全胚和胎盘组织细胞悬液及其间充质干细胞抗衰老作用的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     探索全胚和胎盘组织细胞悬液及其间充质干细胞的抗衰老作用。
     方法:
     1.小鼠胎鼠、胎盘组织细胞悬液的制备以及小鼠胎鼠、胎盘源间充质干细胞的分离、培养和鉴定
     剖宫产取6日龄BALB/c小鼠胎鼠及孕18天BALB/c小鼠胎盘(皆雌雄混合),通过吹打悬浮、研磨、过滤等机械办法制备小鼠胎鼠、胎盘组织细胞悬液;通过密度梯度离心法、两步离心法结合贴壁培养法,从小鼠胎鼠、胎盘组织中获取间充质干细胞,鉴定细胞表面标志;诱导细胞向脂肪细胞、成骨细胞分化,分别以油红0染色、茜素红染色进行鉴定。
     2.分别输注小鼠胎鼠、胎盘组织细胞悬液以及小鼠胎鼠、胎盘源间充质干细胞
     我们首先腹腔注射6日龄BALB/c小鼠胎鼠组织细胞悬液以及孕18天BALB/c小鼠胎盘组织细胞悬液于不同组15月龄自然衰老雌性BALB/c老年小鼠腹腔。
     其次分别尾静脉注射6日龄BALB/c小鼠胎鼠以及孕18天BALB/c小鼠胎盘源间充质干细胞于其它不同组15月龄自然衰老雌性BALB/c老年小鼠体内。
     3.输注前后相关指标检测
     输注后计数小鼠存活天数。输注前以及输注3个月后,超声心动图检查小鼠心输出量、每搏量、左心室舒张末容积、左心室质量;第二次超声检查完后首先血清学检测总超氧化物歧化酶活力、丙二醛含量以及谷胱甘肽过氧化物酶活力等抗氧化能力指标;其次检测反映心功能的心脏质量指数(心脏质量/体质量)、反映免疫功能的脾脏质量指数(脾脏质量/体质量)、反映消化道动力的结肠肌层厚度,解剖学检查干细胞致瘤性;并对心肌、肾脏、肺脏、皮肤等脏器做组织学衰老程度评分,最后对自然死亡小鼠Y染色体原位杂交检测植入的细胞。
     结果:
     1.小鼠胎鼠、胎盘源间充质干细胞符合间充质干细胞表面标志特点,成脂诱导后,油红0染色为阳性。成骨诱导后,茜素红染色也均为阳性。
     2.小鼠胎鼠、胎盘组织细胞悬液输注组以及小鼠胎鼠源间充质干细胞输注组输注后的存活日期至少1.3倍于相应对照组,差异有统计学意义(均P<0.05)。
     3.输注后未发现输注对小鼠造成不良影响,也未发现干细胞致瘤性;Y染色体原位杂交实验在所有输注组小鼠脏器检测到输注细胞长期存活。
     4.小鼠胎鼠组织细胞悬液输注组、小鼠胎盘组织细胞悬液输注组以及小鼠胎鼠源间充质干细胞输注组分别与对照组心输出量减少量、每搏量下降量、左心室质量增加量、左心室舒张末期容积减少量、心脏质量指数、脾脏质量指数、结肠肌层厚度,心脏、肾脏、肺脏、皮肤等器官组织学衰老程度分值,血清总超氧化物歧化酶活力、丙二醛含量以及谷胱甘肽过氧化物酶活力,各指标的差异皆有统计学意义(均P<0.05)。
     5.小鼠胎盘源间充质干细胞输注组与对照组除了血清总超氧化物歧化酶活力、丙二醛含量以及谷胱甘肽过氧化物酶活力之间的差异有统计学意义外(均P<0.05),输注后存活日期等以上其它各指标的差异皆无统计学意义(均P>0.05)。
     结论:
     1.小鼠胎盘中能分离出间充质干细胞。
     2.小鼠胎鼠组织细胞悬液、小鼠胎盘组织细胞悬液以及小鼠胎鼠源间充质干细胞有抗小鼠衰老作用。
     3.小鼠胎盘间充质干细胞没有明确的抗小鼠衰老功效。
Objectives:
     To explore the anti-aging effect of the cells suspension and mesenchymal stem cells derived from murine fetus and placenta.
     Methods:
     1. Preparation of cells suspension of mouse fetus and placenta as well as isolation and identification of mesenchymal stem cells derived from them.
     We got 6-day-old Balb/c mouse fetuses and 18-day-old Balb/c mouse placentas (female and male) with uterine-incision delivery. The tissue cells suspension of mouse fetus and placenta were prepared with repeated blow and inhalation, grind and filtration. The mesenchymal stem cells of mouse fetus and mouse placenta were isolated with density gradient centrifugation, two steps centrifugalization and adhesive screening methods. The cells were identified with cell-surface markers and cultured in an adipogenic medium or in an osteogenic medium. After induction, the cells were identified with oil red O staining and alizarin bordeaux staining respectively.
     2. Implantation of cells suspension and mesenchymal stem cells.
     Firstly,6-day-old fetus cells suspension and 18-day-old placenta tissue cells suspension were administrated respectively into abdominal cavity of 15-month-old naturally aging female BALB/c mice of different groups with intraperitoneal injection respectively.
     Secondly, the mesenchymal stem cells from them were implanted respectively into 15-month-old naturally aging female BALB/c mice of other different groups with tail vein injection in other time.
     3. Viewing objects before and after anti-aging treatment
     The mice survival time were recorded after anti-aging treatment. The mice health situation were evaluated with ultrasoundcardiogram on cardiac output, stroke volume, left ventricle end-diastolic volume and left ventricular mass before and 3 month later after anti-aging treatment. Firstly, the serum total superoxide dismutase activity, serum maleic dialdehyde content and serum glutathione peroxidase activity were detected after the second ultrasoundcardiogram. Secondly the mice were evaluated with heart mass index representing heart function (heart mass/body mass), spleen mass index representing immune function (spleen mass/body mass), and colon muscular layer thickness representing digestive tract dynamia, and we detected the oncogenicity of stem cells with anatomy and evaluated the mice with score of cardia, kidney, lung, skin histopathology at the same time. At last the imbedded cells were traced in organ tissues of died mice with in situ Y chromosomal hybridization staining.
     Results:
     1. The cell-surface marker of mouse fetus and placenta derived mesenchymal stem cells was in accordance with that of mesenchymal stem cells. After induction the cells were positive for oil red O staining and alizarin bordeaux staining.
     2. After implantation, the surviving time of mouse fetus tissue cells suspension group, mouse placenta tissue cells suspension group and mouse fetus derived mesenchymal stem cells group were at least 1.3 times of the corresponding control one, and the difference were significant (all P<0.05)
     3. After implantation, we did not find any harmful effect with the implantation, nor any macroscopic tumor with all of postmortal anatomy inspection, but found the long-term surviving implanted cells located in organ tissues of all implanted mice with in situ Y chromosomal hybridization staining.
     4. After implantation, many indexes showed the significant differences between mouse fetus tissue cells suspension implantation group, mouse placenta tissue cells suspension implantation group, mouse fetus derived mesenchymal stem cells implantation group and their corresponding control group, such as decrease of cardiac output, decrease of stroke volume, increase of left ventricular mass, decrease of left ventricle end-diastolic volume, heart mass index, spleen mass index, colon muscular layer thickness, the score of heart, kiney, lung, skin histopathology, serum total superoxide dismutase activity, maleic dialdehyde content and glutathione peroxidase activity (all P<0.05).
     5. But there was no statistical significance on the difference of pre-stated indexes except for serum total superoxide dismutase activity, maleic dialdehyde content and glutathione peroxidase activity between mouse placenta derived mesenchymal stem cells implantation group and the control group.
     Conclusions:
     1. Mesenchymal stem cells can be isolated from mouse placenta.
     2. Both mouse fetus derived cell suspension and mesenchymal stem cells and mouse placenta derived mesenchymal stem cells all have anti-aging capacity in mouse.
     3. Mouse placenta derived mesenchymal stem cells has no conclusive anti-aging effect on mouse.
引文
1. Sohal RS, Mockett RJ, Orr WC. Mechanisms of aging:an appraisal of the oxidative stress hypothesis [J]. Free Radical Biology & Medicine,2002,33 (5):575-586.
    2. Harman D. Aging:a theory based on free radical and radiation chemistry [J]. Geronto, 1956,11 (3):298-300.
    3.马宏,张宗玉,童坦君.衰老的生物学标志[J].生理科学进展,2002,33(1):65~68.
    4. Watt FM, Hogan BL. Out of Eden:stem cells and their niches [J]. Science,2000,287 (5457): 1427-1430.
    5.金玮,杨安怀,邢怡桥.人脐血间充质干细胞的体外培养及生物学特性[J].武汉大学学报(医学版),2007,28(4):488-491.
    6.唐文洁,李玛琳,洪岸.间充质干细胞的特性与分化诱导研究进展[J].生命科学,2006,36(6):486-492.
    7. Romanov YA, Svintsitskaya VA, Smirnov VN. Searching for alternative sources of postnatal human mesenchymdal stem cells:candidate MSC-like cells from umbilical cord [J]. Stem Cells,2003,21 (1):105-110.
    8. DenUgarte DA, Morizono K, Elbarbary A, et al. Comparison of multi-lineage cells from human adipose tissue and bone marrow [J]. Cells Tissues Organs,2003,174 (3):101-109.
    9. Campagnoli C, Roberts IA, Kumar SL, et al. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow [J]. Blood,2001,98 (8): 2396-2402.
    10. In't Anker PS, Scherjon SA, Kleijburg-van der Keur C, et al. Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta [J]. Stem cells,2004,22 (7): 1338-1345.
    11. Wang HS, Hung SC, Peng ST, et al. Mesenchymal stem cells in the Wharton's jelly of the human umbilical cord [J]. Stem cells,2004,22 (7):1330-1337.
    12. Bruder SP, Kurth AA, Shea M, et al. Bone regeneration by implantation of purified, culture-expanded human mesenchymal stem cells [J]. J Orthop Res,1998,16 (2):155-162.
    13. Kadiyala S, Young RG, Thiede MA, et al. Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro [J]. Cell Transplant,1997,6 (2):
    125-134.
    14. Dennis JE, Merriam A, Awadallah A, et al. A quadripotential mesenchymal progenitor cell isolated from the marrow of an adult mouse [J]. J Bone Miner Res,1999,14 (5):700-709.
    15. Ferrari G, Cusella-De Angelis G, Coletta M, et al. Muscle regeneration by bone marrow-derived myogenic progenitors [J]. Science,1998,279 (5356):1528-1530.
    16. Woodbury D, Schwarz EJ, Prockop DJ, et al. Adult rat and human bone marrow stromal cells differentiate into neurons [J]. J Neurosci Res,2000,61 (4):364-370.
    17. Schwartz RE, Reyes M, Koodie L, et al. Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells [J]. J Clin Invest,2002,109 (10): 1291-1302.
    18. Mackay AM, Beck SC, Murphy JM, et al. Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow [J]. Tissue Eng,1998,4:415-428.
    19. Sethe S. Aging of mesenchymal stem cells [J]. Ageing Res Rev,2006,5 (1):91-116.
    20. Deans RJ, Moseley AB. Mesenchymal stem cells:biology and potential clinical uses [J]. Exp Hematol,2000,28:875-884.
    21.邓为民,韩钦,葛薇等.骨髓源间充质干细胞在异基因小鼠免疫器官内的分布及其免疫调节作用[J].中国免疫学杂志,2004,20:40-45.
    22. Toma C, Pittenger MF, Cahill KS, et al. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart [J]. Circulation,2002,105:93-98.
    23.韩冰,付小兵.间充质干细胞的研究进展与临床应用前景[J].中国修复重建外科杂志,2006,20(12):1114-1118.
    24. Lazarus HM, Haynesworth SE, Gerson SL, et al. Ex vivo expansion and subsequent infusion of human bone marrow-derived stromal progenitor cells (mesenchymal progenitor cells): implications for therapeutic use [J]. Bone Marrow Transplant,1995,16:557-564.
    25. Lazarus HM, Koc ON, Devine SM, et al. Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients [J]. Biol Blood Marrow Transplant,2005,11:389-398.
    26. Koc ON, Day J, Nieder M, et al. Allogeneic mesenchymal stem cell infusion for treatment of metachromatic leukodystrophy (MLD) and Hurler syndrome (MPS-IH) [J]. Bone Marrow Transplant,2002,30:215-222.
    27. Koc ON, Gerson SL, Cooper BW, et al.Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy [J]. J Clin Oncol,2000, 18:307-316.
    28. Horwitz EM, Gordon PL, Koo WK, et al. Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with 37 osteogenesis imperfecta: implications for cell therapy of bone [J]. Proc Natl Acad Sci USA,2002,99:8932-8937.
    29. Everitt AV, Le Couteur DG. Life extension by calorie restriction in humans [J]. Ann N Y Acad Sci,2007,1114:428-433.
    30. Brunet A, RandoTA. Ageing:From stem to stern [J]. Nature 2007,449:288-291.
    31. Rando TA. Stem cells, ageing and the quest for immortality [J]. Nature,2006,441: 1080-1086.
    32. Cheng J, Turkel N, Hemati N et al. Centrosome misorientation reduces stem cell division during ageing [J]. Nature,2008,456:599-604.
    33. Schriner SE, Linford NJ, Martin GM, et al. Extension of murine life span by over expression of catalase targeted to mitochondria [J]. Science,2005; 308:1909-1911.
    34. Kurosu H, Yamamoto M, Clark JD, et al. Suppression of aging in mice by the hormone klotho [J]. Science,2005; 309:1829-1833.
    35.李经才,罗景慧,徐峰.美国国立卫生院抗衰老研究项目简介[J].国外医学(老年医学分册),1995,15(16):9-51.
    36.许士凯.现代抗衰老化学药物研究进展[J].现代中西医结合杂志,2005,14(16):2083-2086.
    37.卞志高.从《内经>看中医学的抗衰老原理[J].四川中医,2003,21(1):12-13.
    38.李听,张洁,宋佳霖,等.传统灸疗法抗衰老研究进展[J].生物医学工程学杂志,2006,23(2):450-454.
    39.葛为公.抗衰老药物的使用现状及研究进展[J].华夏医学,2006,8(2):360-363.
    40. Lephart E, Lund T, Handa R, et al. Anti-aging efects of equol:A unique antiand rogenic is of lavone metabolite and its influence instimulating collagen deposition in humandermal monolayer fibroblasts [J]. J Am A cad Dermatol,2005,52 (3):81-85.
    41. Adachi H, Ishii N. Effects of tocotrienol on life span and protein carbonylation in
    Caenorhabditis elegans [J]. J Gerotol A Biol Sci Med Sci,2000,55 (6):280-285.
    42. Meydani M. Effect of functional food ingredients:vitamin E modulation of cardiovascular diseases and immune status in the elderly [J]. Am J Clin Nutr,2000,71 (suppl):1665-1668.
    43. Cantuti-Castelvetri I, Shukitt-Hale B, Joseph JA. Neurobehavioral aspects of antioxidant in aging [J]. Int J Dev Neurosci,2000,18 (4-5):367-381.
    44. Floydr A, Hensley K. Oxidative stress in brain aging. Implication for therapeutics of neurodegenerative disease [J]. Neurobiol Aging,2002,23 (5):795-807.
    45. Esposito E, Rotilio D, Dimatteo V, et al. A review of specific dietary antioxidants and the efects on biochemical mechanisms related to neuro degenerative process [J]. Neurobiol Aging,2002,23 (5):719-735.
    46. Kahn A. Regaining lost youth:The controversial and colorful beginnings of hormonere placement therapy in aging [J]. J Gerontol A-biol,2005,60 (2):142-147.
    47.朱志明.抗衰老药物应用的若干问题[J].实用老年医学,2002,16(2):73-75.
    48.徐士凯.抗衰老药物药源性毒副反应的研究进展[J].现代中西医结合杂志,2005,22(11):2911-2912.
    49.刘双环,马丽颖,王秀清,等.BALB/c小鼠遗传污染对单克隆抗体制备的影响[J].实验动物科学与管理,2006,23(3):9-11.
    50.蒋腊梅,伍伟景.年龄相关听力损失BALB/c小鼠耳蜗形态学观察[J].中国耳鼻咽喉颅底外科杂志,2008,14(4):263-267.
    51. Lakatta EG, Levy D. Arterial and cardiac aging:major shareholders in cardiovascular disease enterprises. Part 1:Aging arteries:a " set up" for vascular disease [J]. Circulation, 2003,107:139-146.
    52. Zhu M, de Cabo R, Anson RM, et al. Caloric restriction modulates insulin receptor signaling in liver and skeletal muscle of rat [J]. Nutrition,2005,21 (3):378-388.
    53. Conboy IM, Conboy MJ, Wagers AJ, et al. Rejuvenation of aged progenitor cells by exposure to a young systemic environment [J]. Nature,2005,433 (7027):760-764.
    54. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells [J]. Science,1999,284 (5411):143-147.
    55. Boheler KR, Czyz J, Tweedie D, et al. Differentiation of pluripotent embryonic stem cells into eardiomyocytes [J]. Cire Res,2002,91 (3):189-201.
    56. Rodda SJ, Kavanagh SJ, Rathjen J, et al. Embryonic stem cell differentiation and the analysis of mammalian development [J]. Int J Dev Biol,2002,46 (4):449-458.
    57. Amit M, Itskovitz-Eldor J. Derivation and spontaneous differentiation of Human embryonic stem cells [J]. J Anat,2002,200 (Pt3):225-232.
    58. Wobus AM. Potential of embryonic stem cells [J]. Mol Aspects Med,2001,22:149-164.
    59. Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts [J]. Science,1998,282:1145-1147.
    60. Shamblott MJ, Axelman J, Wang S, et al. Derivation of pluripotent stem cells from cultured human primordial germ cells [J]. Proc Natl Acad Sci USA,1998,95:13726-13731.
    61. Beddington RS, Robertson EJ. An assessment of the developmental potential of embryonic stem cells in the midgestation mouse embryo [J]. Development,1989,105:733-737.
    62. Odorico JS, Kaufman DS, Thomson JA. Multilineage differentiation from human embryonic stem cell lines [J]. Stem Cells,2001,19:193-204.
    63.赵春华.干细胞原理、技术与临床[M].北京:化工出版社,2006:342.
    64. Jiang Y, Jahagirdar B, Reyes M, et al. Pluripotent nature of adult marrow derived mesenehymal stem cells [J]. Nature.2002,418:41-49.
    65. Muguruma Y, Reyes M, Nakamura Y, et al. In vivo and in vitro differentiation of myocytes from human bone marrow-derived multipotent progenitor cells [J]. Exp Hematol,2003,31 (12):1323-1330.
    66. YoonYS, Wecker A, Heyd L, et al. Clonally expanded novel multipotent stem cells from human bone marrow regenerate myocardium after myocardial infarction [J]. J. Clin. Invest, 2005,115:326-338.
    67. Wang X, Willenbring H, Akkari Y, et al. Cell fusion is the principal source of bone-marrow-derived hepatocytes [J]. Nature,2003,422:897-901.
    68. Gnecchi M, He H, Liang OD, et al. Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells [J]. Nature Medicine,2005,11: 367-368.
    69. Gnecchi M, He H, Noiseux N, et al. Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement [J]. FASEB Journal,2006,20:661-669.
    70. John HJ, Bancroft. Sex and Aging [J]. IN Engl J Med,2007,357:820-822.
    71. Barbara L, Marshall. The new virility:viagra, male aging and sexual function [J]. Sexualities,2006,9:345-362.
    1. Horwitz EM, Le Blanc K, Dominici M, et al. Clarification of the nomenclature for MSC:the International Society for Cellular Therapy position statement. Cytotherapy,2005,7: 393-395.
    2. Conboy IM, Conboy MJ, Wagers AJ, et al. Rejuvenation of aged progenitor cells by exposureto ayoung systemic environment. Nature 2005,433:760-764.
    3. Da Silva Meirelles L, Chagastelles PC, Nardi NB. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci,2006,119:2204-2213.
    4. Gang EJ, Bosnakovski D, Figueiredo CA, et al. SSEA-4 identifies mesenchymal stem cells from bone marrow. Blood,2007,109:1743-1751.
    5. Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature,2002,418:41-49.
    6. Kolf CM, Cho E, Tuan RS. Mesenchymal stromal cells. Biology of adult mesenchymal stem cells:regulation of niche, self-renewal and differentiation. Arthritis Research & Therapy, 2007,9 (1):204.
    7. Choi CB, Cho YK, Bhanu Prakash KV, et al. Analysis of neuron-like differentiation of human bone marrow mesenchymal stem cells. Biochemical and Biophysical Research
    Communications,2006,350:138-146.
    8. Noiseux N, Gnecchi M, Lopez-Ilasaca M, et al. Mesenchymal stem cells overexpressing Akt dramatically repair infarcted myocardium and improve cardiac function despite infrequent cellular fusion or differentiation. Molecular Therapy,2006,14:840-850.
    9. Krampera M, Marconi S, Pasini A, et al. Induction of neural-like differentiation in human mesenchymal stem cells derived from bone marrow, fat, spleen and thymus. Bone,2006,40: 382-390.
    10. Kopen GC, Prockop DJ, Phinney DG. Marrow stromalcells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proceedings of the National Academy of Sciences of the United States of America, 1999,96:10711-10716.
    11. Pereira RF, Halford KW, O'Hara MD, et al. Cultured adherent cells from marrow can serve as long-lasting precursor cells for bone, cartilage, and lung in irradiated mice. Proceedings of the National Academy of Sciences of the United States of America,1995,92:4857-4861.
    12. Elzaouk L, Moelling K, Pavlovic J. Anti-tumor activity of mesenchymal stem cells producing IL-12 in a mouse melanoma model. Experimental Dermatology,2006,15: 865-874.
    13. Gnecchi M, He H, Liang OD, et al. Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nature Medicine,2005,11: 367-368.
    14. Gnecchi M, He H, Noiseux N, et al. Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB Journal,2006,20:661-669.
    15. Francois S, Bensidhoum M, Mouiseddine M, et al. Local irradiation not only induces homing of human mesenchymal stem cells at exposed sites but promotes their widespread engraftment to multiple organs:a study of their quantitative distribution after irradiation damage. Stem Cells,2006,24:1020-1029.
    16. Fox JM, Chamberlain G, Ashton BA, et al. Recent advances into the understanding of mesenchymal stem cell trafficking. British Journal of Haematology,2007,137:491-502.
    17. Rombouts WJ, Ploemacher RE. Primary murine MSC show highly efficient homing to the bone marrow but lose homing ability following culture. Leukemia,2003,17:160-170.
    18. Barbash IM, Chouraqui P, Baron J, et al. Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium:feasibility, cell migration, and body distribution. Circulation,2003,108:863-868.
    19. Longa EZ, Weinstein PR, Carlson S, et al. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke,1989,20:84-91.
    20. Wislet-Gendebien S, Bruyere F, Hans G, et al. Nestin-positive mesenchymal stem cells favour the astroglial lineage in neural progenitors and stem cells by releasing active BMP4. BMC Neuroscience,2004,5:33.
    21. Choi YS, Lee MY, Sung KW, et al. Regional differences in enhanced neurogenesis in the dentate gyrus of adult rats after transient forebrain ischemia. Mol Cells,2003,16 (2):232-238.
    22. Ellinwood NM, Colle MA, Weil MA, et al. Bone marrow transplantation for feline mucopolysaccharidosis I. Molecular Genetics and Metabolism,2007,91:239-250.
    23. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science,1999,284:143-147.
    24. Sekiya I, Larson BL, Smith JR, et al. Expansion of human adult stem cells from bone marrow stroma:conditions that maximize the yields of early progenitors and evaluate their quality. Stem Cells,2002,20:530-541.
    25. Ramasamy R, Lam EW, Soeiro I, et al. Mesenchymal stem cells inhibit proliferation and apoptosis of tumor cells:impact on in vivo tumor growth. Leukemia,2006,21:304-310.
    1. Resnick IB, Aker M, Shapira MY, et al. Allogeneic stem cell transplantation for severe acquired aplastic anaemia using a fludarabine-based preparative regimen [J]. Br J Haematol, 2006,133 (6):649-654.
    2. Fohrer M, Rampf U, Baumann I, et al. Immunosuppressive therapy for aplastic anemia in children:a more severe disease predicts better survival [J]. Blood,2005,106 (6): 2102-2104.
    3. Bacigalupo A, Valle M, Podestak M, et al. T-cell suppression mediated by mesenchymal stem cells is deficient in patients with severe aplastic anemia [J]. Exp Hematol,2005,33 (7): 819-827.
    4. Fureder W, Krauth MT, Sperr WR, et al. Evaluation of angiogenesis and vascular endothelial growth factor expression in the bone marrow of patients with aplastic anemia [J]. Am J Pathol,2006,168 (1):123-130.
    5.吴秀丽,李扬秋,王震,等.免疫相关转录因子GATA-3基因在再障和正常骨髓基质细胞中的表达[J].中国病理生理杂志,2006,22(2):219-222.
    6. Srinivasan R, Takahashi Y, Mccoy JP, et al. Overcoming graft rejection in heavily transfused and allo-immunised patients with bone marrow failure syndromes using fludarabine-based haematopoietic cell transplantation [J]. Br J Haematol,2006,133: 305-314.
    7. Passweg JR, Perez WS, Eapen M, el al. Bone marrow transplants from mismatched related and unrelated donors for severe aplastic anemia [J]. Bone Marrow Transplant,2006,37: 641-649.
    8. Kojima S, Nakao S, Tomonaga M, et al. Consensus conference on the treatment of aplastic anenlia [J]. Int J Hematol,2000,72:118-123.
    9. Mao P, Wang S, Wang S. et al. Umbilical Cord blood transplant for adult patients with severe aplastic anemia using anti-lymphocyte globulin and cyclophosphamide as conditioning therapy [J]. Bone Marrow Transplant,2004,33:33-38.
    10. Zheng Y, Liu Y, Chu Y. Imnmnosuppressive therapy for acquired severe aplastic ememia (SAA):a prospective comparison of four different regimens [J]. Exp Hematol,2006,34 (7): 826-831.
    11. Del Papa N, Quirici N, Soligo D, et al. Bone marrow endothelial progenitors are defective in systemic sclerosis [J]. Arthritis Rheum,2006,54:2605-2615.
    12. Nauta AJ, Westerhuis G, Kruisselbrink AB, et al. Donor-derived mesenchymal stem cells are immunogenic in an allogeneic host and stimulate donor graft rejection in a non-myeloablative setting [J]. Blood,2006,108:2114-2120.
    13. Fouillard L, Bensidhoum M, Bories D, et al. Engraftment of allogeneic mesenchymal stem cells in the bone marrow of a patient with severe idiopathic aplastic anemia improves stroma [J]. Leukemia,2003,17 (2):474-476.
    14. Bartholomew A, Sturgeon C, Siatskas M, et al. Mesenchymal stem cells suppress lymphocyte prolixferation in vitro and prolong skin graft survival in vivo [J]. Exp Hematol, 2002,30:42-48.
    15. Le Blanc K, Samuelsson H, Gustafsson B, et al. Transplantation of mesenchymal stem cells to enhance engraftment of hematopoietic stem cells[J]. Leukemia,2007,21 (8):1733-1738.
    16. Le Blanc K, Ringden O. Immunomodulation by'mesenchymal stem cells and clinical experience [J]. J Intern Med,2007,262 (5):509-525.
    17. Tyndall A, Walker UA, Cope A, et al. Immunomodulatory properties of mesenchymal stem cells:a review based on an interdisciplinary meeting held at the Kennedy Institute of Rheumatology Division,London,UK,31 October 2005 [J]. Arthritis Res Ther,2007,9 (1): 301.
    18. Liu GX, He DM, Tan GX, et al. Nitric oxide from mesenchymal stem cells suppressing T-cell proliferation inhibited expression of T-bet in T cells [J]. Blood,2007,110 (11):96 b.
    19. Bartholomew A, Sturgeon C, Siatskas M, et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo [J]. Exp Hematol, 2002,0 (1):42-48.
    20. Lazarus HM, Cartin P, Devine S, et al. Role of mesenchymal stem cells in allogeneic transplantation:early phase I clinical results [J]. Blood,2000,96:1691 a.