土壤颗粒表面电场对酸性土壤微生物活性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤矿物质是组成土壤的最基本物质,它与其它因素结合决定着土壤的表面性质。土壤颗粒表面带有大量的负电荷,这样在土粒表面及附近溶液中形成一个“连续”分布的强大电场,对H+、NH4+和土壤微生物(带有负电荷)都产生影响,从而对硝化过程产生影响。在以前的研究中,人们较少考虑土壤颗粒表面电场的作用,本文从土壤颗粒表面不同电场强度的角度来研究土壤的微生物活性变化。
     本实验选用了重庆缙云山马尾松林土壤(酸性黄壤pH 5.2),在土样中加入3%、5%、8%、10%和12%浓度蒙脱石处理,风干、碾碎过1mm筛后待用。同时根据样品中由于加入蒙脱石引起的pH变化,制定了不同pH的样品。将两种样品调节含水率为田间最大持水量的50%,在25℃的恒温培养箱中先预培养一个月,土壤样品预培养一个月后,加入相当于干土重的100mg/kg含量的NH4+-N,加入NH4+-N后采样一次,然后土壤样品放置在25℃的恒温培养箱中培养,共培养4周每周采样1次。通过测定子样品的微生物生物量C和N,脲酶活性、脱氢酶活性,取得了如下实验结果。
     土壤颗粒表面不同电场强度下土壤微生物量的动态变化为:土壤颗粒表面不同电场下壤微生物C和微生物N随着培养时间的变化趋势相同,先增大后减小,在第14天时出现最大值。这是由于开始在土壤中加入一定量的NH4+-N后土壤的微生物活性增强,微生物生物量增大,但微生物的增大,同时NH4+-N量的减小,到了一定时间硝化细菌之间由于食物关系存在着竞争,这样微生物就会减少,微生物量自然会变小。
     通过28天后的变化,结束后微生物土壤颗粒表面不同电场强度下土壤微生物量的变化为随着土壤颗粒表面电场的增大,微生物量先增大后减小的变化趋势。在蒙脱石含量8%时为最大。由于土壤微生物的硝化细菌的大小在10-1000 nm之间,与土壤胶体颗粒相当并带一定负电荷,它们和土壤表面,土壤胶体颗粒间必然存在范德华作用力和静电作用力,所以硝化细菌的活性也受土壤颗粒表面电场影响较大。随着土壤颗粒表面电场强度的增大,对土壤硝化细菌先产生一定的吸引作用,当硝化细菌群落达到一定量时,微生物与土壤颗粒表面电场又会产生一定的吸引作用,造成土壤中微生物量的减少。这些推论还需要以后对微生物群落的测定来补充说明。
     土壤酶活性变化。土壤颗粒表面不同电场强度下土壤酶活性均有变化,其中土壤脲酶活性表现为:随着电场增大脲酶活性为先增大后减小,这与微生物量的变化趋势相同,也是由于NH4+-N的加入对其的影响,土壤脱氢酶均表现为:表面电场影响下脱氢酶活性趋近于一定的值为,为2.6mg·kg-1·d-1。脱氢酶的活性远远小于原样中的值,这说明,土壤处理过程中由于土壤磨细过筛,土壤的孔隙减小,影响土壤呼吸作用,而土壤脱氢酶与土壤的呼吸作用显著的正相关,所以脱氢酶显著变小。
     在对照试验中不同pH土壤样品,由于土壤pH的变化幅度小,各项指标变化不明显。在时间的动态变化上与不同表面电场的变化情况相同。培养结束后,比较28天后的数据,微生物量的变化为pH=5.20MBC为571 mg/kg pH=5.51为678 mg/kg pH=5.68为772 mg/kg pH=5.87为760 mg/kg pH=5.95为787 mg/kg pH=6.04 m为796 mg/kg,微生物量C随着pH的小幅增长在快速升高,pH在pH=5.20MBN为62mg/kg pH=5.51为68 mg/kg pH=5.68为74 mg/kgpH=5.87为75mg/kg pH=5.95为77mg/kg pH=6.04 m为82mg/kg,微生物量N随着pH的小幅增长在缓慢的增长。酶的活性变化为pH在5.20与6.04之间脲酶、脱氢酶活性没有很大差别。
     由上述结果可知,在土壤中加入不同浓度的蒙脱石,增大了土壤颗粒表面电场强度,由于土壤颗粒表面带有大量负电荷,随着负电荷密度的加大,对于本身带有负电荷的土壤微生物产生一定排斥作用,使土壤硝化微生物数量减少,出现这种结果的原因,除了土壤颗粒表面电场对微生物的影响外,还有就是在制备子样品过程中磨细过筛,使土壤微生物数量受到一定影响,破坏了微生物群落结构。此外,土壤颗粒本身的性质对土壤硝化作用产生一定影响,其中土壤有机质对土壤硝化细菌有抑制作用。由于土壤微生物受环境因素影响较为复杂,颗粒表面电场强度影响土壤微生物、硝化作用的具体程度,有待于进一步的研究。Ⅱ
Soils mineral composition of the soil is the most basic materials, combined with other factors determine the nature of the soil surface. Since the surface of soil particles with a large amount of negative charge in solution near the soil particle surface and which form a"continuous" distribution of the strong electric field, on the H+,NH4+,and soil (with a negative charge) have an impact on the nitrification process. In previous studies, few people consider the role of electric field of the surface of soil particles; soil particles from the surface of this electric field strength of different angle of soil microbial activity.
     This experiment used the soil in Jinyun Mountain pine (Acid Yellow pH 5.2), in soil samples by adding 3%,5%,8%,10% and 12% concentration of montmorillonite treatment, air-dried, crushed through 1mm sieve to be use. At the same time according to the sample resulting from the incorporation of montmorillonite pH changes, thereby developing into samples of different pH. Regulate the two kinds of sample moisture content to 50% of the field moisture content, constant temperature incubator at 25℃in the first month of pre-culture, one month after pre-incubation of soil samples we added the equivalent weight of 100mg/kg dry soil NH4+ -N, NH4 +-N added after the sampling time, and then soil samples placed in the 25℃constant temperature incubator, samples were cultured once a weeks for 4 times Sub-samples were obtained by measuring microbial biomass C and N, urease activity, dehydrogenase activity, and achieved the following results.
     The surface of soil particles under different electric field strength changed the soil microbial biomass. Soil particle surface electric field under different soil microbial C and N had the same changes-first took an upward trend then decreased, with a maximum value at 14 days. The addition of a certain amount of NH4 +-N to the soil increased the soil microbial activity, increasing soil microbial biomass, but because micro-organisms increase and NH4 +-N decrease within a certain period of time the different kinds of nitrifying bacteria go into competition for food,thus reducing the amount of microbes which results in a reduction in microbial biomass as well.
     After 28 days, soil microbial biomass first took an upward trend then decreased with an increasing surface electric field of soil particles. As the surface electric field reaches -83.5*107 J/m·C microbial becomes the largest. As the soil of the nitrifying bacteria in the 10-1000 nm in size between the colloidal particles of soil take some considerable negative charge, soil colloidal particles must exist between the van der Waals force and electrostatic force, the nitrifying bacteria activity of the soil particle surface electric field by have a greater impact. As the soil particle surface electric field intensity, the soil nitrifying bacteria have certain attraction, when the community reaches a certain amount of nitrifying bacteria, the microbes and soil particle surface electric field will have a certain attraction, resulting in soil microbial biomass reduction. These inferences need the determination of the future of the microbial community to supplement.
     Soil enzyme activity:The surface of soil particles under different electric field strength changes in soil enzymatic activities in urease activity were as follows:When the electric field increases urease activity decreases for the first increase and then decrease afterwards, which is the same trend of microbial biomass, adding NH4 + -N to the soil impact. Soil dehydrogenase were as follows:dehydrogenase activity under the influence of surface electric field converge at same point, for the 2.6mg·kg-1·d-1. Dehydrogenase activity of treated sample is much less than that of the original sample, because of the soil treatment process including pulverizing,sieving, which decreased the soil porosity and respiration. Soil dehydrogenase and soil respiration had a significantly positive correlation., therefore dehydrogenase was significantly smaller.
     In the control test, soil samples at different pH of the index did not change significantly due to changes in low soil pH range. Dynamic changes in the time of surface electric field with the same changes, cultured after 28 days compared to data of microbial biomass in the pH=5.20MBC to 571 mg/ kg pH=5.51 to 678 mg/kg pH=5.68 to 772 mg/kg pH=5.87 to 760 mg/kg pH=5.95 to 787 mg/kg pH=6.04 m for the 796 mg/kg, microbial biomass C with the pH of the small growth in the fast-rising pH at pH=5.20MBN to 62mg/kg pH=5.51 to 68 mg/kg pH=5.68 to 74 mg/kg pH=5.87 to 75mg/kg pH=5.95 to 77mg/kg pH=6.04 m for the 82mg/kg, microbial biomass N increased slightly with pH, giving rise to slow growth. Between pH 5.20 and 6.04, urease, dehydrogenase activity are not very different.
     These results suggest that, in soils with different concentrations of montmorillonite, the surface of soil particles increases the electric field strength, due to the surface of soil particles with a large negative charge.Negative charge density increased, with a negative charge of the soil having a certain repulsion to reduce the number of soil microbial nitrification, in addition to the soil particle surface electric field on microorganisms. In the preparation of sub-samples of finely ground soil, microbial community structure is destroyed. In addition, natural soil particles have a certain impact on soil nitrification, in which soil organic matter on soil nitrifying bacteria was inhibited. Because soil is more complicated by environmental factors, soil particle surface electric field strength, the specific degree of nitrification, need further investigation.
引文
[1]黄巧云 土壤学[M].北京:中国农业出版社,2006
    [2]谢德体主编,土壤地理学[M].成都:成都科技大学出版社,1994
    [3]曾觉廷主编,土壤发生与分类学[M]成都:成都科技大学出版社,1996
    [4]李良福编著,土壤电学[M]。北京:气象出版社,2008
    [5]美M.亚历山大.土壤微生物学导论[M]。北京:科学出版社。1983
    [6]美H.D.福斯著 土壤科学原理[M]。北京:中国农业出版社。1984
    [7]西尾道德著,土壤微生物基础知识[M]北京:中国农业科学技术出版社
    [8]陈文新主编.土壤和环境微生物学[M].北京农业大学出版社,1989.
    [9]美N.C.布雷迪 著土壤的本质与性状[M]。北京:科学出版社,1982
    [10]Shuijin Hu, Mary K.Soil microbial feedbacks toatmospheric CO2 enrichment
    [11]F.Azam, S. Gill, S. Farooq,2005.Availability of CO2 as a factor affecting the rate of nitrification in soil [J]. Soil Biology & Biochemistry 37 (2005) 2141-2144
    [12]Malhi,S.S.,and MeGill, W.B.Nitrification in three Alberta soils:Effect of temperature,moisture and substrate concentration[J].Soil Biol. Biochem.,1982,15:397-399
    [13]Flowers,T.H., and O Callaghan.J.R. Nitrification in soils incubated with pig slurry or ammonium sulphate[J]. Soil Biol. Biochem.,1983,15:337-342
    [14]Yoshida,T., and Benjamin Jr. Nitrification and denitrification in submerged Maahas clay soils[J].Soil Sci. Plant Nutr.,1974,20:241~247
    [15]许景伟,王卫东,李成.不同类型黑松混交林土壤微生物、酶及其与土壤养分关系的研究[J].东北林业大学学报,2000,22(1):51~55.
    [16]高云超,朱文珊,陈文新,秸秆覆盖免耕土壤微生物生物量与养分转化的研究。中国农业科学,,1994,27(6):41-49。
    [17]T.E.Staley著,郎印海译。耕作方式对土壤微生物量影响的研究.水土保持科技情报,2001,(1):12-13.
    [18]Brookes P.C.The soil Microbial Biomass:Concept,Measurement and Applications in Soil EcosystemResearch [J].Microbes and Environments,2001,16:131-140
    [19]Zhou J.B.,Li S.X.,Chen Z J..Soil Microbial Biomass and Its Relationship to Uptake of Nitrogen by Plant [J].Pedosphere,2002,12(3):251-256
    [20]Tu C.Ristaino J.B.,Hu S..Soil microbial biomass and activity in organic tomato farming systems-effects of organic inputs and straw mulching.Soil Biology and Biochemistry [J].2006,38:247-255
    [21]J.R.SaIimas-Garcle.J.de J.Velazquez-Garcla.M.Gallardo-Valdez et al.Tillage effects on microbial biomass and nutrient distribution in soils under raim-fed com production in central-western Mexico[J].Soil tillage research.2002,66,143-152
    [22]仇少君,彭佩钦,刘强,等.土壤微生物生物量氮及其在氮素循环中作用[J].生态学杂志,2006,25(4):443-448
    [23]Kalbitz K.Solinger S.Park J.H.,et al..Controls on the dynamics of dissolved organic matter in soils:a review[J].Soil Sci.2000,165,277-304
    [24]Powlson D.S.Brookes P.C..Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation[J].Soil Biology and Biochemistry,1987,19:159-164
    [25]Ross D J.,Sparling G.P.,.Burkd C.M.Microbial biomass C and N in litter and mineral soil under pinus radiata on a coastal stand:Influence of stand age and harvest measurement[J].Plant and Soil,1995,175:167-177
    [26]Tu C.,Louws F.J.,Creamer N.G.,et al.,Responses of soil microbial biomass and Navailability to transit ion strategies from conventional to organic farming systems[J].Agriculture Ecosystems and Environme nt,2005,113:206-215
    [27]于树,汪景宽,高艳梅.地膜覆盖及不同施肥处理对土壤微生物量碳和氮的影响[J].沈阳农业大学学报,2006,37(4):602-606
    [28]俞慎,李勇等.土壤微生物量作为红壤质量生物指标的探讨[J].土壤学报,1999,36(3):413-422
    [29]张海燕,肖延华等.土壤微生物量作为土壤肥力指标的探讨[J].土壤通报,2006,37(3):422-425
    [30]王小利,苏以荣,黄道友,等.土地利用对亚热带红壤低山区土壤有机碳和微生物碳的影响[J].中国农业科学,2006,39(4):750-757
    [31]Moore J.M.,Klise S.,Tabatabai M.A..Soil microbial biomass carbon and nitrogen as affected by cropping systems[J].Biol Fertil Soils,2000,31:200-210
    [32]Brookes P. C.,McGrath S. P. Journal of soil science,1984,35:341~346
    [33]Chander K, Brookes P. C. Soil Biol.Biochem.1991,23:917~925
    [34]Fliebbach.A. Martens R. Reber H. H. Soil Biol.Biochem.1994,26:1201~1205
    [35]关松荫编著,土壤酶及其研究法[M].北京:中国农业出版社.1986
    [36]Zornoza R, Guerrero C,Mataix-Solera J, et al. Assessingair-drying and rewetting pre-treatment effect on some soil enzyme activities under Mediterranean conditions[J]. Soil Biology & Biochemistry,2006,38:2125-2134.
    [37]吴金水,林启美,黄巧云,等.土壤微生物生物量测定方法及其应用[M].北京:气象出版社,2006,117-141.
    [38]Maxm-C, Woodm,Jarvis C. A microplate flurimetric assay for the study of enzyme diversity in soils [J].Soil Biology & Biochemistry,2001,(33):1633-1640.
    [39]Dick R P.Soil enzyme activities as indicators of soil quality [A].in:J.W.Doran,D.C.Coleman,D.F. Bezdicek,B.A.Stewart (Eds.),Defining Soil qanlity for a sustaonable environment [M].Americon society of Agronomy, Madison WI,1994,PP.1O7-124.
    [40]DICK R P. Soil enzyme activities as indicators of soil quality [A].in:J.W. Doran, D.C. Coleman, D.F. Bezdicek, B.A. Stewart (Eds.), Defining soil quality for a soil enzyme activities as integrative indicators of soil health [A].in:C.E. Pankhurstl,B.M. Double, V.V.S.R. Gupta (Eds.),Biological Indicators of Soil Health [M]. CAB International, Wallingford, UK,1997:121-156.
    [41]Xiao-Hua Yao, Hang Min, Zhen-hua et al.Influence of acetamiprid on soil enzymatic activities and respiration [J].European Journal of Soil Biology,2006(42):120-126.
    [42]Chrast, R J. Environmental control of the synthesis and activity of aquatic microbial ectoenzymes [A].in:Chr ost, R.J.(Ed.),Microbial Enzymes in Aquatic Environments [C].Springer-Verlag, New York,1991:29-53. [38]
    [43]杨万勤,王开运.土壤酶研究动态与展望[J].应用与环境生物学报,2002,8(5):564-570.
    [44]Bergstrom D W,Monreal C M,Tomlin A D,et al.Interpretation of soil enzyme activities in a comparison of tillage practices along a topographic and textural gradient[J].Canadian Journal of Soil Science,2000,80:71-79
    [45]施占领.不同颗粒表面电场对酸性土壤硝化作用影响的初步研究[D].重庆:西南大学,2008..
    [46]周礼恺.土壤酶学[M].北京:科学出版社,1989.
    [47]Sarkar J M.Formation of C14-cellulase-humic complexes and their stability in soils[J].Soil Biol Biochcm,1981,18:251-254
    [48]Tabatabai M A.Fu M.Extraction of enzymes from soils[A].ln:Stotzky G,Bollag J M.Soil Biochemistry,Vol.7 [C].New York:Marccl Dckkcr,1992.197-227
    [49]Thcng B K G,Aislabic J,Frascr R.Bioavailability of phcnanthrcnc intercalated into an alkylammonium-montmorillonite clay[J].Soil Biol Biochcm,2001,33:845-848
    [50]Lozzi 1,Calamai L,Fusi P,et al.Interaction of horseradish pcroxidasc with montmorillonitc homoionic to Na+and Ca2+effects on enzymatic activity and microbial degradation[J].Soil Biol Biochcm,2001,33:1021-1025
    [51]Burns R G.Enzyme activity in soil:location and possible role in microbial ecology[J].Soil Biol Biochem,1982,14:423-427
    [52]Busto M D.Pcrcz-Matcos M.extraction of humic-β-glucosidasc fractions from soil[J]Biol FertSoil,1995,20:77-82
    [53]Rao M A.Gianfreda L.Properties of acid phosphatase-tannic acid complexes formed in the presence of Fe and Mn[J].Soil Biol Biochcm,2000,32:1921-1926
    [54]Debosz K,Rasmussen P H,Pedersen A R.Temporal variations in microbial biomass C and cellulolytic enzyme activity in arable soils:effects of organic matter input[J].Appl Soil Ecol,1999,13:209-218
    [55]Albiach R,Canet R,Pomanes F,et al.Microbial biomass content and enzymatic activities after the application of organic amendmcnts to a horticultural soil[J].Biorc Tcchnol,2000,75:43-48
    [56]Taylor J P,Wilson 13,Mills M S,et al.Comparison of microbial numbers and enzymatic activities in surface and subsoils using various techniques[J].Soil Biol Biochem,2002,34:387-401
    [57]Moreno J L,Garcia C,Landi L,et al.The ecological dose value(ED50)for assessing Cd toxicity on ATP content and dehydrogenase and urease activities of soil[J].Soil Biol Biochem,2001,33:483-489
    [58]Nausch M,Nausch G.Stimulation of peptidase activity in nutrient gradient in the Baltic Sea[J].Siol Biol Biochem,2000,32:1973-1983
    [59]Parthsarathi K,Ranganathan L S.Longevity of microbial and enzyme activity and their influence on NPK content in pressmud vcrmicasts[J].Eur J Soil Biol,1999,35(3):107-113
    [60]Ajwa H A,Dell C J,Rice C W.Changes in enzyme activities and microbial biomass of tallgrass prairie soil as related to burning and nitrogen fertilization[J].Soil Biol Biochem,1999,31:769-777
    [61]Fioretto A,Papa S,Sorrentino G,et al.Decomposition of Cistus incrums leaf litter in a Mediterranean maquis ecosystem:mass loss,microbial enzyme activities and nutrient changes[J].Soil Biol Biochcm,2001,33:311-321
    [62]Henriksen T M,Breland T A.Nitrogen availability effects oncarbon minerlization,fungal and bacterial growth,and enzyme activities during decomposition of wheat straw in sail[J].Soil Biol Biochcm,1999,31:1121-1134[34]
    [63]华中农业大学,南京农业大学.微生物学[M].第四版.北京:中国农业出版社,1999.166-168
    [64]SParling GR The substrate in dueedres Piration[Al.AlefK,Nanni Pieri P,ed. Methods in APllied5011 Mierobiolo gyand Bioche study [C]London:AeademiePress,1995,97-104.
    [65]GriersonPF,AdamsMA.PlantsPeciesa ctacidPhosPhatase,ergosteroland microbial Pinajarrah (EucalyPlusmarginataDonnexsm.)forest in south-western Australia[J1.5011BiolBiochem,20(X),32:1817-1828.
    [66]黄高宝,李玲玲,张仁陟,等.免耕秸秆覆盖对旱作麦田土壤温度的影响[J].干旱地区农业研究,2006,24(5):1-4.
    [67]龙妍,张振文.行间生草条件下葡萄园土壤微生物、酶活性、养分的动态变化及相关性分析[D].西北农林科技大学,2007.
    [68].Carter,M.R.Microbial biomass as an index for tillage-induced changes in soil biological properties.Soil Tillage Res.1986,7:29-40.
    [69].Kandeler,E.,Tscherko,D.and Spiegel,H.Long-term monitoring of a microbial biomass,N mineralisation and enzyme activities of a Chernozem under different tillage management.Biol. Fertil.Soils 1999,28:343-351.
    [70]Schnurer,J.,Clarholm,M.and Rosswall,T.Microbial biomass and activity in an agricultural soil with different organic matter contents.Soil Biochem.1985,17:611-618.
    [71]宋日,吴春胜,牟金明.玉米根茬留田对土壤微生物量碳和酶活性动态变化特征的影响[J].应用生态学报,
    2002,13(3):303~306.
    [72]沈宏,曹志洪,徐本生.玉米生长期间土壤微生物量与土壤酶变化及其相关性研究12].应用生态学报,1999,10(4):471-474.
    [73]CalamaiL,Lozzil,Stotzky G,et al.Interaction of catalasc with montmorillonite homoionic to canons with different hydrophobicity:effect on enzymatic activity and microbial utilization[J]Soil Biol Biochcm,2000,32:815-823
    [74]Rao M A,Violantc A,Gianfrcda L.lntcraction of acid phosphatasc with clays.organic molecules and organo-mineral complexes:kinetics and stability[J].Soil Biol Biochem,2000,32:1007-1014
    [75]于天仁我国电化学的建立和发展[J].土壤,1999(5):231~235.
    [76]袁飞,冉炜,沈其荣等,变性梯度凝胶电脉法研究我国不同土壤氨氧化细菌群落组成及活性[J].生态学报,2005,25(6):1318~1324.
    [77]刘志培、刘双江,硝化作用微生物的分子生物学研究进展[J].应用与环境生物学报.2004,10(4):521~525.
    [78]姚槐应黄昌勇,植茶年龄对茶园土壤微生物特性及酶活性的影响[J].水土保持学报.2005,19(2):84~87.
    [79]熊毅,傅积平,陈家坊等.土壤胶体(第一册)[M].北京:科学出版社,1981,25~50
    [80]于天仁.土壤化学[M].北京:高等教育出版社,1987,177~180
    [81]熊毅,傅积平,陈家坊等.土壤胶体(第三册)[M].北京:科学出版社,1990.
    [82]杨亚提,张一平.恒电荷土壤胶体表面的电荷特征[J].西北农林科技大学学报(自然科学版).2002,47-51
    [83]中国科学院南京土壤研究所微生物室编.土壤微生物研究法[M].北京:科学出版社,1995,54(6):390-393.
    [84]袁飞,冉炜,沈其荣等,变性梯度凝胶电脉法研究我国不同土壤氨氧化细菌群落组成及活性[J].生态学报,2005,25(6):1318~1324
    [85]曹慧,孙辉,杨浩等.土壤酶活性及其对土壤质量现状的系统评价[J].应用与环境生物学报,2003,9(1):105~109.
    [86]关松荫,沈桂荣,孟昭鹏等。我国主要土壤剖面土壤酶活性状况[J].土壤学报,1984,21(4):368~381.
    [87]章家恩 主编 生态学常用实验研究方法与技术[M].北京:化学工业出版社
    [88]曹良元 土壤团聚体组成及耕作方式对微生物区系分布的影响 西南大学硕士学位论文
    [89]富宏霖 积雪下长白山红松林地土壤和凋落物层微生物活性研究 甘肃农业大学硕士学位论文
    [90]张文娟 烟草秸秆覆盖下毛竹土壤微生物的变化规律 福建农林大学硕士学位论文
    [91]陈伏生 生态学杂志 森林土壤氮素的转化与循环
    [92]黄玲玲 竹林河岸带对氮磷截留转化作用的研究 中国林业科学研究院博士学位论文
    [93]张咏梅 热带亚热带植物学报 土壤酶学的研究进展
    [94]苗琳 保护性耕作对旱地土壤酶活性的影响 甘肃农业大学硕士学位论文
    [95]刘震 恒电荷土壤活性颗粒表面酸性磷酸酶吸附、解吸及活性 华中农业大学硕士学位论文
    [96]叶彦辉 黄土高原农林复合系统景观边界土壤养分、微生物和酶活性的研究 西北农林科技大学硕士学位论文
    [97]张亮 百合不同生育期根际土壤微生物和酶活性的变化 西北农林科技大学硕士学位论文
    [98]裴占江 生物有机肥对根际酶活性和氮磷吸收的影响 东北农业大学硕士学位论文
    [99]王平 长期施肥对小麦/玉米间作体系土壤酶活性与养分的影响 甘肃农业大学硕士学位论文
    [100]徐珍 氟铃脲在菜园环境中的持久性及对几种土壤生物学指标的影响研究 湖南农业大学硕士学位论文