预混火焰在狭缝中的传播机理与熄灭条件的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究非稳态预混爆燃火焰在狭窄通道中传播,对于工业阻火器的设计与应用,以及管道或开敞空间中可燃气体的防燃抑爆等,均具有重要的意义。本文主要针对二维非稳态爆燃火焰在狭缝中的传播机理与熄灭条件进行研究,旨在为可燃气体燃烧爆炸的防治以及阻火器的设计和应用等提供理论依据。本文主要工作和结论如下。
     (1)基于Arrhenius燃烧模型、流体力学控制方程组、气体组分方程,建立了模拟预混非稳态爆燃火焰在平板狭缝中传播的二维理论模型。在改进的SIMPLE算法的基础上,采用VC++语言自己编制了适用于模拟爆燃火焰传播的二维数值计算程序。
     (2)通过模拟质量传递、热量传递、动量传递、定容燃烧及空气在平板通道中的瞬态流动等算例,验证本文计算程序的有效性。然后,对一维预混乙炔—空气爆燃火焰的传播过程进行模拟,在计算燃烧速度和火焰厚度等火焰特性参数的同时,对数值解进行网格独立性分析。
     (3)对预混乙炔—空气爆燃火焰在封闭—开放平板狭缝中的传播机理与熄灭条件进行了数值模拟。
     1)研究了质量扩散和壁面散热对火焰形状形成的影响。结果发现,质量扩散的增强有利于郁金香状火焰的形成:当质量扩散系数小于或等于热扩散系数,
     即Lewis数大于或等于1时,火焰倾向于形成蘑菇形状;而当质量扩散系数大于热扩散系数,即Lewis数小于1时,火焰倾向于形成郁金香形状。壁面散热则不利于郁金香状火焰的形成:在绝热壁面条件下,当狭缝长高比小于40时,就可以形成郁金香状火焰;而在等温壁面条件下,只有当狭缝长高比小于30时,郁金香状火焰才能形成。
     2)通过引入无因次准熄间距、热量补给速率等概念,综合研究了化学反应放热、
The investigations into premixed flame propagation in tubes or channels are great important for design and application of flame arresters, and deflagration suppression of flammable gas clouds in vessels or unconfined space. Aiming to provide theoretical references for deflagration suppression and the design of flame arresters, propagating mechanism and quenching condition of premixed unsteady flames in narrow plate channels are simulated numerically in this paper. The main work and conclusions in this paper are as follows.(1) Based on Arrhenius combustion model, governing equations of hydrodynamics and species equations, two-dimensional theoretical model for propagation of premixed unsteady flames in narrow channels is built. Based on improved SIMPLE algorithm, a two-dimensional program code applicable to simulating deflagration flame is compiled in VC++ language.(2) Some computational problems, such as mass diffusion, heat transfer, Stokes' first problem, combustion in constant volume, and transient flow of air in plate passage are simulated to validate the procedure. In the simulation to one-dimensional deflagration of premixed acetylene-air flame, combustion speed and flame thichness are computed, and grid independence of numerical solution is analyzed.(3) Flame propagation and quenching in closed-open narrow channels are simulated, main conclusions are as follows.1) Effects of mass diffusion coefficient and heat loss on walls on flame shape are investigated. The results show that the increase of mass diffusion coefficient contributes to tulip-shaped flame. As mass diffusion coefficient is smaller than heat diffusion coefficient, named as Lewis number is bigger than or equal to one, mushroomed-shaped flame tends to form, while tulip-shaped flame tends to form as Lewis number is less than one. Heat loss at the cold walls is adverse to the formation of tulip-shaped flame. For adiabatic wall, tulip-shaped flame forms as length height
    ratio of narrow channels is less than 40, while, for isothermal wall, tulip-shaped flame forms as length height ratio of narrow channels is less than 30.2) By introducing non-dimensional quasi-extinction space, heat supply rate into analysis, the relationship of heat release of chemical reaction, heat loss on wall and flame propagation and quenching in narrow channels are analyzed systematically, and the criterion of flame propagation and quenching in narrow channels is put forward.(4) Flame propagation and quenching in open-open narrow channels are studied experimentally and theoretically. Experimental results show that, as channel height is given, quenching length is proportional to critical flame propagation speed approximately. The computed results show the same conclusion. The computed results are consistent with the experimental results as a whole.
引文
[1] 陈义良,张孝春,孙慈,季鹤鸣,燃烧原理,航空工业出版社,1992.
    [2] 李吕辉,物理化学,高等教育出版社,1994.
    [3] 蒋德明,内燃机燃烧与排放学,西安交通大学出版社,2002.
    [4] Zeldovich, Y. B., Zh. Eksp. Teor. Fiz. 11 (1), 59, 1941.
    [5] Spalding, D. B., A Theory of Inflammability Limits and Flame-quenching, Proc. Roy. Soc. London A, 240:83-100(1957).
    [6] Alder, J., One-dimensional Laminar Flame Propagation with Distributed Heat Losses Thin-flame Theory, Comb. Flame, 7:39-49(1963).
    [7] Bush, W. B., and Fendell, F. E., J. Fluid Mech., 56(1)(1971).
    [8] Linan, A., Acta Astronaut, 1:1007(1974).
    [9] Joulin, G., and Clavin, P., Acta Astronaut, 3:223(1976).
    [10] Buckmaster, The Quenching of Deflagration Waves, Combust. Flame, 26:151-162(1976).
    [11] Mayer, E., Combust. Flame, 1:438(1957).
    [12] Berlad, A. L., and Yang, C. H., Combust. Flame, 4:325-333(1960).
    [13] Chen, T. N., and Toong, T. Y., Combust. Flame, 4:313(1960).
    [14] Adler, J. and Spalding, D. B., One-dimensional Laminar Flame Propagation with an Enthalpy Gradient, Proc. Roy. Soc. A, 261:53(1961).
    [15] Joulin, G., and Clavin, P., Linear Stability analysis of Nonadiabatic Flames: Diffusional-Thermal Model, Combust. Flame, 35:139-153(1979).
    [16] Clavin, P., and Nicoli, C., Effect of Heat Losses on the Limits of Stability of Premixed Flames Propagating Downwards, 60:1-14(1985).
    [17] Yang, C. H., Burning Velocity and the Structure of Flames near Extinction Limits, Combust. Flame, 5:163-174(1961).
    [18] Gerstein, M., and Stine, W. B., Analytical Criteria for Flammability Limits, Fourteenth Symposium (international) on Combustion, The Combustion Institute, Pittsburgh, 1973, pp. 1109-1118.
    [19] Barenblatt, G. I., Zeldvoich, Y. B., and Istratov, A. G.,Prikl. Mekh. Tekh. Fiz., 2:21(1962).
    [20] Sivashinsky, G. I., Instabilities, Pattern Formation, and Turbulence in Flames, Ann. Rev. Fluid Mech., 15:179-199(1983).
    [21] Von Karman, T., and Millan, G., Theoretical and Experimental Studies on Laminar Combustion and Detonation Waves, Fourth Symposium (international) on Combustion, The Combustion Institute, Pittsburgh, 1953, pp. 173-177.
    [22] Benkhaldoun, F., Larrouturou, B., and Denet, B., Numerical Investigation of the Extinction Limit of Curved Flames, Combust. Sci. and Tech., 64:187-198(1989).
    [23] Aly, S. L. and Hermance, C. E., A Two-Dimensional Theory of Laminar Flame Quenching, Combust. Flame, 40:173-185(1981).
    [24] Lee, S. T., and Tien, J. S., A Numerical Analysis of Flame Flashback in a Premixed Laminar System, Combust. Flame, 48:273-285(1982).
    [25] Lee, S. T. and Tsai, H. T., Numerical Investigation of Steady Laminar Flame Propagation in a Circular Tube, Combustion and Flame, 99:484-490(1994).
    [26] Hackert, C. L., Ellzey, J. L. and Ezekoye, O. A., Effects of Thermal Boundary Conditions on Flame Shape and Quenching in ducts, Combustion and Flame, 112: 73-84(1998).
    [27] McGreevy, J. L. and Matalon, M., Lewis Number Effect on the Propagation of Premixed Flames in Closed Tubes, Combustion and Flame, 91: 213-225(1992).
    [28] Kurdyumov, V. N., and Fernandez-Tarrazo, E, Lewis Number Effect on the Propagation of Premixed Laminar Flames in Narrow Open Ducts, Combustion and Flame, 128:382-394(2002).
    [29] Daou, J., and Matalon, M., Flame Propagation in Poiseuille Flow under Adiabatic Conditions,
     Combust. Flame, 124:337-349(2001).
    [30] Daou, J., and Matalon, M., Influence of Conductive Heat-Losses on the Propagation of Premixed Flames in Channels; Combust. Flame, 128:321-339(2002).
    [31] Matalon, M. and Daou, J., Flame Propagation in Poiseuille Flow, AIAA Paper 2001-0949. Presented at 39th AIAA Aerospace Sciences Meeting & Exhibit, 2001.
    [32] 赵坚行,燃烧的数值模拟,北京:科学技术出版社,2002.
    [33] 罗诺森,传热学基础手册,北京:科学技术出版社,1992.
    [34] Carrier, G. F., Fendell, F. E., and Feldman, P. S., SAE Paper 800285, 1980.
    [35] [西德]弗·巴尔特克纳西特(著),何宏达(译),爆炸过程和防护措施,化学工业出版社,1985.
    [36] Edwards, K. L., Norris, M. J., Materials and Constructions Used in Devices to Prevent the Spread of Flames in Pipelines and Vessels, Materials and. Design, 20:245-252 (1999).
    [37] 胡畔,石化装置设计中阻火器的选用,炼油设计,第32卷第6期,2002.
    [38] 王振成,小川辉繁.金属网阻火器设计参数的优化选择.中国安全科学学报,Vol.12,p176,1995.
    [39] Norimasa, I., Osamu K. and G. Takeshi S., Premixed Flame Propagation into a Narrow Channel at a High Speed: Part 1: Flame Behaviors in the Channel, Combustion and Flame, 60:245-255 (1985).
    [40] One, S., and Wakuri, U., Trans. JSME 365:269-279(1977).
    [41] Holm, J. M., On the Initiation of Explosive Gaseous Mixtures by Small Flames. Phil. Mag, 15:329-359(1933).
    [42] Beyling. C.. Versuche zwecks Erprobung der Schlagwettersichersich- erheit besonders geschutzter Motoren und Apparaturen sowie zur Ermit tlunggeeigneter Schutzvorrichtungen fur solche Betriebsmittel. Zeitschri- ft,, Gluckauf''. 42. Jahrg., Seite 274/278.301/306 und 338/346.
    [43] Bartknecht, W.. Jahresbericht 1976 des Arbeitsgebietes, Explosion -stechnikder Berggewerk-schaftlichen Versuchsstrecke Dortmund-Deme" (unverOffentlicht), (1996).
    [44] M u ller-Hillebrand, D.. Grundlagen der Errichtung elektrischer Betriebsanlagen in explosionsgefahrdeten Betrieben. Berlin-Heidelberg- New York:Springer, 1940.
    [45] Maskow. H.. Einflsse auf den Zundurchschlag von Explosionsflammen. VDE -Fachber- ichte 14, 1950.
    [46] Bush, H.. Z u nddurchschlag von Gas-und Dampf/Luft-Gemischen an gerad -en parallelen Spalten. Explosivstoffe 5 Nr.7(1957).
    [47] Bartknecht, W. .Untersuchungen u ber den Einflu der Feuchtigkeit explosion- sfahiger Methan/Luft-Gemische auf den Zunddurchgang durch Gehauseapalte. Schlagel und Eisen, Heft 4 (1959).
    [48] Bartknecht, W.. Untersuchungen zur Erforschung der Vorgange beim Durchgang von hei en Explosionsgasen durch Flammesperren. BVS Dormund-Deme 261, 1996 (unverOffentiicht).
    [49] 周凯元,李宗芬,丙烷—空气剥燃火焰通过平行板狭缝时的淬熄研究,爆炸与冲击,17:111-118(1997).
    [50] 周凯元,气体爆燃火焰在狭缝中的淬熄,火灾科学,8:22-32(1999).
    [51] 周凯元,李宗芬,周自金,波纹板阻火器对爆燃火焰淬熄作用的实验研究,中国科学技术大学学报,27:449-454(1997).
    [52] 中华人民共和国劳动部职业安全卫生与锅炉压力容器监察局,工业防爆实用技术手册,沈阳:辽宁科学技术出版社,1996.
    [53] [日]安全工学协会(编),陈汉亮(译),爆炸,冶金部安全教育中心,1986.
    [54] 津田健,北條英光.多層金纲形消炎性能,安全工学论文集,Vol.5,p.279,1989.
    [55] 北條英光,津田健,加纳能一,金纲形流动抵抗消炎举动,高压,Vol.5,p.239,1984.
    [56] 北條英光,津田健,新井信,加纳能一.管内火炎传播举动消炎性能,化学工学论文集,Vol.5,p.153,1986.
    [57] 津田健,北條英光,垂直管金纲形消炎性能,安全工学论文集,Vol.5,p.251,1990.
    [58] 石油气体管道阻火器阻火性能和试验方法,GB13347-92,中华人民共和国国家标准[S],北京:中国标准出版社.1992.
    [59] Watson, P. B., Flame Arresters Instrumentation and Safety in the Oil and Nature Gas Industries Conference [M], Glasgow, UK, 1977.
    [60] 周凯元,李宗芬,丙烷—空气爆燃波的火焰面在直管道中的加速运动,爆炸与冲击,20:137-142(1997).
    [61] 许肇钧,传热学,北京:机械工业出版社,1980,71—77.
    [62] 周力行,燃烧理论和化学流体力学,化学工业出版社,1986.
    [63] F.A.威廉斯,《燃烧理论》,北京:科学出版社,1990.
    [64] Guenoche, H., Experimental and theoretical studies flame front stability. J. Aeronaut. Sci., 3: 18~26(1951).
    [65] Chao, B. H., Instability of burner-stabilized flame with volumetric heat loss, Combustion and flame, 126: 1476-1488(2001).
    [66] Zeldovich, Y B. Theory of combustion and detonation of gases. Russian: Acad. Sci. USSR, 1944.
    [67] Markstein, G. H., Instability phenomena in combustion waves, in Fourth Symposium (international) on Combustion, pp. 43-59, Combustion Institute, 1952.
    [68] Markstein, G, H., Non-steady flame propagation. London: Pergamon, 1964.
    [69] Sivashinsky, G. I., Diffusional-Thermal Theory of Cellular Flames, Combust. Sci. Tech. 15:137-146(1977).
    [70] Kokochashvili, V I. Specific nature of combustion of hydrogen-bromine mixtures. Zurn. Fiz. Chem., Russian, 1951, 25:445~449.
    [71] Karpov V P. Cellular structure of flames under condition of constant volume and its relationship to vibrational combustion. J. Combustion explosion and shock waves, 1965, 3: 1~8.
    [72] Branblatt G I. Priklad. Mekh. Tekh. Fiz. N2, 1962.
    [73] Branblatt G I, Zeldovich, Ya B, Istratov A G. On diffusional-thermal stability of a laminar flame. Priklad. Mekh. Tekh. Fiz. Russian, 1962.
    [74] Darrieus, G., Propagation d'un front de flamme: assai de theorie des vitesses anomales de deflagration par developpement spontane de la turbulence. The Int. Congr. Appl. Mech., 6th, Paris, 1946.
    [75] Landau, L. D., On the theory of slow combustion. Acta Physicochim. URSS, 1944, 19: 77~85.
    [76] Oppenheim, A. K., and Ghoniem, A. F., AIAA 21st Aerospace Sciences Meeting, 1-20, 1983.
    [77] Michelson, D. M., Sivashinsky, G. I., C & F, 1982, 48:211
    [78] Ball, G. A., Combustion Aerodynamics, A study of a two-dimensional flame. Harvard University, Department of Engineering Science and Applied Physics, 1951.
    [79] Zeldovich, Y. B., Structure and Stability of Steady Laminar Flame at Moderately Large Reynolds Numbers, Combustion and Flame, 40:225-234(1981).
    [80] Zeldovich, Y. B., Istrtov, A. G., Kidin, N. I., Librovich, V. B., Flame Propagation in Tubes: Hydrodynamics and Stability, Combust. Sci. Technol. 24:1-13 (1980).
    [81] Ellis, O. C., Propagation of a Flame through a Tube From Ignition at One End, Fuel, 7: 502-508(1928).
    [82] Starke, R. and Roth, P., An experimental Investigation of Flame Behavior During Cylindrical Vessel Explosions, Combust. Flame, 66:249-259(1986).
    [83] Jarosinski, J., Strehlow, R. A., and Azarbarzin, A., The Mechanisms of Lean Limit Extinguishment of an Upward and Downward Propagating Flame in a Standard Flammability Tube, Nineteenth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1982, p. 1549.
    [84] Gonzalez, M., Borghi, R., and Saquab, A., Interaction of a Flame Front with its Self-Generated Flow in an Enclosure: The "Tulip Flame" Phenomenon, Combustion and Flame, 88: 201-220(1992).
    [85] Rotman, D. A., Oppenheim A K., Aerothermodynamic Properties of Stretched' Flames in Enclosures, Twenty-first Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1986, pp. 1303-1312.
    [86] Dunn-Rankin, D., The interaction between a laminar flame and its self-generated flow, Ph.D. Thesis, University of Califonia, Dept. of Mech. Eng., Lawrence Berkeley Laboratory, April, 1985.
    [87] Dunn-Rankin, D, Barr, P. K., Sawyer, R. F., Numerical and Experimental Study of "Tulip" Flame Formation in a Closed Vessel, Twenty-first Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1986, pp. 1291-1301.
    [88] Zoolinyan, G. A., Makhviladze, G. M., Meilikhov, V. I., Numerical Investigation of Laminar Flame Form and Structure, Institute for Problems in Mechanics, Moscow: Russian Academy of Science, Reprint 1991, p.499.
    [89] N'Konga, B., Fernandez, G., Guillard, H., and Larrouturo, B., Numerical Investigations of the Tulip Flame Instability-Comparisions with Experimental Results, Combustion Science and Technology, 87:69-89(1992).
    [90] Marra, F. S. and Continillo, G., Numerical Study of Premixed Laminar Flame Propagation in a Closed Tube with a Full Navier-Stokes Approach, Twenty-Sixth Symposium (International) on Combustion, Combustion Institute, 1996, pp. 907-913.
    [91] Matalon, M. and McGreevy, J. L., The Initial Development of a Tulip Flame, Twenty-Fifth Symposium (International) on Combustion, Combustion Institute, 1994, pp. 1407-1413.
    [92] Schmidt, E. H. W., Steiniche, H., and Neubert, U., Flame and Schlieren Photographs of Combustion Waves in Tube, in Fourth Symposium (international) on Combustion, Combustion
     Institute, 1952, pp. 658-667.
    [93] Salamandra, G. D., Bazhenova, T. V., and Naboko, I. M., Formation of Detonation Waves during Combustion of Gas in Combustion Tube, in Seventh Symposium (international) on Combustion, Combustion Institute, 1959, pp. 851-857.
    [94] Leyer, J. and Manson, N., Development of Vibratory Flame Propagation in Short Closed Tubes and Vessels, Thirteenth Symposium (international) on Combustion, Combustion Institute, 1970, pp. 551-557.
    [95] Kooker, D. E., Transient Laminar Flame Propagation in Confined Premixed Gases: Numerical Predictions, in Seventh Symposium (international) on Combustion, Combustion Institute, 1978, pp. 1329-1338.
    [96] Kooker, D. E., Numerical Study of a Confined Premixed Laminar Flame: Oscillatory Propagation and Wall Quenching, Combustion and Flame, 49:141-149(1983).
    [97] Dold, J. W. and Joulin, G., An Evolution Equation Modeling Inversion of Tulip Flames, Combustion and Flame, 100: 450-456(1995).
    [98] Gonzalez, M., Acoustic Instability of a Premixed flame Propagating in a Tube, Combustion and Flame, 107: 245-259(1996).
    [99] Tien, J. H., Effects of Flames Stretch on Premixed Flame Propagation on a Closed Tube, Combustion and Flame, 107:303-306(1996).
    [100] Guenoche, H. and Jouy, M., Changes in the Shape of Flames Propagating in Tubes, Fourth Symposium (international) on Combustion, Combustion Institute, 1952, pp. 403-406.
    [101] Singer, J. M. and von Elbe, G., Flame Propagation in Cylindrical Tubes Near the Quenching Limit," Sixth Symposium (international) on Combustion, Combustion Institute, 1956, pp. 127-130.
    [102] Schmidt, E. W., Steinicke, H., and Neubert, U., Flame and Schlieren Photographs of Combustion Waves in Tubes, Fourth Symposium (international) on Combustion, The Combustion Institute, Pittsburgh, 1953, pp. 658-666.
    [103] Mallard, E., and Le Chatelier, H. L., Recherches Experimentelles et Theoriques sur la Combustion des Melanges Gazeux Explosifs, Ann. Mines, 4:379-568(1883).
    [104] Coward, H. F. and Hartwell, F. J., Studies In the Mechanism of Flame Movement. Part Ⅰ. The Uniform Movement of Flame in Mixtures of Methane and Air In Relation to Tube Diameter, Journal of the Chemical Society, 141: 1996-2004(1932).
    [105] James, D. O., The Interaction of a Self-Induced Boundary Layer in a Rectangular Channel, Paper, 9926813, 1999.
    [106] 陶文铨,数值传热学(第二版),西安:西安交通大学出版社,2001.
    [107] 陶文铨,计算传热学的近代进展,北京:科学出版社,2000.
    [108] 周毓麟,一维非定常流体力学数值方法,北京:科学出版社,1998.
    [109] 周毓麟,二维非定常流体力学数值方法,北京:科学出版社,1998.
    [110] Pantankar S V, Spalding D B. A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows. Int J Heat Mass Transfer, 1972, 15: 1787~1806.
    [111] Pantankar S V, Numerical Heat Transfer and Fluid Flow, New York: Mcgraw-Hill, 1980.
    [112] 王晓岛,考虑压力边界条件的SIMPLE算法,上海机械学院学报,16:37-44,1994.
    [113] 邓启红,汤广发,SIMPLE算法中压力修正方程边界条件确定新探,湖南大学学报,26:65-70,1999.
    [114] 佟桂芳,徐德龙,张强,褚开维,一种新改进的SIMPLE算法,西安建筑科技大学学报,33:221-224,2001.
    [115] 邓保庆,吴文权,卢曦,基于反松弛方法的不可压流动压力修正算法,上海理工大学学报,24:13-16,2002.
    [116] 郭航,马重芳,陶文铨,张东升,焦安军,吴江涛,SIMPLE算法的一个新的改进方案,西安交通大学学报,36:20-42,2002.
    [117] Karki, K. C., Patankar, S. V., Pressure based calculation procedure for viscous flows at all speeds in arbitrary configurations, AIAA J, 1989, 27:1167-1174.
    [[118] Shyy, W., Chen, M., H., Sun, C. S., Pressure-based multigrid algorithm for flows at all speeds, AIAA J, 1992, 30: 2660-2669.
    [119] Demirdzic, I., Lilek, .I, Peric, M., A collocated finite volume method for predicting flows at all speeds, Int. J Numer methods Fluids, 1993, 16: 1209-1050.
    [120] Data, A. W., Solution of Navier-Stokes equations on nonstaggered grid of all speeds, Numer Heat Transfer, Part B, 1998, 33:451-467
    [121] Harlow F H, Welch J R. Numerical Calculation of Time-Dependent Viscous Incompressible flow with Free Surface, Phys. Fluids, 1965, 8: 21~82.
    [122] 陈志华,气云与粉尘燃烧爆炸现象的研究[博士学位论文],南京:南京理工大学,1997.
    [123] 陈志华,范宝春,李鸿志,管内均相湍流燃烧加速的数值模拟,爆炸与冲击,2003,23(7):337~342.
    [124] 姚海霞,范宝春,障碍物诱导的湍流加速火焰流场的数值模拟.南京理工大学学报,1999,23 (2),109~112.
    [125] 杨国刚,轴对称可燃气云爆炸场的实验研究与数值模拟[博士学位论文],大连:大连理工大学,2005.
    [126] 宋世谟,物理化学,北京:高等教育出版社,1985.