水雾作用下甲烷/空气层流预混火焰燃烧特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细水雾具有良好的液滴分散性、高热容、易蒸发等特性,因此作为卤代烷烃灭火剂的替代物,细水雾灭火技术己得到了广泛的研究与应用。在可燃气云惰化以及爆炸火焰抑制等方面,细水雾技术也得到人们的普遍关注,利用细水雾进行可燃气云惰化、抑爆的相关研究也已大量开展。可燃气云爆炸是处于爆炸极限范围内的预混气、燃料液滴群急剧燃烧,火焰加速传播的过程。细水雾对可燃气云惰化、抑爆技术的核心和技术基础就是细水雾与预混火焰的相互作用。本文通过对水雾作用下甲烷/空气预混火焰燃烧特性的实验研究,揭示水雾对预混火焰稳定燃烧的影响以及水雾的惰化、抑制机理和条件。本文的主要工作与研究成果包括:
     1.设计、建造了新颖的大口径(15mm)水雾协流管式燃烧器实验台。
     利用该实验台可在开放空间内,对具有较大粒径分布的细水雾(雾滴直径范围30μm~150μm)与甲烷/空气预混火焰之间的相互作用过程进行实验研究。与目前传统的管式燃烧器以及Fuss等人研制的出口直径5.4mm,雾滴直径小于10μm的管式燃烧器相比,本实验台研究适用范围更宽广。
     在对燃烧器设计思路理论分析的基础上,对实验系统进行了校准与误差分析;利用LDV/APV系统对管式燃烧器出口气体协流水雾特性进行测量,分析混合气体流量对管式燃烧器烧嘴出口处水雾特性的影响,并运用两相流理论分析了燃烧管烧嘴出口处水雾与协流气体之间的相互作用;
     2.利用高速纹影实验系统对水雾协流作用下的甲烷/空气层流预混火焰燃烧特性进行研究,揭示了水雾协流作用过程中甲烷预混火焰的熄火模式与规律。通过分析水雾对层流火焰稳定性、火焰拉伸、燃烧速度以及火焰化学发光特性的影响,研究水雾作用过程中的火焰熄火、抑制模式的产生过程与机理;利用水雾协流管式燃烧器,通过实验的方法得到了惰化与抑制甲烷/空气层流预混火焰所需的水雾条件。
     3.在不同的水雾协流条件下,对甲烷/空气层流预混火焰拉伸现象及火焰拉伸率的变化规律进行研究,分析水雾液滴蒸发与扰动对锥形预混火焰面拉
Due to the fine dispersity, high heat capacity, and ease of evaporation, water mists have got widely used and concerned about as the substitute of the haloalkane extinguishing agent. Flammable gas flame acceleration is the universal phenomena in fires and explosion industrial hazards, such as coal mine gas explosion, oil vapor explosion in the ship machine space, flashover and backdraft in building and so on. It indicated that certain condition water mist could be available to inert the flammable gases and inhibit the gas explosion in the gas or vapor congregated location. The corresponding researches are mainly about the mechanism of the methane/air premixed gas inerting and the mitigation of premixed gas laminar flame propagation by water mist. The kernel and fundamentals of flammable gas inerting and inhibition by water mist are interactions of water mist and premixed flame. This paper would try to explore the influence and mechanism of inerting and inhibition of premixed flame by water mist, by the experiments of the combustion characteristic on the influence of water mist. The main works and achievements in the paper contain the following sections.
    1. The original experimental equipments of the bigger aperture tube burner with coflow water mist were designed and setup.
    With this experimental equipment the interaction of large size distribution water mist (water mist diameter distributed within 30μm~150μm) and methane/air premixed flame were studied. Compared with the present classical tube burner and the Fuss burner whose burner nozzle diameter was 5.4mm and the water mist size was 10μm, this burner equipment can be applied more widely.
    According to the design theory of the tube burner, the calibration and error analysis were carried out. And the LDV/APV system was employed to study the water mist characteristic along the axis outside the burner nozzle of the tube burner. The effects of coflow inlet gases flux on the droplets movement were analyzed. In addition, the water mist characters and the tow-phrase flow of the tube burner with different coflow conditions were also studied in theory.
引文
[1] Mawhinney J R, Richardson J K. A review of water mist fire suppression research and development, 1996[J]. Fire Technology, 1997.33(1): 54-90.
    [2] Fumiaki Takahashi W J S, and Edward A. Strader EFFECTS OF OBSTRUCTION ON FLAME SUPPRESSION EFFICIENCY [C]. Halon Options Technicsl Working Conference 1999:170-178.
    [3] Liu J H, Liao G X, Li P D, et al. Progress in research and application of water mist fire suppression technology[J]. Chinese Science Bulletin, 2003. 48(8): 718-725.
    [4] Acton M R, Sutton P, Wickens M J. Investigation of the mitigation of gas cloud explosions by water sprays(I)[J]. Institution of Chemical Engineers Symposium Series, 1990(122): 61.
    [5] Wolfe J E,DeSipio P A. Evaluation of fine water mist for applications in naval aircraft fire protection and explosion suppression[C]. Hilton Head, SC, USA: ASME, New York, NY, USA, 1997: 35.
    [6] Liu Xuanya, Lu Shouxiang, Qin Jun, et al. Experimental study on suppression of methane flame propagating by water mist[C]. Shanghai, China: Science Press, Beijing, 100717, China, 2004: 1493.
    [7] Acton M R, Sutton P, Wickens M J. Investigation of the mitigation of gas cloud explosions by water sprays(Ⅱ)[J]. Gas Engineering and Management, 1991. 31(7-8): 166.
    [8] Vanwingerden K, Wilkins B. The Influence of Water Sprays on Gas-Explosions. L Water-Spray-Generated Turbulence[J]. Journal of Loss Prevention in the Process Industries, 1995.8(2): 53-59.
    [9] Shirvill L C. Efficacy of water spray protection against propane and butane jet fires impinging on LPG storage tanks[J]. Journal of Loss Prevention in the Process Industries, 2004. 17(2): 111.
    [10] Ye J F, Chen Z H, Fan B C, et al. Suppression of methane explosions in a field-scale pipe[J]. Journal of Loss Prevention in the Process Industries, 2005.18(2): 89-95.
    [11] BZ Dlugogorski R A, EM Kennedy WATER VAPOUR AS AN INERTING AGENT [C]. Halon Options Technical Workmg Conference Albuquerque NM, 1997.
    [12] Abbud-Madrid A, Riedel E P, McKinnon J T. The influence of water mists on premixed flame propagation in microgravity[C]. Sorrento, Italy: European Space Agency, 2000:313.
    [13] Blouquin R, Joulin G. On the quenching of premixed flames by water sprays: Influences of radiation and polydispersity[J]. Symposium (International) on Combustion, 1998.2: 2829.
    [14] 刘晅亚,陆守香,黄玥,et al.细水雾对障碍物挡板火灭火有效性的实验研究[J].中国工程科学,2006.8(5):88-94.
    [15] Downie B, Polymeropoulos C, Gogos G. Interaction of a water mist with a buoyant methane diffusion flame[J]. 1995.24(4): 1498.
    [16] Ndubizu C C, Ananth R, Tatem P A, et ai. On water mist fire suppression mechanisms in a gaseous diffusion flame[J]. Fire Safety Journal, 1998.31(3): 253-276.
    [17] Shimizu H, Tsuzuki M, Yamazaki Y, et al. Experiments and numerical simulation on methane flame quenching by water mist[J]. Journal of Loss Prevention in the Process Industries, 2001.14(6): 603.
    [18] Liu X, Lu S, Qin J, et al. Experimental study on suppression of methane flame propagating by water mist[C]. Sapporo, Japan: Combustion Institute, 2004: 367.
    [19] Yao B, Fan W C, Liao G X. Interaction of water mists with a diffusion flame in a confined space[J]. Fire Safety Journal, 1999. 33(2): 129-139.
    [20] Lazzarini A K, Krauss R H, Chelliah H K, et al. Extinction conditions of non-premixed flames with fine droplets of water and water/NaOH solutions[C]. Edinburgh, United Kingdom: Combustion Institute, 2000: 2939.
    [21] Zegers E J P, Williams B A, Sheinson R S, et al. Dynamics and suppression effectiveness of monodisperse water droplets in non-premixed counterflow flames[C]. Edinburgh, United Kingdom: Combustion Institute, 2000:2931.
    [22] Greenberg J B, Kalma A. A study of stretch in premixed spray flames[J]. Combustion and Flame, 2000. 123(3): 421-429.
    [23] Consaivi J L, Porterie B, Loraud J C. Dynamic and radiative aspects of fire-water mist interactions[J]. 2004. 176(5-6): 721.
    [24] Mosri A, Dvorjetski A, Tsuruda T. Inhibition of premixed methane/air flames by water mist: Comments[C]. Sapporo, Japan: Combustion Institute, 2002: 367.
    [25] Chelliah H K, Wanigarathne P C, Lentati A M, et al. Effect of sodium bicarbonate particle size on the extinction condition of non-premixed counterflow flames[J]. Combustion and Flame, 2003. 134(3): 261.
    [26] Mesli B, Gokalp I. Extinction limits of opposed jet turbulent premixed methane air flames with sprays of water and NaCl-water solution[J]. Combustion Science and Technology, 2000. 153: 193-211.
    [27] Thomas G O. On the conditions required for explosion mitigation by water sprays[J]. Process Safety and Environmental Protection: Transactions of the Institution of Chemical Engineers, Part B, 2000.78(5): 339.
    [28] Lin J C,Lin T H. Influence of water spray on normal and inverted Bunsen flame[J]. Combustion Science and Technology, 2003. 175(7): 1263-1291.
    [29] Takahashi F, Linteris G T, Katta V R. Suppression characteristics of cup-burner flames in low gravity[C]. Reno, NV, United States: American Institute of Aeronautics and Astronautics Inc., Reston, United States, 2004:11952.
    [30] Catlin C A, Fairweather M,Ibrahim S S. Predictions of turbulent, premixed flame propagation in explosion tubes[J]. Combustion and Flame, 1995.102(1-2): 115.
    [31] Brenton J R, Thomas G O, Al-Hassan T. Small-scale studies of water spray dynamics during explosion mitigation tests[C]. Manchester, UK: Publ by Inst of Chemical Engineers, Rugby, Engl, 1994: 393.
    [32] van Wingerden K, Wilkins B. Influence of water sprays on gas explosions. Part Ⅰ: water-spray-generated turbulence[J]. Journal of Loss Prevention in the Process Industries, 1995. 8(2): 53.
    [33] Pilch M, Erdman C A. PARTICLE SIZE DISTRIBUTIONS FROM MULTIPLE HYDRODYNAMIC FRAGMENTATION EVENTS[C]. Proceedings-IEEE Region 6 Conference 1979: 239-248.
    [34] Dlugogorski B Z, Hichens R K, Kennedy E M, et al. Propagation of laminar flames in wet premixed natural gas-air mixtures[J]. Process Safety and Environmental Protection: Transactions of the Institution of Chemical Engineers, Part B, 1998.76(2): 81.
    [35] Seshadri R S a K. The influence of water on extinction and ignition of hydrogen and methane flames[J]. Proceedings of the Combustion Institute, 2005. Volume 30( Issue 1 ): 407-414.
    [36] Hou S-S, Yang S-S, Chen S-J, et al. Interactions for flames in a coaxial flow with a stagnation point[J]. Combustion and Flame, 2003. 132(1-2): 58.
    [37] Chen M, Huang S, Lu S. Spraying of liquid-solid suspension under pressure (Ⅰ) Theoretical analysis and mathematical model[J]. Huagong Xuebao/Journal of Chemical Industry and Engineering (China), 2003. 54(11): 1530.
    [38] Tsai C H, Lin T H. Influence of inert sprays on extinction of premixed flames propagating in a duct with varying cross-sectional area[J]. Atomization and Sprays, 2005. 15(5): 545-565.
    [39] Aihara T, Fu W S, Hongoh M, et al. Experimental-Study of Heat and Mass-Transfer from a Horizontal Cylinder in Downward Air-Water Mist Flow with Blockage Effect[J]. Experimental Thermal and Fluid Science, 1990. 3(6): 623-631.
    [40] 陆守香,何杰,于春红,et al.水抑制瓦斯爆炸的机理研究[J].煤炭学报,1998.23(4): 417-421.
    [41] Warson R W. PREVENTION AND SUPPRESSlON OF GAS ExPLOSIONS IN MINES[C]. Wollongong,Aust:Australasian Inst of Mining & MetallurgyAust,Parkville, Vietoria,Aust,1981:6.
    [42] Chow W K, Jiang Z, Li S F. Suppression chemistry of water mists on diffusional flames[J]. Journal of Applied Fire Science, 2003.12(3): 159.
    [43] Gaydon A G. Flames: Their structure, radiation and temperature[J]. 1993. 1: 145-155.
    [44] Hendricks A G, Vandsburger U, Saunders W R, et al. The use of tunable diode laser absorption spectroscopy for the measurement of flame dynamics[J]. Measurement Science and Technology, 2006. 17(1): 139.
    [45] Shamspur T, Sheikhshoaie I, Mashhadizadeh M H. Flame atomic absorption spectroscopy (FAAS) determination of iron(Ⅲ) after preconcentration on to modified analcime zeolite with 5-((4-nitrophenylazo)-N-(2 prime ,4 prime -dimethoxyphenyl))salicylaldimine by column method[J]. Journal of Analytical Atomic Spectrometry, 2005.20(5): 476.
    [46] Li Bassi A, Cattaneo D, Russo V, et al. Raman spectroscopy characterization of titania nanoparticles produced by flame pyrolysis: The influence of size and stoichiometry[J]. Journal of Applied Physics, 2005.98(7): 074305.
    [47] Katoh A, Oyama H, Kitagawa K, et al. Time-resolved analysis of OH distribution in a flame by PLIF spectroscopy[C]. Reno, NV, United States: American Institute of Aeronautics and Astronautics Inc., Reston, United States, 2004: 9270.
    [48] Evertsen R, Van Oijen J A, Hermanns R T E, et al. Measurements of absolute concentrations of CH in a premixed atmospheric flat flame by cavity ring-down spectroscopy[J]. Combustion and Flame, 2003. 132(1-2): 34.
    [49] Kitagawa K, Taki H, Arai N. Profiling of elemental composition in a methane-air premixed flame by laser-induced plasma spectroscopy (LIPS)[C]. Washington, DC, United States: Institute of Electrical and Electronics Engineers Inc., Piscataway, NJ 08855-1331, United States, 2002: 382.
    [50] LIU Xuanya L S, Zhang Li, Guo Ziru. The experimental study of mitigation of gas explosion by water sprays[C]. Taian, China: Science Press, 2002:1301.
    [51] Wehrmeyer J A. UV Raman and fluorescence flame spectroscopy using a Sheridon grating spectrograph[J]. AIAA Journal, 1999.37(8): 1015.
    [52] Taeke M M, Cheng T C, Hassel E P, et al. Study of swirling recirculating hydrogen diffusion flame using UV Raman spectroscopy[C]. Napoli, Italy: Combustion Inst, Pittsburg, PA, USA, 1996: 169.
    [53] Offt A, Knaack A, Waleswki J, et al. Quantitative diagnostics of flame radicals by picosecond LIF spectroscopy[C]. /unich, Ger: Society of Photo-Optical Instrumentation Engineers, Bellingharn, WA, USA, 1995:74.
    [54] Turk G C, Yu L, Koirtyohann S R. Laser-enhanced ionization spectroscopy of sodium atoms in an air-hydrogen flame with mass spectrometric detection[J]. Spectrochimica Acta, Part B: Atomic Spectroscopy, 1994. 49(12-14): 1537.
    [55] Gaydon A G.The Spectroscopy of Flames[M]. London: Chapman & Hall LTD., 1957: 273.
    [56] Hilton M, Lettington A H, Mills I M. Quantitative analysis of remote gas temperatures and concentrations from their infrared emission spectra[J]. Measurement Science & Technology, 1995.6(9): 1236.
    [57] 赵国锋,于娟,章明川.FTIR发射-透射光谱法测量炭粒和CO_2的温度[J].锅炉技术, 2003(02).
    [58] 李燕,黄中华,周学铁,et al.遥感FTIR测定固体推进剂燃烧的红外光谱特性[J].光谱学与光谱分析,2005(02).
    [59] Weiser V, Eisenreich N. Fast emission spectroscopy for a better understanding of pyrotechnic combustion behavior[J]. Propellants, Explosives, Pyrotechnics, 2005. 30(1): 67-73.
    [60] Ishino Y, Ohiwa N. Three-dimensional computerized tomographic reconstruction of instantaneous distribution of chemiluminescence of a turbulent premixed flame[J]. JSME International Journal, Series B: Fluids and Thermal Engineering, 2005.48(1): 34-48.
    [61] Guoa H. The effect of hydrogen addition on flammability limit and NOx emission in ultra-lean counterflow CH4/air premixed flames[J]. Proceedings of the Combustion Institute 2005. Volume 30(Issue 1): 303-311
    [62] Chelin P, Camy-Peyret C, Pina V, et al. Emission spectroscopy of hot water vapor from H_2-air deflagrative combustion in a closed cylinder[J]. Combustion and Flame, 2005. 140(4): 319.
    [63] Bacsik Z, Mink J, Keresztury G. FTIR spectroscopy of the atmosphere Part 2. Applications[J]. Applied Spectroscopy Reviews, 2005.40(4): 327.
    [64] Nazarenko A Y. Educational multiwavelength atomic emission spectrometer[J]. Spectroscopy Letters, 2004. 37(3): 235-243.
    [65] Fuchihata M, Ida T, Mizutani Y. Observation of microexplosions in spray flames of light oil-water emulsions (2nd report, influence of temporal and spatial resolution in high speed videography)[J]. Nippon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B, 2003.69(682): 1503.
    [66] Bourayou R, Vaillon R, Sacadura J F. FTIR low resolution emission spectrometry of a laboratory-scale diffusion flame: Experimental set-up[J]. Experimental Thermal and Fluid Science, 2002. 26(2-4): 181.
    [67] Nishioka M, Nakagawa S, Ishikawa Y, et al. NO emission characteristics of methane-air double flame[J]. Combustion and Flame, 1994. 98(1-2): 127.
    [68] Mokaddem K, Perrin M Y, Rolon J C, et al. Flame front visualization by OH laser induced fluorescence and C_2 spontaneous emission spectroscopy in axisymmetric laminar methane-air preximed flames[J]. Revue Generale de Thermique, 1995.34(398): 133.
    [69] Blevins L G, Renfro M W, Lyle K H, et al. Experimental study of temperature and CH radical location in partially premixed CH_4/air coflow flames[J]. Combustion and Flame, 1999. 118(4): 684.
    [70] Zizak G. Flame Emission Spectroscopy: Fundamentals and Applications[C]. the ICS Training Course on Laser Diagnostics of Combustion Processes,. NILES, University of Cairo, Egypt, 2000.
    [71] Kojima J, Ikeda Y, Nakajima T. Spatially resolved measurement of OH~*, CH~*, And C~*_2 chemiluminescence in the reaction zone of laminar methane/air premixed flames[C]. Edinburgh, United Kingdom: Combustion Institute, 2000:1757-1763.
    [72] Ikeda Y, Kojima J, Nakajima T. Local chemiluminescence spectra measurement in laminar methane/air and propane/air premixed flames[J]. Nippon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B, 2003.69(677): 200-213.
    [73] Kojima J, Ikeda Y, Nakajirna T. Basic aspects of OH(A), CH(A), and C_2(d) chemiluminescence in the reaction zone of laminar methane-air premixed flames[J]. Combustion and Flame, 2005. 140(1): 34-45.
    [74] Seo T, Akamatsu F, Shibahara M, et al. Simultaneous measurements of local temperature and chemiluminescence by cassegrain optics (lst report, measurement system and error estimation)[J]. Nihon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B, 2005.71(708): 2169.
    [75] Higgins B, McQuay M Q, Lacas F, et al. An experimental study on the effect of pressure and strain rate on CH chemiluminescence of premixed fuel-lean methane/air flames[J]. Fuel, 2001.80(11): 1583.
    [1] Kinoshita, C.M., P. J. Pagni, and R. A. Beier, OPPOSED FLOW DIFFUSION FLAME EXTENSIONS[J]. 1981: 1853.
    [2] Lee, K.Y., M. Bundy, and A. Hamins, Suppression limits of low strain rate non-premixed methane flames[J]. Combustion and Flame, 2003. 133(3): 299.
    [3] Fumiaki Takahashi, G.T.L., SUPPRESSION OF CUP-BURNER FLAMES [J]. 2003.
    [4] Saso, Y., N. Saito, and Y. Iwata, Scale effect of cup burner on flame-extinguishing concentrations[J]. Fire Technology, 1993.29(1): 22.
    [5] Lazzarini, A. K., et al. Extinction conditions of non-premixed flames with fine droplets of water and water/NaOH solutions[C]. 2000: 2939.
    [6] Ogawa, Y., N. Saito, and C. Liao, Burner diameter and flammability limit measured by tubular flame burner[J]. Symposium (International) on Combustion, 1998.2: 3221.
    [7] Ishizuka, S., Experimental study on extinction and stability of tubular flames[J]. Combustion and Flame, 1989.75(3-4): 367-379.
    [8] Yamamoto, K., S. Ishizuka, and T. Hirano, Effects of rotation on tubular flames in an axisymmetric flow field[J]. Nippon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B, 1996. 62(600): 3185.
    [9] Mosbacher, D. M., et al. Experimental and numerical investigation of premixed tubular flames[C]. Sapporo, Japan: Combustion Institute, 2002: 1479.
    [10] Saito, N., et al., Flame-extinguishing concentrations and peak concentrations of N_2, Ar, CO2 and their mixtures for hydrocarbon fuels[J]. Fire Safety Journal, 1996.27(3): 185.
    [11] Fuss, S. P., Chen, Ezra F., Yang, Wenhua, et al. Inhibition of premixed methane/air flames by water mist[C]. 29 Symposium (International) on Combustion. Sapporo, Japan, 2002: 361.
    [12] Korobeinichev, O. P., et al. Flame Inhibition by Phosphorus-Containing Compounds in Lean and Rich Propane Flames[R]. United States, 2003.36p.
    [13] BZ Dlugogorski*, R. A., EM Kennedy WATER VAPOUR AS AN INERTING AGENT [C]. Halon Options Technical Workmg Conference Albuquerque NM, 1997.
    [14] Grosshandler, W., et al. Turbulent spray burner for assessing halon alternative fire suppressants[C]. New Orleans, LA, USA: Publ by ASME, New York, NY, USA, 1993: 1.
    [15] Li, S.C., P.A. Libby, and F.A. Williams. Experimental and theoretical studies of counterflow spray diffusion flames[C]. Sydney, Engl: Publ by Combustion lnst, Pittsburgh, PA, USA, 1992: 1503.
    [16] Oldshoe,J.Y,Fluid Mixing Technology[M].北京:化学工业出版社,1983.278-284.
    [17] 方丁酋,两相流动力学[M].长沙:国防科技大学出版社,1988.42-46.
    [18] 管国锋,赵汝傅,化工原理[M].北京:化学工业出版社,教材出版中心,2003.21-34.
    [19] 王希龙,金属与非金属蓄冷器交变流动阻力特性对比实验[J].2005.22(4):506-510.
    [20] 夏昭知,关于民用燃气燃烧器火焰稳定问题的探讨[J].煤气与热力,1998.18(2): 44-48.
    [21] 沙定国,误差分析与测量不确定度评定[M].北京:中国计量出版社,2003,8.98-100.
    [22] Linnett, J. W. Methods of Measuring Burning Velocities[C]. Fourth Symposium (International) on Combustion. Baltimore, 1953.
    [23] 阿尔克梅德,T.J.and R.赫尔曼,分析火焰光谱学原理[M].北京:地质出版社, 1984,5.
    [24] 张平,燃烧诊断学[M].北京:兵器工业出版社,1988.56-89.
    [1] A. G. Gaydon a H G W.Flames:Their structure, radiation and temperature[M]. London: CHAPMAN & HALL LTD., 1953,.
    [2] Andrews G E,Bradley D. The burning velocity of methane-air mixtures[J]. Combustion and Flame, 1972. 19(2): 275.
    [3] Ogami Y, Kobayashi H. Laminar burning velocity of stoichiometric CH4/air premixed flames at high-pressure and high-temperature[J]. Jsme International Journal Series B-Fluids and Thermal Engineering, 2005. 48(3): 603-609.
    [4] Xue Y, Qin X,Ju Y. Study of Lifioff mechanism of nonpremixed jet flame near unity Schmidt number[C]. Reno, NV, United States: American Institute of Aeronautics and Astronautics Inc., Reston, VA 20191, United States, 2005: 13083-13089.
    [5] Johnston R J, Farrell J T, Smith D, et al. Laminar burning velocities and Markstein lengths of aromatics at elevated temperature and pressure[J]. Proceedings of the Combustion Institute, 2005. 30(1): 217-224.
    [6] Chao B H, Egolfopoulos F N, Law C K. Structure and propagation of premixed flame in nozzle-generated counterflow[J]. Combustion and Flame, 1997. 109(4): 620-638.
    [7] Choi C W, Puri I K. Flame stretch effects on partially premixed flames[J]. Combustion and Flame, 2000. 123(1-2): 119.
    [8] Kobayashi H, Kitano M. Extinction characteristics of a stretched cylindrical premixed flame[J]. Combustion and Flame, 1989.76(3-4): 285.
    [9] Hassanali C S,Goodings J M. Ion chemistry of phosphorus in hydrocarbon flames: Part Ⅱ. Positive Ion Formation[J]. International Journal of Mass Spectrometry and Ion Processes, 1990.99(3): 191-205.
    [10] Qiao L, Kim C H, Faeth G M. Suppression effects of diluents on laminar premixed hydrogen/oxygen/nitrogen flames[J]. Combustion and Flame, 2005. 143(1-2): 79.
    [11] Shimokuri D, Ishizuka S. Flame stabilization with a tubular flame[J]. Proceedings of the Combustion Institute, 2005. 30(1): 399.
    [12] Kim N I, Lee U D, Shin H D. Extinction of a premixed flame by a large variation in axial velocity[J]. Combustion and Flame, 2004. 136(4): 467-480.
    [13] Kim N I, Kataoka T, Maruyama S, et al. Flammability limits of stationary flames in tubes at low pressure[J]. Combustion and Flame, 2005.141 (1-2): 78-88.
    [14] Hariharan P, Gollahalli S R. Effect of equivalence ratio and burner geometry on the characteristics of laminar premixed flames at moderate eoflow[C]. Baltimore, MD, United States: American Society of Mechanical Engineers, 2004: 425.
    [15] Lock A J, Briones A M, Qin X, et ai. Liftoff characteristics of partially premixed flames under normal and microgravity conditions[J]. Combustion and Flame, 2005. 143(3): 159.
    [16] 傅维鏕,张永廉,王清安.燃烧学[M].上海:高等教育出版社,1989.328-335.
    [17] Gerstein M, Stine W B. FUNDAMENTAL COMBUSTION STUDIES[C]. Conf on Nat Gas Res and Technol. Atlanta, Ga: Alberta Research Council, Information Series, 1972: 13.
    [18] Linnett J W. Methods of Measuring Burning Velocities[C]. Fourth Symposium (International) on Combustion. Baltimore, 1953.
    [19] Nair M R S, Gupta M C. Burning velocity measurement by bomb method[J]. Combustion and Flame, 1974. 22(2): 219.
    [20] Sasaki Y. Measurement of the burning velocity of propane-air mixtures using soap bubbles[J]. Nippon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B, 1988.54(508): 3547.
    [21] Van Maaren A, Thung D S, De Goey L P H. Measurement of flame temperature and adiabatic burning velocity of methane/air mixtures[J]. Combustion Science and Technology, 1994. 96(4-6): 327.
    [22] GaydonAG, WolfhardHG.王方 火焰学[M]. 北京:中国科学技术出版社, 1993.
    [23] Vagelopoulos C M. An experimental and numerical study on the stability and propagation of laminar premixed flames[D]. California: University of the Southern California, 1999. 90.
    [24] Chung S H, Chung D H, Fu C, et al. Local extinction karlovitz number for premixed flames[J]. Combustion and Flame, 1996. 106(4): 515-520.
    [25] R. M. Fristrom A A W. Flame Structure[M]. New York: McGraw-Hill Book Company New York ST. LOUIS San Franciso Toronto London Sydney, 1965.92-94,252-257.
    [26] Law C K, Sung C J. Structure, aerodynamics, and geometry of premixed flamelets[J]. Progress in Energy and Combustion Science, 2000.26(4-6): 459-505.
    [27] An M. Numerical Modelling of Shipboard Waterfog Fire Suppression Systems[D]. Wellington: University of New Brunswick, 1998.64-72.
    [28] Choi C W, Puri I K. Contribution of curvature to flame-stretch effects on premixed flames[J]. Combustion and Flame, 2001. 126(3): 1640-1654.
    [29] Law C K. DYNAMICS OF STRETCHED FLAMES[C]. Clearwater Beach, FL, USA: Combustion Inst, Pittsburgh, PA, USA, 1984: 1-11.
    [30] Ishizuka S, Law C K. EXPERIMENTAL STUDY ON EXTINCTION AND STABILITY OF STRETCHED PREMIXED FLAMES[C]. Haifa, Isr: Combustion Inst, Pittsburgh, Pa, USA, 1982: 327-335.
    [31] Kobayashi H, Kitano M, Otsuka Y. STUDY ON THE EXTINCTION OF A STRETCHED CYLINDRICAL PREMIXED FLAME[J]. Nippon Kikai Gakkai Ronbunshu, B Hen, 1986. 52(483): 3811-3817.
    [32] Kobayashi H,Kitano M. Extinction characteristics of a stretched cylindrical premixed flame[J]. Combustion and Flame, 1989. 76(3-4): 285-295.
    [33] Ju Y, Matsumi H, Takita K, et al. Combined effects of radiation, flame curvature, and stretch on the extinction and bifurcations of cylindrical CH4/air premixed flame[J]. Combustion and Flame, 1999. 116(4): 580-592.
    [1] Shebeko Y N, Tsarichenko S G, Eremenko O Y, et al. Combustion of lean hydrogen-air mixtures in an atomized water stream[J]. Combustion, Explosion, and Shock Waves (English Translation of Fizika Goreniya i Vzryva), 1991. 26(4): 426.
    [2] van Wingerden K, Wilkins B, Bakken J, et al. Influence of water sprays on gas explosions. Part 2: mitigation[J]. Journal of Loss Prevention in the Process Industries, 1995.8(2): 61.
    [3] Tsai C H, Lin T H. Influence of inert sprays on extinction of premixed flames propagating in a duct with varying cross-sectional area[J]. Atomization and Sprays, 2005. 15(5): 545-565.
    [4] Abbud-Madrid A, Riedel E P, McKinnon J T. The influence of water mists on premixed flame propagation in microgravity[C]. Sorrento, Italy: European Space Agency, 2000: 313.
    [5] Mesli B,Gokalp I. Extinction limits of opposed jet turbulent premixed methane air flames with sprays of water and NaCl-water solution[J]. Combustion Science and Technology, 2000. 153:193-211.
    [6] Thomas G O. On the conditions required for explosion mitigation by water sprays[J]. Process Safety and Environmental Protection: Transactions of the Institution of Chemical Engineers, Part B, 2000.78(5): 339.
    [7] Modak A U, Abbud-Madrid A, Delplanque J-P, et al. The effect of mono-dispersed water mist on the suppression of laminar premixed hydrogen-, methane-, and propane-air flames[J]. Combustion and Flame, 2006. 144(1-2): 103.
    [8] LIU Xuanya L S, Zhang Li, Guo Ziru. The experimental study of mitigation of gas explosion by water sprays[C]. Taian, China: Science Press, 2002: 1301.
    [9] Liu Xuanya, Lu Shouxiang, Qin Jun, et al. Experimental study on suppression of methane flame propagating by water mist[C]. Shanghai, China: Science Press, Beijing, 100717, China, 2004: 1493.
    [10] Mosri A, Dvorjetski A, Tsuruda T. Inhibition of premixed methane/air flames by water mist: Comments[C]. Sapporo, Japan: Combustion Institute, 2002: 367.
    [11] van Wingerden K, Wilkins B. Influence of water sprays on gas explosions. Part 1: water-spray-generated turbulence[J]. Journal of Loss Prevention in the Process Industries, 1995.8(2): 53.
    [12] Ju Y, Matsumi H, Takita K, et al. Combined effects of radiation, flame curvature, and stretch on the extinction and bifurcations of cylindrical CH_4/air premixed flame[J]. Combustion and Flame, 1999. 116(4): 580-592.
    [13] Sivasegaram S, Tsai R F, Whitelaw J H. Control of oscillations and NOx concentrations in ducted premixed flames by spray injection of water[C]. San Francisco, CA, USA: ASME, New York, NY, USA, 1995: 169.
    [14] Linnett J W. Combustion, flames and explosions of gases: and. New York and London: Academic Press, 1961. Second edition, xix+731 pp. 22.00 or 157s 6d[J]. Combustion and Flank, 1962.6: 71.
    [15] Chen M, Huang S, Lu S. Spraying of liquid-solid suspension under pressure (Ⅰ) Theoretical analysis and mathematical modal[J]. Huagong Xuebao/Journal of Chemical Industry and Engineering (China), 2003.54(11): 1530.
    [16] Chung S H, Chung D H, Fu C, et al. Local extinction Karlovitz number for premixed flames[J]. Combustion and Flame, 1996. 106(4): 515-520.
    [17] Thomas G O. The quenching of laminar methane-air flames by water mists[J]. Combustion and Flame, 2002. 130(1-2): 147.
    [18] Yang W, Kee R J. The effect of monodispersed water mists on the structure, burning velocity, and extinction behavior of freely propagating, stoichiometric, premixed, methane-air flames[J]. Combustion and Flame, 2002. 130(4): 322.
    [19] Fuss S P, Cben E F, Yang W, et al. Inhibition of premixed methane/air flames by water mist[C]. Sapporo, Japan: Combustion Institute, 2002:361.
    [20] John Dwyer, Jr. James, G. Hansel, et al. Temperature Influence on the Flammability Limits of Heat Treating Atmospheres[J]. Air Products and Chemicals, Inc., Allentown, PA., 2002.
    [21] Liao S Y, Jiang D M, Cheng Q, et al. Correlations for laminar burning velocities of liquefied petroleum gas-air mixtures[J]. Energy Conversion and Management, 2005. 46(20): 3175-3184.
    [22] 陆守香,何杰,于春红,et al.水抑制瓦斯爆炸的机理研究[J].煤炭学报,1998.23(4): 417-421.
    [23] 张波,傅维标.氢气和水蒸气对甲烷/空气层流火焰传播速度的影响[J].燃烧科学与技术,2004.10(6):559-563.
    [24] Qiao L, Kim C H, Faeth G M. Suppression effects of diluents on laminar premixed hydrogen/oxygen/nitrogen flames[J]. Combustion and Flame, 2005. 143(1-2): 79-96.
    [25] Spadaceini L J, Colket M B, Ⅲ. Ignition delay characteristics of methane fuels[J]. Progress in Energy and Combustion Science, 1994.20(5): 431-460.
    [26] 钟北京,傅维标.甲烷火焰中氢气对着火与燃尽的影响[J].燃烧科学与技术,2001.7(2): 194-198.
    [27] 北京劳动保护科学研究所.安全技术手册[M]:电力工业出版社,1982.
    [28] 岑可法,姚强,骆仲泱.高等燃烧学[M].杭州:渐江大学出版社,2002.51-55.
    [1] Gu, X.J., et al., Laminar burning velocity and markstein lengths of methane-air mixtures[J]. Combustion and Flame, 2000. 121 (1): 41-58.
    [2] Mendes-Lopes, J.M.C. and H. Daneshyar, Influence of strain fields on flame propagation[J]. Combustion and Flame, 1985.60(1): 29.
    [3] Tien, J. H. and M. Matalon, On the burning velocity of stretched flames[J]. Combustion and Flame, 1991.84(3-4): 238.
    [4] Bradley, D., P. H. Gaskell, and X.J. Gu, Burning velocities, markstein lengths, and flame quenching for spherical methane-air flames: A computational study[J]. Combustion and Flame, 1996. 104(1-2): 176.
    [5] Mizomoto, M. and H. Yoshida, Effects of Lewis number on the burning intensity of Bunsen flames[J]. Combustion and Flame, 1987.70(1): 47.
    [6] Hou, S.-S. and J.-C. Lin, The influence of preferential diffusion and stretch on the burning intensity of a curved flame front with fuel spray[J]. International Journal of Heat and Mass Transfer, 2003.46(26): 5073-5085.
    [7] Buckmaster, J., et al., Combustion theory and modeling[J]. Proceedings of the Combustion Institute, 2005. 30(1): 1-19.
    [8] Searby, G. and J. Quinard, Direct and indirect measurements of Markstein numbers of premixed flames[J]. Combustion and Flame, 1990. 82(3-4): 298.
    [9] Choi, C.W. and I.K. Puri, Contribution of curvature to flame-stretch effects on premixed flames[J]. Combustion and Flame, 2001. 126(3): 1640-1654.
    [10] Bechtold, J. K. and M. Matalon, The dependence of the Markstein length on stoichiometry[J]. Combustion and Flame, 2001. 127(1-2): 1906-1913.
    [11] Tseng, L. K., M. A. Ismail, and G. M. Faeth, Laminar burning velocities and Markstein numbers of hydrocarbon/air flames[J]. Combustion and Flame, 1993.95(4): 410.
    [12] Liao, S. Y., et al., Measurements of Markstein numbers and laminar burning velocities for natural gas-air mixtures[J]. Energy and Fuels, 2004. 18(2): 316-326.
    [13] Davis, S. G., J. Quinard, and G. Searby, Determination of Markstein numbers in eounterflow premixed flames[J]. Combustion and Flame, 2002. 130(1-2): 112-122.
    [14] Bielert, U. and M. Sichel, Numerical simulation of premixed combustion processes in closed tubes[J]. Combustion and Flame, 1998. 114(3-4): 397.
    [15] Modak, A. U., et al., The effect of mono-dispersed water mist on the suppression of laminar premixed hydrogen-, methane-, and propane-air flames[J]. Combustion and Flame, 2006. 144(1-2): 103.
    [1] Kojima J, Ikeda Y, Nakajima T, et al. Chemiluminescence-based diagnostics for the flame-front structure of premixed flames[J]. Nippon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B, 2003.69(678): 482.
    [2] Kojima J, Ikeda Y, Nakajima T. Experimental and computational study of spatial distributions of OH~*, CH~*, and C2* chemilumineseenees in the reaction zone of laminar premixed flames[J]. Nippon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B, 2003.69(684): 1893.
    [3] Ikeda Y, Kojima J, Nakajima T. Local chemiluminescence spectra measurement in laminar methane/air and propane/air premixed flames[J]. Nippon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B, 2003. 69(677): 200.
    [4] Ikeda Y, Kojima J, Hashimoto H. Local chemiluminescence spectra measurements in a high-pressure laminar methane/air premixed flame[C]. Sapporo, Japan: Combustion Institute, 2002: 1495-1500.
    [5] Cowart J S, Ata A, Cetegen B M. OH~*, CH~* and C_2~*chemiluminescence measurements in bluff body stabilized premixed flames utilizing gaseous and prevaporized liquid hydrocarbon fuels[C]. Hilton Head, SC, United States: Combustion Institute, 2001: 424.
    [6] Hoffmann J G, Echigo R, Yoshida H, et al. Experimental study on combustion in porous media with a reciprocating flow system[J]. Combustion and Flame, 1997.111 (1-2): 32-46.
    [7] 阿尔克梅德 TJ,赫尔曼R.林守麟,寿曼立分析火焰光谱学原理[M].北京:地质出版社,1984,5.
    [8] GaydonAG. Flames: Their structure, radiation and temperature[J]. 1993.1: 145-155.
    [9] Gaydon A G.The Spectroscopy of Flames[M]. London: Chapman & Hall LTD., 1957: 273.
    [10] R. M. Fristrom A A W. Flame Structure[M]. New York: McGraw-Hill Book Company New York ST. LOUIS San Franciso Toronto London Sydney, 1965: 92-94,252-257.
    [11] 董刚,刘宏伟,陈义良.通用甲烷层流预混火焰半详细化学动力学机理[J].燃烧科学与技术,2002.8(1):44-48.
    [12] 董刚,邱榕,蒋勇,et al.利用主要成分分析法简化甲烷/空气层流预混火焰的反应机理[J].火灾科学,2004.13(3):158-162.
    [13] 孔文俊,张孝谦,周向阳.CH_4/O2/N2预混、层流、稳态火反应机理分析[J].燃烧科学与技术,1998.4(2):168-176.
    [14] 李宇红,祁海鹰,张宏武.甲烷预混燃烧火焰的详细数值模拟[J].工程热物理学报, 2002.23(1): 119-224.
    [15] Kojima J, lkeda Y, Nakajirna T. Basic aspects of OH(A), CH(A), and C_2(d) chemiluminescence in the reaction zone of laminar methane-air premixed flames[J]. Combustion and Flame, 2005. 140(1): 34.
    [16] Kojima J, lkeda Y, Nakajima T. Detail Distributions of OH~*,CH~* and C_2~* Chemiluminescence in the Reaction Zone of Laminar Premix Methane/Air Flames[C]. 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Huntsville, Alabama, 2000.
    [17] Gaydon A G, Wolfhard H G. 王方 火焰学[M].北京:中国科学技术出版社,1993.
    [18] Parra T, Castro F, Mendez C, et al. Extinction of premixed methane-air flames by water mist[J]. Fire Safety Journal, 2004.39(7): 581-600.
    [19] Eric Schwegler, Giulia Galli, Francois Gygi, et al. Dissociation of Water under Pressure[J]. Phys. Rev. Lett., 2001.87(26-24): 265-269.
    [20] 计晶晶,张长在,任建梅.三种磁水机处理对自来水电导率影响的比较[J].包头医学院学报,2001.18(1):10-11.
    [21] 傅维标,卫景彬.燃烧物理学基础[M].北京:机械工业出版社,1984:52.
    [22] GB6682-92,分析实验室用水规格和试验方法[S].中华人民共和国国家标准,北京:1993.
    [23] Thomas G O. The quenching of laminar methane-air flames by water mists[J]. Combustion and Flame, 2002. 130(1-2): 147.
    [24] 陆守香,何杰,于春红,et al.水抑制瓦斯爆炸的机理研究[J].煤炭学报,1998.23(4): 417-421.
    [25] Homer J. B., Hurle I. R. The Dissociation of Water Vapour Behind Shock Waves [C]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences. London, 1970: 585-598.