or not transduced, were inoculated intravenously with 10 MID50 of SHIV-KB9, we monitored clinical manifestation, viremia, immunology and gene copies.
     9 rhesus macaques were used in this study. All the rhesus macaques were screened by serological test to ensure that they were free of SFV, SRV , STLV and BV infection.They were divided into three groups, blank group(T-bc), control group(T01,T02) and experimental group(T03,T04,T05,T06,T-Mar and T-Jun). PBMC were collected by Cobe Spectra blood cell separators and by drawing 75mL blood, then to isolate CD4+T and proliferate ex vivo and transduce MazF gene. When cell culture was over, to harvest the cells(transduced or not transduced) and re-infuse the cells into rhesus macaques. Finally, all rhesus macaques were inoculated with SHTV-KB9,except T-Mar、T-Jun and T-bc. Blood samples were collected at different time according to the time schedule, to do blood composition anaysis, and prepare both plasma and PBMC for viral RNA by Real Time RT-PCR and FACS / MazF gene copy assay, respectively.The results showed the viral load peak was put off 11 days contrast to blank group and about 2 weeks late according to documents, the level of plasma viremia was lower about 100 times than blank group, CD4+T cell count and CD4/CD8 ratio were stable. All animals did not involved in AIDS at the end of this experiment.Conclusion: Re-infusing the transduced cells into monkeys can delay the viral load peak, it is partially useful in therapy SHIV/AIDS animal models, but the exact effect of MazF will be reseached further.
引文
[1]Joint United Nations Programme on HIV/AIDS(UNAIDS).Report on the global AIDS epidemic,Geneva Switzerland,December2005.
    [2]Joint United Nations Programme on HIV/AIDS(UNAIDS).UNAIDS/WHO AIDS Epidemic Update,December 2006.
    [3]Singh,S.K.,RNA interference and its therapeutic potential against HIV infection.Expert Opin Biol Ther,2008.8(4):p.449-61.
    [4]金奇主编,医学分子病毒学.科学出版社2001.665-673.
    [5]刘克洲,陈智主编.人类病毒性疾病.北京:人民卫生出版社.2002,770-805
    [6]Gardner MB.Simian AIDS:an historical perspective.J.Med.Primatol 2003;32:180.
    [7]Daniel MD,Letvin NL,King NW,et al.Isolation of T-cell tropic HTLV-Ⅲ-like retrovirus from macaques.Science 1985;228:1201.
    [8]Benveniste RE,Arthur LO,Tsai CC,et al.Isolation of a lentivirus from a macaque with lymphoma:comparison with HTLV-Ⅲ/LAV and other lentiviruses.J.Virol 1986;60:483.
    [9]Murphey-Corb M,Martin LN,Rangan SR,et al.Isolation of an HTLV-Ⅲ-related retrovirus from macaques with simian AIDS and its possible origin in asymptomatic mangabeys.Nature 1986;321:435.
    [10]Shibata R,Sakai H.Kiyomsau T,et al.Generation and characterization of infectious chimeric clones between human immunodeficiency virus type Ⅰ and simian immunodeficiency virus from an African monkey.J Virol.1990,64(12):5861-5868.
    [11]Sakuragi S,Shibata R,Mukai R,et al.Infection of macaque monkeys with a chimeric human and Simian immunodeficiency virus.J.Gen.Virol.1992,73:2983-2987.
    [12]Li.J.T.,M.Halloran,et al.Persistent infection of macaques with simian-human immunodeficiency virus.J Virol.1995,69:7061-7067
    [13]Reimann,K.A.,J.T.Li,et al.A chimeric simian/human immunodeficiency virus expressing a primary patient human immunodediciency virus type 1 isolate env causes an AIDS-like diease after in vivo passage in rhesus monkeys.J.Virol.1996,70:6922-6928
    [14]Chen Z,Huan Y,Zhao X,et al.Enhanced infectivity of an R5-tropic simian/human immunodeficiency virus carrying human immunodediciency virus type 1 subtype C envelope after serial passage in pig-tailed macaques(Macaca nemestrina).J Virol.2000,74(14):6501-6510
    [15] Etemad-Moghadam B, Sun Y, Nicholson E K, et al. Envelope glycoprotein determinants if increased fusogenicity in a pathogenic Simian-Human Immunodificiency Virus(SHIV-KB9)passage in vivo. 2000,74(9):4433-4440
    [16] Shinohara K, Sakai K. Ando S, et al. A highly pathogenic simian/human innnunodeficiency virus with genetic changes in cynomolgus monkey[J].Journal of General Virology, 1999,80:1231-1240
    [17] Chum T W, Stuyver L,Mizell S B, et al.Presence of a inducible HIV latent reservorir during highly active antiretroviral therapy. Proc Natl Acad Sci USA.1997,94:13193-13197
    [18] Sonza S, Crowe S W, M B, et al.Reservois for HIV infection and their persistence in the face of undetectable viral load. AIDS Patient Care STDs.2001,10:511-518
    [19] Chun T W, Carruth L, Finzi D, et al. Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection.Nature. 1997,387:183-188
    [20] John J Rossi, Carl H June & Donald B Kohn. Genetic therapies against HIV.Nature Biotechnology Vol. 25, 2007.
    
    [21] Joag SV. Primate models of AIDS [J]. Microbes Infect, 2000, 2(2) :223-2291.
    [22] Meyers, G., B. Korber, S. Wain-Hobson, and R. F. Smith . 1993. Human retroviruses and AIDS 1993. Los Alamos National Laboratory, Los Alamos,N.Mex.
    [23] Lifson J, Nowak M,G oldsteinS ,et al .The extent of early viral replication is a critical determinant of the natural history of simian immunodeficiency virus infection .JV irol.1997,71 :95 08-14.
    [24] Watson A, Ranchalis J, Travis B, et al. Plasma viremia in macaques infected with simian immunodeficiency virus: plasma viral load early in infection predicts survival. J Virol. 1997, 71:284-90.
    [25] Regina Hofmann-Lehmann, Ryan K, Vladimir Liska, et al.Sensitive and Robust One-Tube Real-Time Reverse Transcriptase-Polymerase Chain Reaction to Quantify SIV RNA Load: Comparison of One- versus Two-Enzyme Systems . AIDS RESEARCH AND HUMAN RETROVIRUSES [J] Volume 16, Number 13, 2000, pp. 1247-1257
    [26] Humeau LM, Binder GK, Lu X, et al. Efficient lentiviravector-mediated control of HIV-1 replication in CD4 lymphocytes from diverse HIV+ infected patients grouped according to CD4 count and viral load[J].Mol Ther.2004Jun;9(6):902-13.
    [27]Dropulic B,MacGregor RR,Humeau L,et al.Phase Ⅰ clinical trial demonstrates safety and feasibility of autologous cellular therapy with lentiviral vector modified CD4 T cells expressing anti-HIV antisense in patients with HAART-resistant HIV-1 infection.In:12th Conference on Retroviruses and Opportunistic Infections,Feb 22 - 25,552(Abstr),2005.
    [28]John J Rossi,Carl H June & Donald B Kohn.Genetic therapies against HIV.Nature Biotechnology Vol.25,2007.
    [29]吴凯峰,骆云鹏.核酶抗肿瘤P抗病毒研究进展[J].检验医学与临床J 2005,2(2):77279
    [30]王卫,刘强,许琰等,SHIV-KB9感染中国恒河猴的实验研究。中国比较医学杂志[J],2007,Vol.17 No.2
    [31]Bernstein WB,Cox JH,Aronson NE,et al.Immune reconstitution following autologous transfers of CD3/CD28 stimulated CD4(+) T cells to HIV-infected persons[J].Clin Immunol.2004 Jun;111(3):262-74.
    [32]Trickett AE,Kwan YL,Cameron B,et al.Ex vivo expansion of functional T lymphocytes from HIV-infected individuals[J].J Immunol Methods.2002 Apr 1;262(1
    [1] Strayer DS, Akkina R, Bunnell BA, et al. Current status of gene therapy strategies to treat HIV/AIDS. Mol Ther 2005; 11: 823-42.
    
    [2] Singh, S.K., RNA interference and its therapeutic potential against HIV infection.Expert Opin Biol Ther, 2008. 8(4): p. 449-61.
    [3] Voss G, Villinger F. Adjuvanted vaccine strategies and live vector approaches for the prevention of AIDS. AIDS 2000 ; 14 (Suppl 3): S153 -65.
    [4] Haasnoot J, Westerhout EM, Berkhout B.RNA interference against viruses: strike and counterstrike. Nat Biotechnol 2007 ; 25 (12): 1435 -43
    [5] van Rij RP, Andino R. The silent treatment: RNAi as a defense against virus infection in mammals. Trends Biotechnol 2006 ; 24 (4): 186 -93
    [6] Song E, Zhu P, Lee SK, et al. Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat Biotechnol 2005 ; 23 (6): 709 -17
    [7] Chang LJ, Liu X, He J. Lentiviral siRNAs targeting multiple highly conserved RNA sequences of human immunodefi ciency virus type 1. Gene Ther 2005 ; 12 (14): 1133-44
    [8] Hu WY, Myers CP, Kilzer JM, et al.Inhibition of retroviral pathogenesis by RNA interference. Curr Biol 2002 ; 12 (15): 1301 -11
    [9] Lee SK, Dykxhoorn DM, Kumar P, et al. Lentiviral delivery of short hairpin RNAs protects CD4 T cells from multiple clades and primary isolates of HIV. Blood 2005 ; 106 (3): 818-26
    [10] Barnor JS, Miyano-Kurosaki N, Yamaguchi K, et al. Lentiviral-mediated delivery of combined HIV-1 decoy TAR and Vif siRNA as a single RNA molecule that cleaves to inhibit HIV-1 in transduced cells. Nucleosides Nucleotides Nucleic Acids 2005; 24 (5-7): 431-4
    
    [11] Coburn GA, Cullen BR. Potent and specifi c inhibition of human immunodefi ciency virus type 1 replication by RNA interference. J Virol 2002 ; 76 (18): 9225 -31
    
    [12] Lee MT, Coburn GA, McClure MO,Cullen BR. Inhibition of human immunodefi ciency virus type 1 replication in primary macrophages by using Tat- or CCR5-specifi c small interfering RNAs expressed from a lentivirus vector. J Virol 2003; 77 (22): 11964-72
    
    [13] Dave RS, Pomerantz RJ. Antiviral effects of human immunodefi ciency virus type 1-specifi c small interfering RNAs against targets conserved in select neurotropic viral strains. J Virol 2004 ; 78 (24): 13687 -96
    [14] Li MJ, Kim J, Li S, et al. Long-term inhibition of HIV-1 infection in primary hematopoietic cells by lentiviral vector delivery of a triple combination of anti-HIV shRNA, anti-CCR5 ribozyme, and a nucleolar-localizing TAR decoy. Mol Ther 2005 ; 12 (5): 900 -9
    [15] Park J, Nadeau P, Zucali JR, et al. Inhibition of simian immunodefi ciency virus by foamy virus vectors expressing siRNAs. Virology 2005 ; 343 (2): 275 -82
    [16] Lee SK, Dykxhoorn DM, Kumar P, et al. Lentiviral delivery of short hairpin RNAs protects CD4 T cells from multiple clades primary isolates of HIV. Blood 2005 ; 106 (3): 818 -26
    [17] Park WS, Hayafune M, Miyano-Kurosak IN, Takaku H. Specific HIV-1 env gene silencing by small interfering RNAs in human peripheral blood mononuclear cells. Gene Ther 2003 ; 10 (24): 2046 -50
    [18] Kim DH, Rossi JJ. Strategies for silencing human disease using RNA interference. Nat Rev Genet 2007 ; 8 (3): 173 -84
    [19] Triboulet R, Man B, Lin YL, et al. Suppression of microRNA-silencing pathway by HIV-1 during virus replication. Science 2007 ; 315 (5818): 1579 -82
    [20] Michienzi A, Castanotto D, Lee N, et al. RNA-mediated inhibition of HIV in a gene therapy setting. Ann NY Acad Sci 2003 ; 1002 : 63 -71
    [21] Bennasser Y, Le SY, Benkirane M, Jeang KT. Evidence that HIV-1 encodes an siRNA and a suppressor of RNA silencing. Immunity 2005 ; 22 (5): 607 -19
    [22] Berkhout B, Jeang KT. Detailed mutational analysis of TAR RNA: critical spacing between the bulge and loop recognition domains. Nucleic Acids Res 1991 ; 19 (22): 6169 -76
    [23] Bennasser Y, Yeung ML, Jeang KT. RNAi therapy for HIV infection: principles and practicalities. BioDrugs 2007 ; 21 (1): 17 -22
    [24] Bennasser Y, Yeung ML, Jeang KT. HIV-1 TAR RNA subverts RNA interference intransfected cells through sequestration of TAR RNA-binding protein, TRBP. J Biol Chem 2006 ; 281 (38): 27674 -8
    [25] Gatignol A, Laine S, Clerzius G. Dual role of TRBP in HIV replication and RNA interference: viral diversion of a cellular pathway or evasion from antiviral immunity? Retro virology 2005 ; 2 : 65 .Published online 27 October 2005, doi: 10.1186/1742-4690-2-65
    [26] Rossi JJ. RNAi as a treatment for HIV-1 infection. Biotechniques 2006 ;(Suppl): 25-9
    [27] Boden D, Pusch O, Lee F, et al. Human immunodefi ciency virus type 1 escape from RNA interference. J Virol 2003 ; 77 (21): 11531 -5
    [28] Berkhout B. RNA interference as an antiviral approach: targeting HIV-1. Curr Opin Mol Ther 2004 ; 6 (2): 141 -5
    [29] Das AT, Brummelkamp TR, Westerhout EM, et al. Human immunodefi ciency virus type 1 escapes from RNA interference-mediated inhibition. J Virol 2004 ; 78 (5): 2601 -5
    
    [30] Westerhout EM, Ooms M, Vink M, et al. HIV-1 can escape from RNA interference by evolving an alternative structure in its RNA genome. Nucleic Acids Res 2005 ; 33 (2): 796 -804
    [31] Reza Nazaril and Sadhna Joshil,CCR5 as Target for HIV-1 Gene Therapy Current Gene Therapy, 2008, 8, 264-272
    [32] Liu R, Paxton W, Choe S, et al. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply exposed individuals to HIV-1 infection. Cell 1996, 86:267-377.
    [33] Huang Y, Paxton WA, Wolinsky SM, et al. The role of a mutant CCR5 allele in HIV-1 transmission and disease progression. Nat Med 1996, 2:1240-1243.
    [34] Naif HM, Cunningham AL, Alali M, et al. A human immunodeficiency virus type 1 isolate froman infected person homozygous for CCR5A32 exhibits dual tropism by infecting macrophages and MT2cells via CXCR4. J Virol 2002,76:3114-3124.
    [35] Choe H, Farzan M, Sun Y, et al. The beta-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell 1996; 85: 1135-48.
    [36] Temesgen Z, Warnke D, Kasten MJ. Current status of antiretroviral therapy. Expert Opin Pharmacother 2006; 7 : 1541-54.
    [37] Doms RW, Moore JP. HIV-1 Co-receptor Use: A Molecular Window into Viral Tropism.http://www.hiv.lanl.gov/content/hivdp/COMPENDIUM/1997/partin/dom s.pdf 1997.
    [38] Berger EA, Murphy PM, Farber JM. Chemokine receptors as HIV-1 co-receptors: roles in viral entry, tropism, and disease. Annu Rev Immunol 1999; 17: 657-700.
    [39] Collman R, Balliet JW, Gregory SA, et al. An infectious molecular clone of an unusual macrophage-tropic and highly cytopathic strain of HIV-1. J Virol 1992; 66: 7517-21.
    [40] Brelot A, Heveker N, Pleskoff O, et al. Role of the first and third extracellular domains of CXCR4 in HIV co-receptor activity. J Virol 1997 ; 71: 4744-51.
    [41] Lu Z, Berson JF, Chen Y, et al. Evolution of HIV-1 co-receptor usage through interactions with distinct CCR5 and CXCR4 domains. Proc Natl Acad Sci USA 1997; 94: 6426-31.
    [42] Yi Y, Shaheen F, Collman RG. Preferential use of CXCR4 by R5X4 HIV-1 isolates for infection of primary lymphocytes. J Virol 2005; 79: 1480-6.
    [43] Davis CW, Doms RW. HIV transmission: closing all the doors. J Exp Med 2004; 199: 1037-40.
    [44] Feng Y, Broder CC, Kennedy PE, et al. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 1996; 272: 872-7.
    [45] Tersmette M, Lange JM, de Goede RE, et al. Association between biological properties of HIV variants and risk for AIDS and AIDS mortality. Lancet 1989; 1: 983-5.
    [46] Dean M, Carrington M, Winkler C, et al. Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia Growth and Development Study, Multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, ALIVE Study. Sciencel996 ; 273: 1856-62.
    [47] Samson M, Libert F, Doranz BJ, et al. Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR5 chemokine receptor gene. Nature 1996; 382: 722-5.
    [48] Ruibal-Ares BH, Belmonte L, Bare PC, et al. HIV-1 infection and chemokine receptor modulation.Curr HIV Res 2004; 2: 39-50.
    [49] Lee B, Sharron M, Montaner LJ, et al. Quantification of CD4, CCR5, and CXCR4 levels on lymphocyte subsets, dendritic cells, and differentially conditioned monocyte-derived macrophages. Proc Natl Acad Sci USA 1999; 96: 5215-20.
    [50] Bleul CC, Wu L, Hoxie JA, et al. The HIV co-receptors CXCR4 and CCR5 are differentially expressed and regulated on human T lymphocytes. Proc Natl Acad Sci USA 1997;94: 1925-30.
    [51] Benito JM, Zabay JM, Gil J, et al. Quantitative alterations of the functionally distinct subsets of CD4 and CD8 T lymphocytes in asymptomatic HIV infection: changes in the expression of CD45RO,CD45RA, CD11b, CD38, HLA-DR, and CD25 antigens. J Acquir Immune Defic Syndr Hum Retrovirol 1997; 14: 128-135.
    [52] Hazenberg MD, Stuart JW, Otto SA, et al. T-cell division in HIV-1 infection is mainly due to immune activation: a longitudinal analysis in patients before and during highly active antiretroviral therapy.Blood 2000; 95: 249-55
    [53] Michael NL, Louie LG, Sheppard HW. CCR5(?)32 gene deletion in HIV-1 infected patients. Lancet 1997; 350: 741-742.
    [54] Benkirane M, Jin DY, Chun RF, et al. Mechanism of transdominant inhibition of CCR5-mediated HIV-1 infection by ccr5(?)32. J Biol Chem 1997; 272: 30603-6.
    [55] Zimmerman PA, Buckler-White A, Alkhatib G, et al. Inherited resistance to HIV-1 conferred by an inactivating mutation in CC chemokine receptor 5: studies in populations with contrasting clinical phenotypes, defined racial background, and quantified risk. Mol Med 1997; 3: 23-36.
    [56] Ioannidis JP, Rosenberg PS, Goedert JJ, et al. Effects of CCR5(?)32, CCR2-64I, and SDF-1 3'A alleles on HIV-1 disease progression: An international meta-analysis of individual-patient data. Ann Intern Med 2001; 135: 782-95.
    [57] Wu L, Paxton WA, Kassam N, et al. CCR5 levels and expression pattern correlate with infectability by macrophage-tropic HIV-1, in vitro. J Exp Med 1997; 185: 1681-91.
    [58] Bai X, Chen JD, Yang AG, et al. Genetic coinactivation of macrophage- and T-tropic HIV-1 chemokine coreceptors CCR5 and CXCR4 by intrakines. Gene Ther 1998; 5:984-94.
    [59] Schroers R, Davis CM, Wagner HJ, et al. Lentiviral transduction of human T-lymphocytes with a RANTES intrakine inhibits HIV-1 infection. Gene Ther 2002 ; 9: 889-97.
    [60] Luis Abad J, Gonzalez MA, del Real G, et al. Novel interfering bifunctional molecules against the CCR5 co-receptor are efficient inhibitors of HIV-1 infection. Mol Ther 2003; 8: 475-84.
    [61] Lee NS, Dohjima T, Bauer G, et al. Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nat Biotechnol 2002 ; 20: 500-5.
    [62] Cordelier P, Morse B, Strayer DS. Targeting CCR5 with siRNAs: using recombinant SV40-derived vectors to protect macrophages and microglia from R5-tropic HIV. Oligonucleotides 2003; 13:281-94.
    [63] Qureshi A, Zheng R, Parlett T, et al. Gene silencing of HIV chemokine receptors using ribozymes and single-stranded antisense RNA. Biochem J 2006; 394: 511-8.
    [64] Bai J, Rossi J, Akkina R. Multivalent anti-CCR ribozymes for stem cell-based HIV-1 gene therapy. AIDS Res Hum Retroviruses 2001; 17: 385-99.
    [65] Martinez MA, Gutierrez A, Armand-Ugon M, et al. Suppression of chemokine receptor expression by RNA interference allows for inhibition of HIV-1 replication. AIDS 2002; 16: 2385-90.
    [66] Martinez MA, Gutierrez A, Armand-Ugon M, et al. Suppression of chemokine receptor expression by RNA interference allows for inhibition of HFV-1 replication. AIDS 2002; 16: 2385-90.
    [67] Carroll, R.G. et al. Differential regulation of HIV-1 fusion cofactor expression by CD28 costimulation of CD4+ T cells. Science 276, 273-276 (1997).
    [68] Levine, B.L. et al. Adoptive transfer of costimulated CD4+ T cells induces expansion of peripheral T cells and decreased CCR5 expression in HIV infection. Nat. Med.8,47-53 (2002).
    [69] Lalezari, J.P. et al. A controlled phase II trial assessing three doses of enfuvirtide (T-20) in combination with abacavir, amprenavir, ritonavir and efavirenz in nonnucleoside reverse transcriptase inhibitor-naive HIV-infected adults. Antivir. Ther.8,279-287 (2003).
    [70] Egelhofer, M. et al. Inhibition of human immunodeficiency virus type 1 entry in cells expressing gp41 -derived peptides. J. Virol. 78, 568-575 (2004).
    [71] Kornbluth RS, Munis JR, Oh PS, et al. Characterization of a macrophage-tropic HIV strain that does not alter macrophage cytokine production yet protects macrophages from superinfection by vesicular stomatitis virus.AIDS Res Hum Retroviruses 1990, 6:1023-1036.
    [72] Vieillard V, Lauret E, Rousseau V,et al. Blocking of retroviral infection at a step prior to reverse transcription in cells transformed to constitutively express interferon beta. Proc Natl Acad Sci U S A 1994,91:2689-2693.
    [73] Vieillard V, Cremer I, Lauret E,et al. Interferon beta transduction of peripheral blood lymphocytes from HIV-infected donors increases Th1-type cytokine production and improves the proliferative response to recall antigens. Proc Natl Acad Sci U S A 1997, 94:11595-11600.
    [74] Vieillard V, Lauret E, Maguer V, et al. Autocrine interferon-beta synthesis for gene therapy of HIV infection: increased resistance to HIV-1 in lymphocytes from healthy and HIV-infected individuals. Aids 1995,9:1221-1228.
    [75] Vieillard V, Jouveshomme S, Leflour N, et al. Transfer of human CD4(+) T lymphocytes producing beta interferon in Hu-PBL-SCID mice controls human immunodeficiency virus infection. J Virol 1999,73:10281-10288.
    [76] Matheux F, Lauret E, Rousseau V, et al. Simian immunodeficiency virus resistance of macaques infused with interferon beta-engineered lymphocytes. J Gen Virol 2000,81:2741-2750.
    [77] Cremer I, Vieillard V, Sautes-Fridman C, et al. Inhibition of human immunodeficiency virus transmission to CD4+ T cells after gene transfer of constitutively expressed interferon beta to dendritic cells. Hum Gene Ther 2000, 11:1695-1703.
    [78] Braun, S.E. et al. Inhibition of simian/human immunodeficiency virus replication in CD4+ T cells derived from lentiviral-transduced CD34+ hematopoietic cells. Mol.Ther. 12,1157-1167 (2005).
    [79] Anderson, J. et al. Safety and efficacy of a lentiviral vector containing three anti-HIV genes—CCR5 ribozyme, tat-rev siRNA, and TAR decoy—in SCID-hu mouse-derived T cells. Mol. Ther. 15, 1182-1188 (2007).
    [80] An, D.S. et al. Stable reduction of CCR5 by RNAi through hematopoietic stem cell transplant in non-human primates. Proc. Natl. Acad. Sci. USA 104, 13110-13115(2007).
    [81] Aiuti, A. et al. Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science 296, 2410-2413 (2002).
    [82] Ott, M.G. et al. Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBPl.Nat. Med. 12, 401-409 (2006).
    [83] John J Rossi, Carl H June & Donald B Kohn. Genetic therapies against HIV.Nature Biotechnology Vol. 25, 2007.