基于半导体光放大器和光学滤波器的高速全光信号处理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着光传输技术的发展,光通信网络中单个信道的比特率越来越高,而信道数目也在不断增加,这就要求光交换技术从光-电-光交换向全光交换转变。全光信号处理技术,如波长转换、逻辑门和3R再生等将是实现全光交换技术(包括光突发交换和光分组交换等)的基本功能单元。
     半导体光放大器(SOA)在全光信号处理技术中具有非常大的吸引力,表现为非线性系数高、功耗低、输出效率高、体积小、成本低、易于和其他光电子器件集成等。根据实验室现有的40Gbit/s高速光通信平台和各种不同性能的SOA器件进行高速全光信号处理技术的实验研究,全光信号处理技术覆盖了全光波长转换、全光码型转换、全光逻辑门及其组合逻辑、超宽带(UWB)射频信号的光学产生等。概括全文的研究成果和贡献,有如下几个方面:
     (1)研究了SOA实现全光信号处理的基本原理,推导了SOA中最基本的光场传输方程和载流子速率方程,分析各种非线性效应的原理及其应用。总结了迄今为止几种常用的SOA理论模型及其各自的适用范围,并根据本文的全光信号处理要求提出了一种超快SOA模型,提供了数值计算方法求解。
     (2)首次从系统响应函数出发,推导了基于瞬态交叉相位调制(T-XPM)效应的波长转换解析公式,该公式直观的解释了基于T-XPM效应实现同相和反相转换的原理,并将文献中的实验报道和公式计算结果对比,发现结果十分吻合。从实验上分别实现了从10Gbit/s到40Gbit/s的同相和反相波长转换,当滤波器失谐量较小时,得到反相的波长转换结果,此时交叉增益调制(XGM)占主导作用,而滤波器的失谐起到加速增益恢复的作用;当滤波器失谐量较大时,可以得到同现波长转换,此时交叉相位调制(XPM)占主导作用,而滤波器起到提取啁啾信息的作用。
     (3)将SOA和失谐滤波器相结合,研究各种全光码型转换的实现方法。首先从理论上提出了基于T-XPM效应的非归零(NRZ)到归零(RZ)的码型转换,同时对码型转换的性能参数做了深入的分析。其次,将SOA和滤波器相结合,可以实现NRZ到伪归零(PRZ)的转换,可以得到反相的波长转换,输出结果取决于滤波器的失谐量。最后,利用SOA的自相位调制(SPM)效应实现了NRZ到PRZ的转换和NRZ信号的2R再生功能,当滤波器选择蓝移时,就可以抑制NRZ信号的畸变,从而实现信号的2R再生,反之当滤波器选择红移时,就能提取这种过冲脉冲,而抑制信号的直流分量,最终实现NRZ到PRZ的转换。
     (4)全面研究了基于SOA的各种逻辑门及其高级逻辑组合器件。首先提出并实验报道了基于T-XPM效应的全光逻辑NOR和OR门,工作速率为40Gbit/s,从理论上也研究了线宽增强因子和输入信号脉宽对输出信号质量的影响。其次考虑四波混频(FWM)效应,首次实现了可重构的多功能逻辑门,包括NOR门、OR门、NOT门、AND门和XNOR门,工作速率同样为40Gbit/s。最后从理论上提出了基于单个SOA和若干个并联的滤波器组合的全光半加器和全加器。滤波器相对于探测光中心波长进行不同的漂移就可以提取不同的逻辑输出,得到“进位”位和“求和”位。
     (5)系统研究了基于SOA的全光超宽带(UWB)射频信号产生方法。首先利用T-XPM效应实现了超宽带monocycle脉冲,滤波器选择蓝移和红移分别得到一对极性相反的monocycle脉冲。其次利用SOA的增益饱和效应,直接从dark RZ信号中提取monocycle波形,实验研究了注入电流、输入信号脉宽和波长对超宽带频谱的影响。接着提出了一种基于XGM效应的无滤波方案产生monocycle脉冲,实验表明当信号波长在C波段变化或者输入功率从-10dBm到6dBm之间变化时,输出结果稳定。最后利用单模光纤的色散特性对NRZ-DPSK信号进行微波滤波,从而获得超宽带doublet脉冲和triplet脉冲。
     (6)研究了基于SOA的FWM效应的全光信号处理技术。首先给出了SOA的FWM理论模型,然后根据该模型从理论上提出并模拟了一种全光比特误码检测器,该器件是利用两级级联的SOA的逻辑NOT门和AND门来完成的,结果表明该方案对于40Gbit/s的RZ信号和10Gbit/s的NRZ信号均能胜任。其次从实验上报道了FWM效应实现各种调制速率、各种调制格式的波长转换功能。特别地,对40Gbit/s的NRZ信号实现了单信道到三信道多波长转换。最后利用FWM效应实现了单信道到双信道的NRZ到RZ码型转换,输出的双信道分别对应FWM效应产生的两个边带频率,转换光信号的Q值均大于6。
As the bit rate of one wavelength channel and the number of channels continue increasing in the telecommunication networks thanks to the advancement of optical transmission technologies, switching is experiencing the transition from the electrical domain to the optical domain. All-optical signal processing, including wavelength conversion, optical logic gates and signal 3R regeneration, etc, is one of the most important enabling technologies to realize optical switching, including optical circuit switching, optical burst switching and optical packet switching.
     Semiconductor optical amplifiers (SOAs) are very promising in all-optical signal processing because of their high nonlinearities, low power consumption, high power efficiency, small footprint, low cost, and ease to be integrated with other semiconductor optoelectronic devices. In this dissertation, some all-optical signal processing techniques based on SOAs which are related with the 40Gbit/s optical communication system, such as all-optical wavelength conversion, all-optical format conversion, all-optical logic gates, and all-optical ultrawideband (UWB) pulse generation, have been demonstrated. Several research achievements and contributions are summarized as the followings:
     Firstly, the basic principle for SOA-based all-optical signal processing is investigated. The propagation equation for the optical field and the rate equation for the carrier density in SOA are derived. And the principle and applications for nonlinearities of SOA are discussed. Different SOA models and their applications are summarized. A novel ultrafast SOA model is presented and the numerical arithmetic is provided.
     Secondly, an analytical formula for wavelength conversion of transient cross phase modulation (T-XPM) is deduced from the viewpoint of impulse response function. The analytical formula can interpret accordingly the polarity evolution of wavelength conversion. The calculated detuning of the filter by the formula is found to agree well with the published experiment results. We experimentally demonstrate both inverted wavelength conversion and non-inverted wavelength conversion at 10Gbit/s and 40Gbit/s. In the inverted wavelength conversion, the filter detuning is small and it is useful to accelerate the amplitude recovery, where the XGM dominates this process. However, in the non-inverted wavelength conversion, the filter detuning is relatively large, and it acts as frequency- amplitude conversion. And the XPM is dominant.
     Thirdly, a variety of format conversion schemes are presented using single SOA and a detuning filter. NRZ-to-RZ format conversion by T-XPM effect is theoretically demonstrated. Some important parameters are analyzed. NRZ-to-PRZ and inverted wavelength conversion of NRZ signal have been demonstrated with the same structure. At last, simultaneous SOA-based NRZ-to-PRZ conversion and 2R regeneration of amplified NRZ signal using self phase modulation (SPM) are investigated. The blue shifted filter can suppress the distortion of NRZ signals, and obtain 2R regeneration. Conversely, the red shifted filter can extract the frequency chirp and suppress the direction current components. Hence the NRZ-to-PRZ format conversion is obtained.
     Fourthly, a variety of SOA-based logic gates and the advanced logic circuits are investigated. Both logic NOR and OR gates at 40Gitb/s based on T-XPM effect are presented for the first time to our knowledge. The impact of linewidth enhancement factor and input pulsewidth on output performances is analyzed. Then multifunctional logic gates at 40Gbit/s, including NOR, OR, NOT, AND, and XNOR, are demonstrated based on single SOA and optical filtering by considering the four-wave mixing (FWM) effect. At last, optical half /full adders based on single SOA and several optical bandpass filter are theoretically proposed. Different logic functions are realized by different filter detuning. Fifthly, the optical UWB pulse generation based on SOAs is systematically studied. We propose a scheme for optical UWB monocycle generation based on T-XPM effect. A pair of polarity-reversed UWB monocycle pulses is achieved by locating the probe carrier at the positive and negative linear slope of the filter, respectively. Then we demonstrate a simple and compact scheme to generate UWB monocycle pulses utilizing gain saturation of the dark RZ signal in an SOA. The UWB frequency spectra at different injected currents, different input pulsewidth, and different input wavelengths are analyzed. Later, a filter-free scheme for UWB generation by XGM of single SOA is proposed and demonstrated. The system shows good stability when the input probe power varies from -10dBm to 6dBm and the probe wavelength varies in the whole C-band. At last, a simple method to generate UWB doublet and triplet pulses from NRZ-DPSK signals is experimentally demonstrated by the dispersion of single mode fiber.
     Sixthly, all-optical signal processing based on FWM effect of SOAs is investigated. A typical SOA FWM model is presented. And we propose all-optical bit error monitoring system (BEMS) based on the FWM model. The BEMS is realized by cascaded SOAs, which implement logic NOT and logic AND, respectively. The results show this scheme is competent for 40Gbit/s RZ format and 10Gbit/s NRZ format. Then wavelength conversion based on FWM in an SOA for various bit rate and various data formats is experimentally investigated. Especially, for 40Gbit/s NRZ signals, multi-wavelength conversion from single channel to triple channels is obtained. At last, all-optical single-to-dual channel format conversion from NRZ to RZ using FWM in single SOA is demonstrated. Based on FWM, two sideband components are generated and both channels are RZ formats. And all the converted RZ signals have a Q factor larger than 6.
引文
[1] Ramaswami R. and Sivarajan K. Optical networks: A practical perspective. UK: Morgan Kaufmann Publishers, 1998. 15-22
    [2] Saleh A. A. M. and Simmons J. M. Evolution toward the next-generation core optical network. Journal of Lightwave Technology, 2006, 24(9):3303-3321
    [3] Charlet G., Renaudier J., Mardoyan H., et al. Transmission of 16.4Tbit/s capacity over 2550km using PDM QPSK modulation format and coherent receiver. in: OFC/NFOEC. San Diego, U.S., 2008. PDP3
    [4] Sano A., Masuda H., Kisaka Y., et al. 14-Tb/s(140*111-Gb/s PDM/WDM) CSRZ-DQPSK transmission over 160 km using 7-THz bandwidth extended L-band EDFAs. in: Proceedings of European Conference on Optical Communications, 2006
    [5] Eggleton B. The all-photonic chip. in: Lasers and Electro-Optics, 2007. 5-6
    [6] Houbavlis T., Zoiros K. E., Kalyvas M., et al. All-optical signal Processing and applications within the esprit project DO_ALL. Lightwave Technology, Journal of, 2005, 23(2):781-801
    [7] Martinez J. M., Ramos F., and Marti J. All-optical packet header processor based on cascaded SOA-MZIs. Electronics Letters, 2004, 40(14):894-895
    [8] Poustie A. J., Blow K. J., Manning R. J., et al. All-optical pseudorandom number generator. Optics Communications, 1999, 159(4-6):208-214
    [9] Chan L. Y., Qureshi K. K., Wai P. K. A., et al. All-optical bit-error monitoring system using cascaded inverted wavelength converter and optical NOR gate. Photonics Technology Letters, IEEE, 2003, 15(4):593-595
    [10] Poustie A. J., Blow K. J., Kelly A. E., et al. All-optical parity checker with bit-differential delay. Optics Communications, 1999, 162(1-3):37-43
    [11] Maeda Y. and Occhi L. All-optical triode based on a tandem wavelength converter using reflective semiconductor optical amplifiers. Photonics Technology Letters, IEEE, 2003, 15(2):257-259
    [12] Tangdiongga E., Liu Y., de Waardt H., et al. All-optical demultiplexing of 640 to 40 Gbits/s using filtered chirp of a semiconductor optical amplifier. Opt. Lett., 2007, 32(7):835-837
    [13] Liu Y., Hill M. T., Calabretta N., et al. All-optical buffering in all-optical packet switched cross connects. Ieee Photonics Technology Letters, 2002, 14(6):849-851
    [14] Zhang S. X., Liu Y., Lenstra D., et al. Ring-laser optical flip-flop memory withsingle active element. Ieee Journal of Selected Topics in Quantum Electronics, 2004, 10(5):1093-1100
    [15] Fu S. N., Shum P., Zhang L. R., et al. Design of SOA-based dual-loop optical buffer with a 3 x 3 collinear coupler: Guideline and optimizations. Journal of Lightwave Technology, 2006, 24(7):2768-2778
    [16] Bala Pesala, Forrest Sedgwick, Alexander V. Uskov, et al. Electrically tunable fast light at THz bandwidth using cascaded semiconductor optical amplifiers. optics express, 2007, 15(24):15863-15867
    [17] Stephens M. F. C., Nesset D., Penty R. V., et al. Wavelength conversion at 40Gbit/s via four wave mixing in semiconductor optical amplifier with integrated pump laser. Electronics Letters, 1999, 35(5):420-421
    [18] Contestabile G., Presi M., and Ciaramella E. Multiple wavelength conversion for WDM multicasting by FWM in an SOA. Photonics Technology Letters, IEEE, 2004, 16(7):1775-1777
    [19] Yu Y., Xinliang Z., and Dexiu H. All-Optical Clock Recovery From NRZ-DPSK Signal. Photon. Techn. Lett., 2006, 18(22):2356-2358
    [20] Xu F., Zhang X. L., Liu H. R., et al. Polarization maintaining fibre loop mirror for NRZ-to-PRZ conversion in all-optical clock recovery. Chinese Physics Letters, 2006, 23(2):355-358
    [21] Contestabile G., D'Errico A., Presi M., et al. 40-GHz all-optical clock extraction using a semiconductor-assisted Fabry-Perot filter. Ieee Photonics Technology Letters, 2004, 16(11):2523-2525
    [22] Nakamura S. and Tajima K. Ultrafast all-optical gate switch based on frequency shift accompanied by semiconductor band-filling effect. Applied Physics Letters, 1997, 70(26):3498-3500
    [23] Dong J., Fu S., Zhang X., et al. Analytical Solution for SOA-Based All-Optical Wavelength Conversion Using Transient Cross-Phase Modulation. Photon. Techn. Lett., 2006, 18(24):2554-2556
    [24] Dong J., Zhang X., and Huang D. semiconductor-optical-amplifier-based inverted and non-inverted wavelength conversion at 40Gb/s using a detuning optical bandpass filter. Chin. Phy. Lett., 2007, 24(12):3450-3453
    [25] H.C. Hansen Mulvad, M. Galili, L.K. Oxenl?we, et al. Polarization-Independent High-Speed Switching in a Standard Non-Linear Optical Loop Mirror. in: OFC/NFOEC. San Diego, U.S., 2008. OMN3
    [26] Galili M., Hansen Mulvad H.C., Oxenl?we L.K., et al. 640 Gbit/s wavelength conversion. in: OFC/NFOEC. San Diego, U.S., 2008. OTuD4
    [27] D.M.F. Lai, C.H. Kwok, T.I. Yuk, et al. Picosecond All-Optical Logic Gates (XOR, OR, NOT and AND) in a Fiber Optical Parametric Amplifier. in: OFC/NFOEC. San Diego, U.S., 2008. OML6
    [28] Morais R., Meleiro R., Monteiro P., et al. OTDM-to-WDM Conversion based on Wavelength Conversion and Time Gating in a Single Optical Gate. in: OFC/NFOEC. San Diego, U.S., 2008. OTuD5
    [29] V.G. Ta' eed, Pelusi M. D., and Eggleton B. J. All-Optical Wavelength Conversion of 80 Gb/s Signal in Highly Nonlinear Serpentine Chalcogenide Planar Waveguides. in: OFC/NFOEC. San Diego, U.S., 2008. OMP2
    [30] Chow K. K. and Lin C. Photonic Crystal Fibers for Nonlinear Signal Processing. in: OFC/NFOEC. San Diego, U.S., 2008. OMP6
    [31]郭永娟,孙军强,王健.基于PPLN光波导和频与差频级联型全光波长转换的研究.光学与光电技术, 2007, 5(2):65-68
    [32] Asobe M., Nishida Y., Tadanaga O., et al. Wavelength conversion using quasi-phase matched LiNbO3 waveguides. Ieice Transactions on Electronics, 2005, E88c(3): 335-341
    [33] Christen L., Fazal I., Yilmaz O. F., et al. Tunable 105-ns Optical Delay for 80-Gbit/s RZ-DQPSK, 40-Gbit/s RZ-DPSK, and 40-Gbit/s RZ-OOK Signals using Wavelength Conversion and Chromatic Dispersion. in: OFC/NFOEC. San Diego, U.S., 2008. OTuD1
    [34] Oxenl?we L. K., Agis F. G., Ware C., et al. 640Gbit/s data transmission and clock recovery using an ultra-fast periodically poled lithium niobate device. in: OFC/NFOEC. San Diego, U.S., 2008. PDP22
    [35] Hojfeldt S., Bischoff S., and Mork J. All-optical wavelength conversion and signal regeneration using an electroabsorption modulator. Journal of Lightwave Technology, 2000, 18(8):1121-1127
    [36]董建绩,张新亮,黄德修. SOA动态增益特性的理论和实验研究.物理学报, 2005, 54(2):763-767
    [37] Jin W., Ayan M., Chris G. P., et al. Temporal Dynamics of the Alpha Factor in Semiconductor Optical Amplifiers. Lightwave Technology, Journal of, 2007, 25(3):891-900
    [38] Liu Y., Tangdiongga E., Li Z., et al. Error-free all-optical wavelength conversion at160 gb/s using a semiconductor optical amplifier and an optical bandpass filter. Lightwave Technology, Journal of, 2006, 24(1):230-236
    [39] Liu Y., Tangdiongga E., Li Z., et al. Error-Free 320-Gb/s All-Optical Wavelength Conversion Using a Single Semiconductor Optical Amplifier. Journal of Lightwave Technology, 2007, 25(1):103-108
    [40] Brenot R., Lelarge F., Legouezigou O., et al. Quantum dots semiconductor optical amplifier with a–3dB bandwidth of up to 120 nm in semi-cooled operation. in: OFC/NFOEC. San Diego, U.S., 2008. OTuC1
    [41] Contestabile G., Proietti R., Calabretta N., et al. 40 Gb/s WDM NRZ-DPSK All-Optical Clock Recovery and Data Demodulation based on a Periodic Bragg Filter. in: OFC/NFOEC. San Diego, U.S., 2008. OMN2
    [42] Mok J. T., Ibsen M., Sterke C. M. d., et al. Slow Light Generation Using Fibre Bragg Gratings. in: OFC/NFOEC. San Diego, U.S., 2008. OWD6
    [43] Reid D. A., Maguire P. J., and Barry L. P. All-Optical Sampling in a Multiple Quantum Well Saturable Absorber. in: OFC/NFOEC. San Diego, U.S., 2008. OThG4
    [44] D’Errico A., Contestabile G., Proietti R., et al. 2R Optical Regeneration combining XGC in a SOA and a Saturable Absorber. in: OFC/NFOEC. San Diego, U.S., 2008. OWK4
    [45] Koch B. R., Fang A. W., Poulsen H. N., et al. All-Optical Clock Recovery with Retiming and Reshaping Using a Silicon Evanescent Mode Locked Ring Laser. in: OFC/NFOEC. San Diego, U.S., 2008, OMN1
    [46] Salem R., Foster M. A., Geraghty D. F., et al. Low-power optical regeneration using four-wave mixing in a silicon chip. in: OFC/NFOEC. San Diego, U.S., 2008. OWK7
    [47] Yang J., Xiang B., He T., et al. All-Optical Contention Resolution with TTL-Aware Selective 3R Regeneration in Optical-Label Switching Router Networks. in: OFC/NFOEC. San Diego, U.S., 2008.OMG3
    [48] Feng K.-M., Wu C.-Y., Hsueh D.-H., et al. Demonstration of an Optical FIFO Multiplexer. in: OFC/NFOEC. San Diego, U.S., 2008. OMN5
    [49] Maxwell G. Hybrid Integration Technology for High Functionality Devices in Optical Communications. in: OFC/NFOEC. San Diego, U.S., 2008. OWI3
    [50]吴重庆.半导体光放大器的光-光互作用及在全光信号处理中的应用(I).激光与光电子学进展, 2007, 44(10):17-25
    [51]吴重庆.半导体光放大器的光-光互作用及在全光信号处理中的应用(II).激光与光电子学进展, 2007, 44(11):12-17
    [52]张新亮,孙军强,黄德修.交叉增益型全光波长转换器消光比退化机理.华中理工大学学报(自然版), 1999, 27(10):18-20
    [53] Wiesenfeld J. M., Glance B., and .Perino J. S. Wavelength conversion at 10Gbit/s using a semiconductor optical amplifier. IEEE Photonics Technology Letters, 1993, 5(10):1300-1303
    [54] Danielsen S. L., Joergensen C., and Vaa M. Bit error rate assessment of 40Gbit/s all-optical polarisation independent wavelength converter. Electronics Letters, 1996, 32(18):1688-1689
    [55] Joergensen C., Danielsen S. L., and Vaa M. 40Gbit/s all-optical wavelength conversion by semiconductor optical amplifiers. Electronics Letters, 1996, 32(4):367-368
    [56] Ellis A. D., Kelly A. E., and Nesset D. Error free 100Gbit/s wavelength conversion using grating assisted cross-gain modulation in 2mm long semiconductor amplifier. Electronics Letters, 1998, 34(20):1958-1959
    [57] Stephens M. F. C., Nesset D., and Williams K. A. Wavelength conversion at 40Gbit/s via cross-gain modulation in distributed feedback laser integrated with semiconductor optical amplifier. Electronics Letters, 1999, 35(20):1762-1764
    [58] Liu D., Ng J. H., and Lu C. Wavelength conversion Based on Cross-Gain Modulation of ASE Spectrum of SOA. IEEE Photonics Technology Letters, 2000, 12(9):1222-1224
    [59] Zheng X., Liu F., and Kloch A. Experimental Investigation of the Cascadability of a Cross-Gain Modulation Wavelength Converter. IEEE Photonics Technology Letters, 2000, 12(3):272-274
    [60]董建绩.基于单端SOA的全光波长转换器的理论和实验研究: [硕士学位论文].武汉:华中科技大学图书馆, 2005.
    [61] Sharaiha A., Li H. W., Marchese F., et al. All-optical logic NOR gate using a semiconductor laser amplifier. Electronics Letters, 1997, 33(4):323-325
    [62] Hamie A., Sharaiha A., Guegan M., et al. All-optical logic NOR gate using two-cascaded semiconductor optical amplifiers. Ieee Photonics Technology Letters, 2002, 14(10):1439-1441
    [63] Sharaiha A., Topomondzo J., and Bihan J. L. Three inputs all-optical logic gateAND-NOR based on cross-gain modulation in a semiconductor optical amplifier. in: CLEO. Europe, 2005. 503-503
    [64] Zhang X., Wang Y., Sun J., et al. All-optical AND gate at 10 Gbit/s based on cascaded single-port-couple SOAs. Optics Express, 2004, 12(3):361-366
    [65] Zhao C., Zhang X. L., Liu H. R., et al. Tunable all-optical NOR gate at 10 Gb/s based on SOA fiber ring laser. Optics Express, 2005, 13(8):2793-2798
    [66] Young T. B., Kyoung S. C., and Young M. J. All-optical OR gate using cross gain modulation in semiconductor optical amplifier. in: CLEO. Europe 2005. 493-493
    [67] Kim S. H. K., J.H.; Yu, B.G.; Byun, Y.T.; Jeon, Y.M.; Lee, S.; Woo, D.H.; All-optical NAND gate using cross-gain modulation in semiconductor optical amplifiers. Electronics Letters, 2005, 41(18):1027-1028
    [68] Kim S. H., Kim J. H., and Yu B. G. Design and simulation of all-optical AND gate using XGM in semiconductor optical amplifiers without input additional beam. in: NUSOD. Singapore, 2006. 91-92
    [69] Chang W. S., Sang H. K., and Young M. J. Design of all-optical multi-functional logic gate in single format by using semiconductor optical amplifiers. in: NUSOD. Singapore, 2006. 71-72
    [70] Kim J. H., Byun Y. T., Jhon Y. M., et al. All-optical half adder using semiconductor optical amplifier based devices. Optics Communications, 2003, 218(4-6):345-349
    [71] Jae Hun Kim S. H. K., Chang Wan Son Realization of all-optical full adder using cross-gain modulation. Opt. Eng. 2005, 5628: 333-340
    [72] Leuthold J., Ryf R., and Chandrasekhar S. All-Optical Nonblocking Terabit/s Crossconnect Based on Low Power All-Optical Wavelength Converter and MEMS Switch Fabric. in: OFC/NFOEC. Anaheim, U.S., 2001.
    [73] Sato R., Ito T., and Magari K. Low input power (-10dBm) SOA-PLC hybrid integrated wavelength converter and its 8-slot equipment. in: ECOC, 2001.
    [74] Danielsen S. L., Hansen P. B., and Stubkjaer K. E. All-optical wavelength conversion shemes for increased input power dynamic range. IEEE Photonics Technology Letters, 1998, 10(1):60-62
    [75] Fjelde T., Wolfson D., and Kloch A. Demonstration of 20 Gbit/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter. Electronics Letters, 2000, 36(22):1863-1864
    [76] Kang B. K., Kim J. H., and Park Y. H. All-optical logic AND in a SOA-based Mach-Zehnder all-optical wavelength converter. in: LEOS, 2000. 117-118
    [77] Chen H., Zhu G., Wang Q., et al. All-optical logic XOR using differential scheme and Mach-Zehnder interferometer. Electronics Letters, 2002, 38(21):1271-1273
    [78] Zhang M., Zhao Y. P., Wang L., et al. Design and analysis of all-optical XOR gate using SOA-based Mach-Zehnder interferometer. Optics Communications, 2003, 223(4-6):301-308
    [79] Randel S., de Melo A. M., Petermann K., et al. Novel scheme for ultrafast all-optical XOR operation. Journal of Lightwave Technology, 2004, 22(12): 2808- 2815
    [80] Sun H. Z., Wang Q., Dong H., et al. All-optical logic XOR gate at 80 Gb/s using SOA-MZI-DI. Ieee Journal of Quantum Electronics, 2006, 42(7-8):747-751
    [81] Dong H., Sun H., Wang Q., et al. 80 Gb/s All-optical logic AND operation using Mach-Zehnder interferometer with differential scheme Optics Communications, 2006, 256(1):79-83
    [82] Zhou Y. F., Wu J., and Lin J. T. Novel ultrafast all-optical XOR scheme based on Sagnac interferometric structure. Ieee Journal of Quantum Electronics, 2005, 41(6):823-827
    [83] Zoiros K. E., Papadopoulos G., Houbavlis T., et al. Theoretical analysis and performance investigation of ultrafast all-optical Boolean XOR gate with semiconductor optical amplifier-assisted Sagnac interferometer. Optics Communications, 2006, 258(2): 114- 134
    [84] Bintjas C., Kalyvas M., Theophilopoulos G., et al. 20 Gb/s all-optical XOR with UNI gate. Ieee Photonics Technology Letters, 2000, 12(7):834-836
    [85] Tsiokos D., Kehayas E., Vyrsokinos K., et al. 10-Gb/s all-optical half-adder with interferometric SOA gates. Ieee Photonics Technology Letters, 2004, 16(1):284-286
    [86] Webb R. P., Yang X., and Manning R. J. All-optical 40 Gbit/s XOR gate with dual ultrafast nonlinear interferometer. Electronics Letters, 2005, 41(25):225-226
    [87] Dong H., Wang Q., Zhu G., et al. Demonstration of all-optical logic OR gate using semiconductor optical amplifier-delayed interferometer. Optics Communications, 2004, 242(4-6):479-485
    [88] Wang Q., Dong H., Zhu G., et al. All-optical logic OR gate using SOA and delayed interferometer. Optics Communications, 2006, 260(1):81-86
    [89] Xu J., Zhang X., Liu D., et al. Ultrafast all-optical NOR gate based on semiconductor optical amplifier and fiber delay interferometer. Opt. Express, 2006, 14(22):10708-10714
    [90] Poustie A. J., Blow K. J., Kelly A. E., et al. All-optical full adder with bit-differential delay. Optics Communications, 1999, 168(1-4):89-93
    [91]闫玉梅,尹丽娜,周云峰等.利用TOAD实现10Gbit/s全光非归零码到归零码的转换.中国激光, 2005, 32(11):1510-1514
    [92] Lee C. G., Kim Y. J., Park C. S., et al. Experimental demonstration of 10-Gb/s data format conversions between NRZ and RZ using SOA-loop-mirror. Journal of Lightwave Technology, 2005, 23(2):834-841
    [93] Granot E., Zaibel R., Narkiss N., et al. Tunable all-optical signal regenerator with a semiconductor optical amplifier and a Sagnac loop: principles of operation. Journal of the Optical Society of America B-Optical Physics, 2005, 22(12):2534-2541
    [94] Li W., Chen M. H., Dong Y., et al. All-optical format conversion from NRZ to CSRZ and between RZ and CSRZ using SOA-based fiber loop mirror. Ieee Photonics Technology Letters, 2004, 16(1):203-205
    [95] Hong W., Huang D. X., Cai F. B., et al. Simultaneous clock component extraction and wavelength conversion of NRZ signal using an SOA loop mirror. Ieee Photonics Technology Letters, 2004, 16(4):1116-1118
    [96] Lee H. K., Lee C. H., Kang S. B., et al. All-fibre-optic clock recovery from non-return-to-zero format data. Electronics Letters, 1998, 34(5):478-480
    [97] Xu L., Wang B. C., Baby V., et al. All-optical data format conversion between RZ and NRZ based on a Mach-Zehnder interferometric wavelength converter. Ieee Photonics Technology Letters, 2003, 15(2):308-310
    [98] Yang X., Mishra A. K., Manning R. J., et al. All-optical 42.6 Gbit/s NRZ to RZ format conversion by cross-phase modulation in single SOA. Electronics Letters, 2007, 43(16):890-892
    [99] Liu Y., Hill M. T., Tangdiongga E., et al. Wavelength conversion using nonlinear polarization rotation in a single semiconductor optical amplifier. Ieee Photonics Technology Letters, 2003, 15(1):90-92
    [100] Calabretta N., Liu Y., Huijskens F. M., et al. Optical signal processing based on self-induced polarization rotation in a semiconductor optical amplifier. Journal of Lightwave Technology, 2004, 22(2):372-381
    [101] Soto H., Erasme D., and Guekos G. 5-gb/s XOR optical gate based on cross- polarization modulation in semiconductor optical amplifiers. Ieee Photonics Technology Letters, 2001, 13(4):335-337
    [102] Soto H., Diaz C. A., Topomondzo J., et al. All-optical AND gate implementationusing cross-polarization modulation in a semiconductor optical amplifier. Ieee Photonics Technology Letters, 2002, 14(4):498-500
    [103] Soto H., Topomondzo J. D., Erasme D., et al. All-optical NOR gates with two and three input logic signals based on cross-polarization modulation in a semiconductor optical amplifier. Optics Communications, 2003, 218(4-6): 243-247
    [104] Soto H., Alvarez E., Diaz C. A., et al. Design of an all-optical NOT XOR gate based on cross-polarization modulation in a semiconductor optical amplifier. Optics Communications, 2004, 237(1-3):121-131
    [105] Han L., Teng X., Hu L., et al. All optical NOR and OR gates using cross polarization modulation in a single SOA. in: LEOS, 2005, 438-439
    [106] Zhang J., Wu J., Feng C., et al. All-Optical Logic OR Gate Exploiting Nonlinear Polarization Rotation in an SOA and Red-Shifted Sideband Filtering. Photonics Technology Letters, IEEE, 2007, 19(1):33-35
    [107] Zhang J., Wu J., Feng C., et al. 40 Gbit/s all-optical logic NOR gate based on nonlinear polarisation rotation in SOA and blue-shifted sideband filtering. Electronics Letters, 2006, 42(21):1243-1244
    [108] Jiang H., Wen H., Han L. Y., et al. All-optical NRZ-OOK to BPSK format conversion in an SOA-based nonlinear polarization switch. Ieee Photonics Technology Letters, 2007, 19(21-24):1985-1987
    [109] Tomkos I., Zacharopoulos I., Syvridis D., et al. Improved performance of a wavelength converter based on dual pump four-wave mixing in a bulk semiconductor optical amplifier. Applied physics letters, 1998, 72: 2499-2501
    [110] Kelly A. E., Ellis A. D., Nesset D., et al. 100Gbit/s wavelength conversion using FWM in an MQW semiconductor optical amplifier. Electronics Letters, 1998, 34(20):1955-1956
    [111] Jansen S. L., Heid M., Spalter S., et al. Demultiplexing 160 Gbit/s OTDM signal to 40 Gbit/s by FWM in SOA. Electronics Letters, 2002, 38(17):978-980
    [112] Shake I., Takara H., Uchiyama K., et al. 160 Gbit/s full optical time-division demultiplexing using FWM of SOA-array integrated on PLC. Electronics Letters, 2002, 38(1):37-38
    [113]董建绩,张新亮,黄德修.基于半导体光放大器四波混频效应的多种调制格式的波长转换实验研究.光学学报, 2008 (in press)
    [114] Kumar S. and Willner A. E. Simultaneous four-wave mixing and cross-gain modulation for implementing an all-optical XNOR logic gate using a single SOA.Optics Express, 2006, 14(12):5092-5097
    [115] Berrettini G. M., A. Ghelfi, P. Bogoni, A. Poti, L. Reconfigurable all-optical logic gate based on a single SOA with improved dynamics. in: OFC, 2006. JWA12
    [116] Dong J., Zhang X., Wang Y., et al. 40 Gbit/s reconfigurable photonic logic gates based on various nonlinearities in single SOA. Electronics Letters, 2007, 43(16): 884-886
    [117] Kit C., Chun-Kit C., Lian Kuan C., et al. Demonstration of 20-Gb/s all-optical XOR gate by four-wave mixing in semiconductor optical amplifier with RZ-DPSK modulated inputs. Photonics Technology Letters, IEEE, 2004, 16(3):897-899
    [118] Deng N., Chan K., Chan C.-K., et al. An all-optical XOR logic gate for high-speed RZ-DPSK signals by FWM in semiconductor optical amplifier. IEEE Journal on Selected Topics in Quantum Electronics, 2006, 12(4):702-707
    [119] Vahala K., Paiella R., Hunziker G. Ultrafast WDM logic. Ieee Journal of Selected Topics in Quantum Electronics, 1997, 3(2):698-701
    [120] Li Z. and Li G. Ultrahigh-speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier. Photonics Technology Letters, IEEE, 2006, 18(12):1341-1343
    [121] Li P.-L., Huang D.-X., Zhang X.-L., et al. Ultrahigh-speed all-optical half adder based on four-wave mixing in semiconductor optical amplifier. Opt. Express., 2006, 14(24):11839-11847
    [122] Nakamura S., Ueno Y., and Tajima K. Ultrafast all-optical switching using a frequency shift accompanied by cross-phase modulation in a semiconductor optical amplifier. in: LEOS, 2001. 348-349
    [123] Cho P. S., Mahgerefteh D., Goldhar J., et al. High performance non-interferometric semiconductor-optical-amplifier/fibre-Bragg-grating wavelength converter. Electronics Letters, 1998, 34(4):371-373
    [124] Cho P. S., Mahgerefteh D., Goldhar J., et al. RZ wavelength conversion with reduced power penalty using a semiconductor-optical-amplifier/fiber-grating hybrid device. Photonics Technology Letters, IEEE, 1998, 10(1):66-68
    [125] Nielsen M. L., Lavigne B., Dagens B. Polarity-preserving SOA-based wavelength conversion at 40 Gbit/s using bandpass filtering. Electronics Letters, 2003, 39(18):1334-1335
    [126] Leuthold J., Marom D. M., Cabot S., et al. All-optical wavelength conversion using a pulse reformatting optical filter. Lightwave Technology, Journal of, 2004,22(1):186-192
    [127] M?rk M. L. N. a. J. Increasing the modulation bandwidth of semiconductor-optical- amplifier-based switches by using optical filtering. JOSA B, 2004, 21(9):1606-1619
    [128] Liu Y., Tangdiongga E., Li Z., et al. 80 Gbit/s wavelength conversion using semiconductor optical amplifier and optical bandpass filter. Electronics Letters, 2005, 41(8):487-489
    [129] Fu S., Dong J., Shum P., et al. Experimental observations of both inverted and non-inverted wavelength conversion based on transient cross phase modulation of SOA. Opt. Express., 2006, 14(17):7587-7593
    [130] Li Z., Liu Y., Zhang S., et al. All-optical logic gates using semiconductor optical amplifier assisted by optical filter. Electronics Letters, 2005, 41(25):1397-1399
    [131] Dong J. J., Zhang X. F., Xu J., et al. 40 Gb/s all-optical logic NOR and OR gates using a semiconductor optical amplifier: Experimental demonstration and theoretical analysis. Opt. Comm., 2008, 281(6):1710-1715
    [132] Dong J., Fu S., Zhang X., et al. Single SOA based all-optical adder assisted by optical bandpass filter: Theoretical analysis and performance optimization. Opt. Comm., 2007, 270(2):238-246
    [133] Dong J., Zhang X., Xu J., et al. 40 Gb/s all-optical NRZ to RZ format conversion using single SOA assisted by optical bandpass filter. Opt. Express., 2007, 15(6):2907-2914
    [134]董建绩,张新亮,园丁等.利用SOA和滤波器组合实现高速波长转换和码型转换.中国激光, 2007, 34(7):940-944
    [135] Bogris A., Velanas P., and Syvridis D. Numerical investigation of a 160-Gb/s reconfigurable photonic logic gate based on cross-phase modulation in fibers. Ieee Photonics Technology Letters, 2007, 19(5-8):402-404
    [136] Kwok C. H. and Lin C. Polarization-insensitive all-optical NRZ-to-RZ format conversion by spectral filtering of a cross phase modulation broadened signal spectrum. Ieee Journal of Selected Topics in Quantum Electronics, 2006, 12(3):451-458
    [137] M?rk J. and Mecozzi A. Theory of the ultrafast optical response of active semiconductor waveguide. J. Opt. Soc. Am. B., 1996, 13(8):1803-1816
    [138] Agrawal G. P. and Olsson N. A. Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers. J. Quantum Electron., 1989, 25(11):2297-2306
    [139] Willatzen M., Uskov A., rk J. M., et al. Nonlinear gain suppression in semiconductor lasers due to carrier heating. Photonics Technology Letters, IEEE, 1991, 3(7):606-609
    [140] Uskov A., M?rk J., and Mark J. Wave mixing in semiconductor laser amplifiers due to carrier heating and spectral-hole burning. IEEE J. Quantum Electronics, 1994, 30(8):1769-1781
    [141] Tang J. M. and Shore K. A. Strong picosecond optical pulse propagation in semiconductor optical amplifiers at transparency. Ieee Journal of Quantum Electronics, 1998, 34(7):1263-1269
    [142] Connelly M. J. Wideband semiconductor optical amplifier steady-state numerical model. Ieee Journal of Quantum Electronics, 2001, 37(3):439-447
    [143] Hsieh J. T., Gong P. M., Lee S. L., et al. Improved dynamic characteristics on four-wave mixing wavelength conversion in light-holding SOAs. Ieee Journal of Selected Topics in Quantum Electronics, 2004, 10(5):1187-1196
    [144] Yang X., Lenstra D., Khoe G.D., et al. Nonlinear polarization rotation induced by ultrashortoptical pulses in a semiconductor optical amplifier. Optics Communications, 2004, 223(1):169-179
    [145] Mecozzi A. and Mork J. Saturation effects in nondegenerate four-wave mixing between short optical pulses in semiconductor laser amplifiers. Ieee Journal of Selected Topics in Quantum Electronics, 1997, 3(5):1190-1207
    [146] Nielsen M. L., M?rk J., Suzuki R., et al. Experimental and theoretical investigation of the impact of ultra-fast carrier dynamics on high-speed SOA-based all-optical switches. Optics Express, 2006, 14(1):331-347
    [147] Kang I., Dorrer C., Leuthold J. All-optical XOR operation of 40Gbit/s phase-shift- keyed data using four-wave mixing in semiconductor optical amplifier. Electronics Letters, 2004, 40(8):496-498
    [148] Tangdiongga E., Liu Y., Khoe G. D., et al. All-optical demultiplexing of 640 to 40 Gbits/s using filtered chirp of a semiconductor optical amplifier. Opt. Lett., 2007, 32(7):835-837
    [149] Nielsen M. and M?rk J. Bandwidth enhancement of SOA-based switches using optical filtering: theory and experimental verification. Optics Express, 2006, 14 (3):1260-1265
    [150] Dong J., Zhang X., Jiang Z., et al. Theoretical and experimental study on all-optical wavelength converters based on the single-port-coupled SOA. Opt. and QuantumElectron., 2005, 37: 1011-1023
    [151] Mads L. Nielsen J. M., Rei Suzuki, Jun Sakaguchi, Yoshiyasu Ueno Experimental and theoretical investigation of the impact of ultra-fast carrier dynamics on high-speed SOA-based all-optical switches. Optics Express, 2006, 14(1):331-347
    [152]董建绩,张新亮,黄德修.基于单端SOA波长转换器的啁啾分析.光子学报, 2005, 34(1):255-258
    [153]叶亚斌,郑小平,张汉一.基于半导体光放大器中交叉增益调制效应的波长转换啁啾特性的分析.光学学报, 2002, 22(4):436-440
    [154] Lee H. J., Kim H. G., Choi J. Y., et al. All-optical clock recovery from NRZ data with simple NRZ-to-PRZ converter based on self-phase modulation of semiconductor optical amplifier. Electronics Letters, 1999, 35(12):989-990
    [155] J. Dong, Fu S., Zhang X., et al. Single SOA based all-optical adder assisted by optical bandpass filter: Theoretical analysis and performance optimization. Opt. Comm., 2007, 270(2):238-246
    [156] Caulfield H. J. Optical logic: an overview. in: Quantum Information and Computation III. Orlando, FL, USA, 2005. 87-90
    [157] Berrettini G., Simi A., Malacarne A., et al. Ultrafast integrable and reconfigurable XNOR, AND, NOR, and NOT photonic logic gate. Photonics Technology Letters, IEEE, 2006, 18(8):917-919
    [158] Kim J.-Y., Kim J.-M, Han T.-Y, et al. All-Optical Multiple Logic Gates With XOR, NOR, OR, and NAND Functions Using Parallel SOA-MZI Structures: Theory and Experiment. Journal of lightwave technology, 2006, 24(9):3392-3399
    [159] Fjelde T., Kloch A., Wolfson D., et al. Novel Scheme for Simple Label-Swapping Employing XOR Logic in an Integrated Interferometric Wavelength Converter. Photonics Technology Letters, IEEE, 2001, 13(7):750-752
    [160] Bintjas C., Pleros N., Yiannopoulos K., et al. All-optical packet address and payload separation. Photonics Technology Letters, IEEE, 2002, 14(12):1728-1730
    [161] Poustie A. J., Blow K. J., and Manning R. J. All-optical regenerative memory for long term data storage. Optics Communications, 1997, 140(4-6):184-186
    [162] Sang Hun Kim J. H. K., Jae Won Choi, Chang Wan Son, All-optical half adder using single mechanism of XGM in semiconductor optical amplifiers. in Proc. SPIE. 2005, 5628: 94-99
    [163] Tsiokos D., Kehayas E., and Vyrsokinos K. all-optical half-adder with interferometric SOA gates. Photonics Technology Letters, IEEE, 2004, 16(1): 284-286
    [164] Poustie A. J., Blow K. J., Kelly A. E., et al. All-optical binary half-adder. Optics Communications, 1998, 156(1-3):22-26
    [165] Dong J., Fu S., Shum P., et al. Modeling of SOA-based high speed all-optical wavelength conversion with optical filter assistance. in: IEEE NUSOD. Singapore, 2006. 89-90
    [166] Bogoni A., Poti L., Proietti R., et al. Regenerative and reconfigurable all-optical logic gates for ultra-fast applications. Electronics Letters, 2005, 41(7):435-436
    [167]李培丽,张新亮,陈俊等.基于环行腔激光器四波混频型可调谐波长转换的理论研究.物理学报, 2005, 54(3):1222-1228
    [168] Aiello G. R. and Rogerson G. D. Ultra-wideband wireless systems. IEEE Microw. Mag., 2003, 4(2):36-47
    [169] Chen X. and Kiaei S. Monocycle shapes for ultra wideband system. in: IEEE Int. Symp. Circuits and Systems, 2002. I-597-I-600
    [170] Kim H., Park D., and Joo Y. All-digital low-power CMOS pulse generator for UWB system. Electron. Lett., 2004, 40(24):1534–1535
    [171] Bachelet Y., Bourdel S., Gaubert J., et al. Fully integrated CMOS UWB pulse generator. Electron. Lett., 2006, 42(22):1277-1278
    [172] Lin W. and Chen J. Implementation of a new ultrawide-band impulse system. IEEE Photon. Techn. Lett., 2005, 17(11):2418-2420
    [173] Wang Q. and Yao J. UWB doublet generation using nonlinearly-biased electro-optic intensity modulator. Electron. Lett., 2006, 42(22):1304-1305
    [174] Zeng F. and Yao J. Ultrawideband Impulse Radio Signal Generation Using a High-Speed Electrooptic Phase Modulator and a Fiber-Bragg-Grating-Based Frequency Discriminator. IEEE Photon. Techn. Lett., 2006, 18(19):2062-2064
    [175] Zeng F. and Yao J. An approach to ultrawideband pulse generation and distribution over optical fiber. IEEE Photon. Techn. Lett., 2006, 18(7):823-825
    [176] Lin W. and Chen Y. Design of a new optical impulse radio system for ultra-wideband wireless communications. IEEE J. Sel. Top. Quantum Electron., 2006, 12(4):882-887
    [177] Chen H., Chen M., Qiu C., et al. UWB monocycle pulse generation by optical polarisation time delay method. Electron. Lett., 2007, 43(9):542-543
    [178] Wang Q., Zeng F., Blais S., et al. Optical ultrawideband monocycle pulse generation based on cross-gain modulation in a semiconductor optical amplifier. Opt. Lett., 2006, 31(21): 3083-3085
    [179] Zeng F., Wang Q., and Yao J. All-optical UWB impulse generation based on cross-phase modulation and frequency discrimination. Electron. Lett., 2007, 43(2):121-122
    [180] Wang C., Zeng F., and Yao J. All-Fiber Ultrawideband Pulse Generation Based on Spectral Shaping and Dispersion-Induced Frequency-to-Time Conversion. IEEE Photon. Techn. Lett., 2007, 19(3):137-139
    [181] Li J., Xu K., Fu S., et al. Ultra-wideband pulse generation with flexible pulse shape and polarity control using a Sagnac-interferometer-based intensity modulator. Optics Express, 2007, 15(26):18156-18161
    [182] Dong J., Zhang X., Xu J., et al. ultrawideband monocycle generation using cross phase modulation in a semiconductor optical amplifier. Optics Letters, 2007, 32(10):1223-1225
    [183] Dong J., Zhang X., Xu J., et al. All-optical ultrawideband monocycle generation utilizing gain saturation of a dark return-to-zero signal in a semiconductor optical amplifier. OPTICS LETTERS, 2007, 32(15):2158-2160
    [184] Dong J., Zhang X., Xu J., et al. Filter-free ultrawideband generation based on semiconductor optical amplifier nonlinearities. Optics Communications, 2007, 281(4):808-813
    [185] DONG J., ZHANG X., Xu J., et al. High Order Ultrawideband Pulse Generation from NRZ-DPSK Signals. in: OFC/NFOEC. San Diego, U.S., 2008. JThA67
    [186] Xu J., Zhang X., Dong J., et al. High-speed all-optical differentiator based on a semiconductor optical amplifier and an optical filter. Opt. Lett., 2007, 32(13): 1872-1874
    [187] Zeng F. and Yao J. Investigation of Phase-Modulator-Based All-Optical Bandpass Microwave Filter. Journal of Lightwave Technology, 2005, 23(4):1721-1728
    [188] Gnauck A. H. and Winzer P. J. Optical phase-shift-keyed transmission. Journal of Lightwave Technology, 2005, 23(1):115-130
    [189] Lin L. Y., Wiesenfeld J. M., Perino J. S., et al. Polarization-insensitive wavelength conversion up to 10 Gb/s based on four-wave mixing in a semiconductor optical amplifier. Ieee Photonics Technology Letters, 1998, 10(7):955-957
    [190] Zacharopoulos I., Tomkos I., Syvridis D., et al. Study of polarization-insensitive wave mixing in bulk semiconductor optical amplifiers. Photonics Technology Letters, IEEE, 1998, 10(3):352-354
    [191] Claudio Porzi A. B., Luca Potì, Giampiero Contestabile. Wide-band polarization-independent optical time demultiplexer based on double-pumped FWM in SOA. in Conference on Lasers and Electro-Optics (CLEO), 2004. OTh50
    [192] Wang Z., Li Z., Ge C., et al. Widely tunable all-optical wavelength converter based on four-wave mixing using two orthogonally polarized pumps. Chinese Optics Letters, 2004, 2(6):351-353
    [193] Guo-Wei Lu, Lian-Kuan Chen, Chan C.-K. Novel NRZ-to-RZ format conversion with tunable pulsewidth using phase modulator and interleave. in: OFC. USA, 2006. JTh8
    [194] Bogoni A., Poti L., Bizzi A., et al. Novel extended SOAs model for applications in very high-speed systems and its experimental validation. Photonics Technology Letters, IEEE, 2002, 14(7):905-907
    [195] Wen H., Jiang H., Zheng X., et al. Performance Enhancement of Multiwavelength Conversion of RZ-DPSK Based on Four-Wave Mixing in Semiconductor Optical Amplifier. Photonics Technology Letters, IEEE, 2007, 19(18):1377-1379
    [196] Shu M. P. F. a. C., Multi-Pump Four-Wave Mixing in a Semiconductor Optical Amplifier for Wavelength Multicast of NRZ-DPSK Signals. in Optical Amplifiers and Their Applications (OAA), 2006. OTuD32
    [197] Dong J., Zhang X., Wang F., et al. Single-to-dual channel NRZ-to-RZ format conversion by four-wave mixing in single semiconductor optical amplifier. Electron. Lett., 2008 (in press)
    [198] Hercules S., Ioanna S., and Dimitris S. Relative Intensity Noise Performance of Wavelength Converters Based on Four-Wave Mixing in Semiconductor Optical Amplifiers. Quantum Electronics, IEEE Journal of, 2007, 43(5):370-377
    [199] Contestabile G., D'Ottavi A., Martelli F., et al. Polarization-independent four-wave mixing in a bidirectional traveling-wave semiconductor optical amplifier. Applied Physics Letters, 1999, 75(25):3914-3916
    [200] Diez S., Schmidt C., Ludwig R., et al. Four-wave mixing in semiconductor optical amplifiers for frequency conversion and fast optical switching. Ieee Journal of Selected Topics in Quantum Electronics, 1997, 3(5):1131-1145
    [201] Shin S., Ahn B. G., Chung M., et al. Optics layer protection of Gigabit-Ethernet system by monitoring optical signal quality. Electronics Letters, 2002, 38(19): 1118-1119
    [202] Buchali F., Lanne S., Thiery J. P., et al. Fast eye monitor for 10 Gbit/s and its application for optical PMD compensation. in: Optical Fiber CommunicationConference and Exhibit. in: OFC 2001. TuP5-1-TuP5-3
    [203] Kawai K., Ichino H. 250 mW 2.488 Gbit s and 622 Mbit s SONET SDH bit-error-monitoring LSI. Electronics Letters, 1999, 35(11):914-916
    [204] Zhou E., Zhang X., and Huang D. Analytic approach to the small-signal frequency response of saturated semiconductor optical amplifiers using multisection model. Chinese Physics B, 2007, 16(10):2998-3003
    [205]徐晓庚,张新亮,刘德明. 40Gb/s光纤通信系统中不同码型传输特性的实验研究.中国激光, 2005, 32(10):1371-1376
    [206] Chi-Ming Hung, Yu; K.-C., Chang; Y.-C., et al. 10 Gbit/s all-optical NRZ-to-RZ data format in a dark-optical-comb injected semiconductor optical amplifier. in: OFC. USA, 2006. OTuD5
    [207] Noel L., Shan X., Ellis A. D. Four WDM channel NRZ to RZ format conversion using a singlesemiconductor laser amplifier. Electronics Letters, 1995, 31(4): 277-278
    [208] Yang X., Mishra A. K., Manning R. J., et al. All-optical 40 Gbit/s NRZ to RZ format conversion by nonlinear polarisation rotation in SOAs. Electronics Letters, 2007, 43(8):469-471
    [209] Yu Y., Zhang X., Huang D., et al. 20-Gb/s All-Optical Format Conversions From RZ Signals With Different Duty Cycles to NRZ Signals. Photon. Techn. Lett., 2007, 19(14):1027-1029