口蹄疫病毒VP1蛋白抑制细胞Ⅰ型干扰素产生的分子机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
口蹄疫(Foot-and-Mouth Disease, FMD)是由口蹄疫病毒(Foot-and-Mouth Disease Virus, FMDV)引起的一种急性、热性、高度接触传染性动物疫病,是全球范围内家畜及其产品贸易最大的羁绊。FMDV通过逃避宿主的免疫监视建立持续性感染,使患畜持续向外界排毒,成为传染源。VP1是FMDV主要的结构蛋白,可参与病毒入侵和免疫逃逸,但VP1在细胞中发挥作用的机理尚不清楚。本研究通过寻找与VP1相互作用的宿主靶蛋白,初步阐明VP1在FMDV引起的免疫抑制中所发挥的作用。
     本研究通过双荧光素酶报告基因检测法和荧光定量PCR发现FMDV VP1显著抑制Ⅰ型干扰素和NF-κB的活化。因此,推测VP1在FMDV抑制宿主细胞Ⅰ型干扰素表达的过程中起着关键作用。为了探索FMDV VP1抑制Ⅰ型干扰素产生的分子机理,应用酵母双杂交技术寻找与FMDVVP1相互作用的宿主细胞靶蛋白,结果显示VP1与可溶性耐药相关钙结合蛋白(soluble resistance-related calcium-binding protein, Sorcin)存在着相互作用,并通过免疫共沉淀和激光共聚焦技术验证了两者在细胞中的相互作用。之后,利用RNAi沉默细胞内源性Sorcin蛋白的表达,发现Sorcin是VP1抑制细胞Ⅰ型干扰素产生所必需的蛋白。进一步研究发现:Sorcin会影响细胞中Ⅰ型干扰素和NF-κB的转录激活水平,表明Sorcin是免疫信号传导通路中的一个负调控分子。此外,构建了Sorcin基因敲除小鼠,以期在体内验证Sorcin的作用,初步的实验结果表明:基因敲除小鼠较野生型小鼠表现出更为明显的炎症反应。
     为了揭示Sorcin负调控的机制,本文利用酵母双杂交技术,以Sorcin蛋白为诱饵,筛选人白细胞文库中与其相互作用的蛋白,找到新的靶蛋白信号传导和转录激活因子-3(signal transducer and activator of transcription3, STAT3),并通过免疫共沉淀和激光共聚焦实验验证两者的相互作用,证明STAT3是Sorcin在免疫信号传递通路中下游的接头分子。
     综上所述,本研究发现在FMDV感染宿主细胞的过程中,VP1蛋白通过与宿主细胞蛋白Sorcin的互作,进而活化转录因子STAT3, STAT3参与负调控NF-κB信号通路,最终抑制宿主细胞Ⅰ型干扰素的产生,为深入了解FMDV造成持续感染的分子机理提供了重要参考。
Foot-and-mouth disease (FMD) is an acute, febrile, highly contagious animal disease caused by FMD virus (FMDV), and has been recognized as the most important constraint to international trade in animals and animal products. An outstanding feature for FMDV infection is that the FMDV infected animals may remain as a carrier state, some of the animals exposed to FMDV may have a long term asymptomatic infection. Viruses can evade host immune surveillance and exploit the host response to provide favorable intracellular conditions for long-term persistence. FMDV VP1is the major structural protein, which plays an important role in the process of viral infection and immune evasion, but the underlying mechanism has not yet been elucidated. Here we showed the critical role of VP1in FMDV-induced persistent infection.
     In this study, we found that the FMDV VP1was transfected into HEK293T cells and the effects of expression of the viral proteins on expression of type I interferon and the transcription activation of NF-κB were examined by the qRT-PCR and dual-luciferase reporter gene assay. To further investigate the molecular mechanism underlying VP1-induced immunosuppression, we performed the Yeast Two-hybrid assay using FMDV protein VP1as the bait and the PK15cDNA library as the prey to screen the VP1-interacting proteins. Among the positive clones, we focus on soluble resistance-related calcium-binding protein (Sorcin). The interaction between VP1and Sorcin was confirmed by Co-IP and Confocal assay. Importantly, we found that knockdown of Sorcin abolished the inhibitory effects of the activation of Type I interferon and NF-κB promoters. These results indicate that Sorcin is required for VP1-induced suppression of type I interferon response. In addition, over-expression or down-expression of Sorcin can also affect the transcriptional activation of type I interferons and NF-κB, it is speculated that the Sorcin is a negative regulator of immune signaling pathway. To further validate the role of Sorcin in vivo, constructing Sorcin knockout mice, preliminary experimental results showed that: knockout mice exhibited more severe inflammation.
     To explore the mechanism of action of Sorcin and the pathways in which Sorcin is involved, yeast two hybrid screens, co-immunoprecipitation and confocal assay unambiguously identified signal transducer and activator of transcription3(STAT3) as a Sorcin-interacting protein. More interesting, knocking down of the STAT3abolished the ability of Sorcin to inhibit NF-κB signaling, suggesting that STAT3functions downstream of Sorcin in NF-κB signaling pathway.
     In summary, by yeast two-hybrid screening and immunoprecipitation approaches, we found that FMDV VP1interacted with Sorcin in the cytoplasm, and that VP1inhibited type I IFN response via interacting with Sorcin. Importantly, we found that Sorcin interacts with STAT3, and that STAT3act as an downstream adaptor protein of Sorcin in the negative regulation of NF-κB signaling pathway. These data further our understandings and provide new insights into the molecular mechanisms of the persistent infection of FMDV.
引文
[1]Burman A, Clark S, Abrescia N G, et al. Specificity of the VP1 GH loop of Foot-and-Mouth Disease virus for alphav integrins[J]. J Virol.2006,80(19):9798-9810.
    [2]Peng J M, Liang S M, Liang C M. VP1 of foot-and-mouth disease virus induces apoptosis via the Akt signaling pathway[J]. J Biol Chem.2004,279(50):52168-52174.
    [3]Chen W, Yan W, Du Q, et al. RNA interference targeting VP1 inhibits foot-and-mouth disease virus replication in BHK-21 cells and suckling mice[J]. J Virol.2004,78(13):6900-6907.
    [4]Su C, Duan X, Zheng J, et al. IFN-alpha as an Adjuvant for Adenovirus-Vectored FMDV Subunit Vaccine through Improving the Generation of T Follicular Helper Cells[J]. PLoS One.2013,8(6): e66134.
    [5]Samuel A R, Knowles N J. Foot-and-mouth disease virus:cause of the recent crisis for the UK livestock industry[J]. Trends Genet.2001,17(8):421-424.
    [6]Knowles N J, Samuel A R, Davies P R, et al. Outbreak of foot-and-mouth disease virus serotype O in the UK caused by a pandemic strain[J]. Vet Rec.2001,148(9):258-259.
    [7]Sobrino F, Domingo E. Foot-and-mouth disease in Europe. FMD is economically the most important disease of farm animals. Its re-emergence in Europe is likely to have consequences that go beyond severe alterations of livestock production and trade[J]. EMBO Rep.2001,2(6):459-461.
    [8]Stewart W L. The fight against foot-and-mouth disease in Britain and Europe[J]. Vet Med.1947, 42(10):377.
    [9]Holland J, Spindler K, Horodyski F, et al. Rapid evolution of RNA genomes[J]. Science.1982, 215(4540):1577-1585.
    [10]Martinez-Salas E. Internal ribosome entry site biology and its use in expression vectors[J]. Curr Opin Biotechnol.1999,10(5):458-464.
    [11]Garcia-Nunez S, Gismondi M I, Konig G, et al. Enhanced IRES activity by the 3'UTR element determines the virulence of FMDV isolates[J]. Virology.2014,448:303-313.
    [12]Gutierrez A, Martinez-Salas E, Pintado B, et al. Specific inhibition of aphthovirus infection by RNAs transcribed from both the 5'and the 3'noncoding regions[J]. J Virol.1994,68(11):7426-7432.
    [13]Devaney M A, Vakharia V N, Lloyd R E, et al. Leader protein of foot-and-mouth disease virus is required for cleavage of the p220 component of the cap-binding protein complex[J]. J Virol.1988, 62(11):4407-4409.
    [14]Seipelt J, Guarne A, Bergmann E, et al. The structures of picornaviral proteinases[J]. Virus Res. 1999,62(2):159-168.
    [15]Moffat K, Knox C, Howell G, et al. Inhibition of the secretory pathway by foot-and-mouth disease virus 2BC protein is reproduced by coexpression of 2B with 2C, and the site of inhibition is determined by the subcellular location of 2C[J]. J Virol.2007,81(3):1129-1139.
    [16]Beard C W, Mason P W. Genetic determinants of altered virulence of Taiwanese foot-and-mouth disease virus[J]. J Virol.2000,74(2):987-991.
    [17]King A M, Sangar D V. Harris T.1. et al. Heterogeneity of the genome-linked protein of foot-and-mouth disease virus[J]. J Virol.1980,34(3):627-634.
    [18]Falk M M, Sobrino F, Beck E. VPg gene amplification correlates with infective particle formation in foot-and-mouth disease virus[J]. J Virol.1992,66(4):2251-2260.
    [19]Falk M M, Grigera P R, Bergmann I E, et al. Foot-and-mouth disease virus protease 3C induces specific proteolytic cleavage of host cell histone H3[J]. J Virol.1990,64(2):748-756.
    [20]Belsham G J, Mcinerney G M, Ross-Smith N. Foot-and-mouth disease virus 3C protease induces cleavage of translation initiation factors eIF4A and eIF4G within infected cells[J]. J Virol.2000,74(1): 272-280.
    [21]Ferrer-Orta C, Arias A, Perez-Luque R, et al. Structure of foot-and-mouth disease virus RNA-dependent RNA polymerase and its complex with a template-primer RNA[J]. J Biol Chem.2004, 279(45):47212-47221.
    [22]Saiz M, Nunez J I, Jimenez-Clavero M A, et al. Foot-and-mouth disease virus:biology and prospects for disease control[J]. Microbes Infect.2002,4(11):1183-1192.
    [23]de Los S T, de Avila B S, Weiblen R, et al. The leader proteinase of foot-and-mouth disease virus inhibits the induction of beta interferon mRNA and blocks the host innate immune response[J]. J Virol. 2006,80(4):1906-1914.
    [24]Chinsangaram J, Koster M, Grubman M J. Inhibition of L-deleted foot-and-mouth disease virus replication by alpha/beta interferon involves double-stranded RNA-dependent protein kinase[J]. J Virol. 2001,75(12):5498-5503.
    [25]Wang D, Fang L, Luo R, et al. Foot-and-mouth disease virus leader proteinase inhibits dsRNA-induced type I interferon transcription by decreasing interferon regulatory factor 3/7 in protein levels[J]. Biochem Biophys Res Commun.2010,399(1):72-78.
    [26]de Los S T, Segundo F D, Zhu J, et al. A conserved domain in the leader proteinase of foot-and-mouth disease virus is required for proper subcellular localization and function[J]. J Virol. 2009,83(4):1800-1810.
    [27]Isaacson M K, Ploegh H L. Ubiquitination, ubiquitin-like modifiers, and deubiquitination in viral infection[J]. Cell Host Microbe.2009,5(6):559-570.
    [28]Mao A P, Li S, Zhong B, et al. Virus-triggered ubiquitination of TRAF3/6 by cIAPl/2 is essential for induction of interferon-beta (IFN-beta) and cellular antiviral response[J]. J Biol Chem.2010, 285(13):9470-9476.
    [29]Wang D, Fang L, Li P, et al. The leader proteinase of foot-and-mouth disease virus negatively regulates the type I interferon pathway by acting as a viral deubiquitinase[J]. J Virol.2011,85(8): 3758-3766.
    [30]Wang D, Fang L, Liu L, et al. Foot-and-mouth disease virus (FMDV) leader proteinase negatively regulates the porcine interferon-lambdal pathway[J]. Mol Immunol.2011,49(1-2):407-412.
    [31]Berinstein A, Roivainen M, Hovi T, et al. Antibodies to the vitronectin receptor (integrin alpha V beta 3) inhibit binding and infection of foot-and-mouth disease virus to cultured cells[J]. J Virol.1995, 69(4):2664-2666.
    [32]Jackson T, Clark S, Berryman S, et al. Integrin alphavbeta8 functions as a receptor for foot-and-mouth disease virus:role of the beta-chain cytodomain in integrin-mediated infectionfJ]. J Virol.2004,78(9):4533-4540.
    [33]Jackson T, Mould A P, Sheppard D, et al. Integrin alphavbetal is a receptor for foot-and-mouth disease virus[J]. J Virol.2002,76(3):935-941.
    [34]Jackson T, Sheppard D, Denyer M, et al. The epithelial integrin alphavbeta6 is a receptor for foot-and-mouth disease virus[J]. J Virol.2000,74(11):4949-4956.
    [35]Neff S, Sa-Carvalho D, Rieder E, et al. Foot-and-mouth disease virus virulent for cattle utilizes the integrin alpha(v)beta3 as its receptor[J]. J Virol.1998,72(5):3587-3594.
    [36]Baranowski E, Ruiz-Jarabo C M, Lim F, et al. Foot-and-mouth disease virus lacking the VP1 G-H loop:the mutant spectrum uncovers interactions among antigenic sites for fitness gain[J]. Virology. 2001,288(2):192-202.
    [37]Donnelly M L, Hughes L E, Luke G, et al. The 'cleavage' activities of foot-and-mouth disease virus 2A site-directed mutants and naturally occurring '2A-like' sequences[J]. J Gen Virol.2001,82(Pt 5):1027-1041.
    [38]Garcia-Briones M, Rosas M F, Gonzalez-Magaldi M, et al. Differential distribution of non-structural proteins of foot-and-mouth disease virus in BHK-21 cells[J]. Virology.2006,349(2): 409-421.
    [39]Barfoed A M, Rodriguez F, Therrien D, et al. DNA immunization with 2C FMDV non-structural protein reveals the presence of an immunodominant CD8+, CTL epitope for Balb/c mice[J]. Antiviral Res.2006,72(3):178-189.
    [40]Gladue D P, O'Donnell V, Baker-Branstetter R, et al. Foot-and-mouth disease virus nonstructural protein 2C interacts with Beclinl, modulating virus replication[J]. J Virol.2012,86(22):12080-12090.
    [41]Wang J, Wang Y, Liu J, et al. A critical role of N-myc and STAT interactor (Nmi) in foot-and-mouth disease virus (FMDV) 2C-induced apoptosis[J]. Virus Res.2012,170(1-2):59-65.
    [42]Yang P C, Chu R M, Chung W B, et al. Epidemiological characteristics and financial costs of the 1997 foot-and-mouth disease epidemic in Taiwan[J]. Vet Rec.1999,145(25):731-734.
    [43]Beard C W, Mason P W. Genetic determinants of altered virulence of Taiwanese foot-and-mouth disease virus[J]. J Virol.2000,74(2):987-991.
    [44]O'Donnell V K, Pacheco J M, Henry T M, et al. Subcellular distribution of the foot-and-mouth disease virus 3A protein in cells infected with viruses encoding wild-type and bovine-attenuated forms of 3A[J]. Virology.2001,287(1):151-162.
    [45]Pacheco J M, Henry T M, O'Donnell V K, et al. Role of nonstructural proteins 3 A and 3B in host range and pathogenicity of foot-and-mouth disease virus[J]. J Virol.2003,77(24):13017-13027.
    [46]Belsham G J, Mcinerney G M, Ross-Smith N. Foot-and-mouth disease virus 3C protease induces cleavage of translation initiation factors eIF4A and eIF4G within infected cells[J]. J Virol.2000,74(1): 272-280.
    [47]Wang D. Fang L. Li K, et al. Foot-and-mouth disease virus 3C protease cleaves NEMO to impair innate immune signaling[J]. J Virol.2012,86(17):9311-9322.
    [48]Du Y, Bi J, Liu J, et al.3Cpro of Foot-and-Mouth Disease Virus Antagonizes the Interferon Signaling Pathway by Blocking STAT1/STAT2 Nuclear Translocation[J]. J Virol.2014,88(9): 4908-4920.
    [49]Rai D K, Schafer E A, Singh K, et al. Repeated exposure to 5D9, an inhibitor of 3D polymerase, effectively limits the replication of foot-and-mouth disease virus in host cells[J]. Antiviral Res.2013, 98(3):380-385.
    [50]Kerkvliet J, Zoecklein L, Papke L, et al. Transgenic expression of the 3D polymerase inhibits Theiler's virus infection and demyelination[J]. J Virol.2009,83(23):12279-12289.
    [51]Saiz M, Gomez S, Martinez-Salas E, et al. Deletion or substitution of the aphthovirus 3'NCR abrogates infectivity and virus replication[J]. J Gen Virol.2001,82(Pt 1):93-101.
    [52]Rodriguez-Pulido M, Borrego B, Sobrino F, et al. RNA structural domains in noncoding regions of the foot-and-mouth disease virus genome trigger innate immunity in porcine cells and mice[J]. J Virol.2011,85(13):6492-6501.
    [53]Salt J S. The carrier state in foot and mouth disease-an immunological review[J]. Br Vet J.1993, 149(3):207-223.
    [54]Mccullough K C, De Simone F, Brocchi E, et al. Protective immune response against foot-and-mouth disease[J]. J Virol.1992,66(4):1835-1840.
    [55]Sobrino F, Saiz M, Jimenez-Clavero M A, et al. Foot-and-mouth disease virus:a long known virus, but a current threat[J]. Vet Res.2001,32(1):1-30.
    [56]Beck E, Strohmaier K. Subtyping of European foot-and-mouth disease virus strains by nucleotide sequence determination[J]. J Virol.1987,61(5):1621-1629.
    [57]Mackay D K. Differentiating infection from vaccination in foot-and-mouth disease[J]. Vet Q. 1998,20(sup2):2-5.
    [58]Mackay D K. Differentiating infection from vaccination in foot-and-mouth disease[J]. Vet Q. 1998,20 Suppl 2:S2-S5.
    [59]Brown F. New approaches to vaccination against foot-and-mouth disease[J]. Vaccine.1992, 10(14):1022-1026.
    [60]Rowlands D J, Sangar D V, Brown F. A comparative chemical and serological study of the full and empty particles of foot-and mouth disease virus[J]. J Gen Virol.1975,26(3):227-238.
    [61]Belsham G J. Distinctive features of foot-and-mouth disease virus, a member of the picornavirus family; aspects of virus protein synthesis, protein processing and structure[J]. Prog Biophys Mol Biol. 1993,60(3):241-260.
    [62]Grubman M J, Lewis S A, Morgan D O. Protection of swine against foot-and-mouth disease with viral capsid proteins expressed in heterologous systems[J]. Vaccine.1993,11(8):825-829.
    [63]Baranowski E, Ruiz-Jarabo C M, Lim F, et al. Foot-and-mouth disease virus lacking the VP1 G-H loop:the mutant spectrum uncovers interactions among antigenic sites for fitness gain[J]. Virology. 2001,288(2):192-202.
    [64]Dimarchi R, Brooke G, Gale C, et al. Protection of cattle against foot-and-mouth disease by a synthetic peptide[J]. Science.1986,232(4750):639-641.
    [65]Taboga O, Tami C, Carrillo E, et al. A large-scale evaluation of peptide vaccines against foot-and-mouth disease:lack of solid protection in cattle and isolation of escape mutants[J]. J Virol. 1997,71(4):2606-2614.
    [66]Beard C, Ward G, Rieder E, et al. Development of DNA vaccines for foot-and-mouth disease, evaluation of vaccines encoding replicating and non-replicating nucleic acids in swine[J]. J Biotechnol. 1999,73(2-3):243-249.
    [67]Isaacs A, Lindenmann J. Virus interference. T. The interferon[J]. Proc R Soc Lond B Biol Sci. 1957,147(927):258-267.
    [68]Murray P J. The JAK-STAT signaling pathway:input and output integration[J]. J Immunol.2007, 178(5):2623-2629.
    [69]Stancato L F, David M, Carter-Su C, et al. Preassociation of STAT1 with STAT2 and STAT3 in separate signalling complexes prior to cytokine stimulation[J]. J Biol Chem.1996,271(8):4134-4137.
    [70]Banninger G, Reich N C. STAT2 nuclear trafficking[J]. J Biol Chem.2004,279(38): 39199-39206.
    [71]Tang X, Gao J S, Guan Y J, et al. Acetylation-dependent signal transduction for type I interferon receptor[J]. Cell.2007,131(1):93-105.
    [72]Talloczy Z, Jiang W, Virgin H T, et al. Regulation of starvation-and virus-induced autophagy by the eIF2alpha kinase signaling pathway[J]. Proc Natl Acad Sci U S A.2002,99(1):190-195.
    [73]Clemens M J. Epstein-Barr virus:inhibition of apoptosis as a mechanism of cell transformation[J]. Int J Biochem Cell Biol.2006,38(2):164-169.
    [74]Kochs G, Trost M, Janzen C, et al. MxA GTPase:oligomerization and GTP-dependent interaction with viral RNP target structures[J]. Methods.1998,15(3):255-263.
    [75]Bautista E M, Ferman G S, Golde W T. Induction of lymphopenia and inhibition of T cell function during acute infection of swine with foot and mouth disease virus (FMDV)[J]. Vet Immunol Immunopathol.2003,92(1-2):61-73.
    [76]Guzylack-Piriou L, Bergamin F, Gerber M, et al. Plasmacytoid dendritic cell activation by foot-and-mouth disease virus requires immune complexes[J]. Eur J Immunol.2006,36(7):1674-1683.
    [77]Interferon-alpha production by swine dendritic cells is inhibited during acute infection with foot-and-mouth disease virus[J].2008,21(1):68-77.
    [78]Roberts D, Meyers M B, Biedler J L, et al. Association of sorcin with drug resistance in L1210 cells[J]. Cancer Chemother Pharmacol.1989,23(1):19-25.
    [79]Meyers M B, Schneider K A, Spengler B A, et al. Sorcin (V19), a soluble acidic calcium-binding protein overproduced in multidrug-resistant cells. Identification of the protein by anti-sorcin antibody[J]. Biochem Pharmacol.1987,36(14):2373-2380.
    [80]Heizmann C W. Novel calcium-binding proteins:fundamentals and clinical implications[M]. Berlin:Springer-Verlag.1991:624.
    [81]Smith V L, Dedman J R. Stimulus response coupling:the role of intracellular calcium-binding proteins[M]. Boca Raton, Fla.:CRC Press,1990:523.
    [82]Strynadka N C, James M N. Crystal structures of the helix-loop-helix calcium-binding proteins[J]. Annu Rev Biochem.1989,58:951-998.
    [83]Zamparelli C, Ilari A, Verzili D, et al. Calcium-and pH-linked oligomerization of sorcin causing translocation from cytosol to membranes[J]. FEBS Lett.1997,409(1):1-6.
    [84]Brownawell A M, Creutz C E. Calcium-dependent binding of sorcin to the N-terminal domain of synexin (annexin VII)[J]. J Biol Chem.1997,272(35):22182-22190.
    [85]Zamparelli C, Ilari A, Verzili D, et al. Structure-function relationships in sorcin, a member of the penta EF-hand family. Interaction of sorcin fragments with the ryanodine receptor and an Escherichia coli model system[J]. Biochemistry.2000,39(4):658-666.
    [86]Xie X, Dwyer M D, Swenson L, et al. Crystal structure of calcium-free human sorcin:a member of the penta-EF-hand protein family[J]. Protein Sci.2001,10(12):2419-2425.
    [87]Meyers M B, Pickel V M, Sheu S S, et al. Association of sorcin with the cardiac ryanodine receptor[J]. J Biol Chem.1995,270(44):26411-26418.
    [88]Lokuta A J, Meyers M B, Sander P R, et al. Modulation of cardiac ryanodine receptors by sorcin[J]. J Biol Chem.1997,272(40):25333-25338.
    [89]Valdivia H H. Modulation of intracellular Ca2+levels in the heart by sorcin and FKBP12, two accessory proteins of ryanodine receptors[J]. Trends Pharmacol Sci.1998,19(12):479-482.
    [90]Suarez J, Mcdonough P M, Scott B T, et al. Sorcin modulates mitochondrial Ca(2+) handling and reduces apoptosis in neonatal rat cardiac myocytes[J]. Am J Physiol Cell Physiol.2013,304(3): C248-C256.
    [91]Gracy K N, Clarke C L, Meyers M B, et al. N-methyl-D-aspartate receptor 1 in the caudate-putamen nucleus:ultrastructural localization and co-expression with sorcin, a 22,000 mol. wt calcium binding protein[J]. Neuroscience.1999,90(1):107-117.
    [92]Pack-Chung E, Meyers M B, Pettingell W P, et al. Presenilin 2 interacts with sorcin, a modulator of the ryanodine receptor[J]. J Biol Chem.2000,275(19):14440-14445.
    [93]Szakacs G, Paterson J K, Ludwig J A, et al. Targeting multidrug resistance in cancer[J]. Nat Rev Drug Discov.2006,5(3):219-234.
    [94]Beyer-Sehlmeyer G, Hiddemann W, Wormann B, et al. Suppressive subtractive hybridisation reveals differential expression of serglycin, sorcin, bone marrow proteoglycan and prostate-tumour-inducing gene I (PTI-1) in drug-resistant and sensitive tumour cell lines of haematopoetic origin[J]. Eur J Cancer.1999,35(12):1735-1742.
    [95]Chuthapisith S, Layfield R, Kerr 1 D, et al. Proteomic profiling of MCF-7 breast cancer cells with chemoresistance to different types of anti-cancer drugs[J]. Int J Oncol.2007,30(6):1545-1551.
    [96]Yang Y X, Xiao Z Q, Chen Z C, et al. Proteome analysis of multidrug resistance in vincristine-resistant human gastric cancer cell line SGC7901/VCR[J]. Proteomics.2006,6(6): 2009-2021.
    [97]Tan Y, Li G, Zhao C, et al. Expression of sorcin predicts poor outcome in acute myeloid leukemia[J]. Leuk Res.2003.27(2):125-131.
    [98]Parekh H K, Deng H B, Choudhary K, et al. Overexpression of sorcin, a calcium-binding protein, induces a low level of paclitaxel resistance in human ovarian and breast cancer cells[J]. Biochem Pharmacol.2002,63(6):1149-1158.
    [99]Zhou Y, Xu Y, Tan Y, et al. Sorcin, an important gene associated with multidrug-resistance in human leukemia cells[J]. Leuk Res.2006,30(4):469-476.
    [100]Witkowski J M, Miller R A. Calcium signal abnormalities in murine T lymphocytes that express the multidrug transporter P-glycoprotein[J]. Mech Ageing Dev.1999,107(2):165-180.
    [101]Kawakami M, Nakamura T, Okamura N, et al. Knock-down of sorcin induces up-regulation of MDR1 in HeLa cells[J]. Biol Pharm Bull.2007,30(6):1065-1073.
    [102]Landriscina M, Laudiero G, Maddalena F, et al. Mitochondrial chaperone Trapl and the calcium binding protein Sorcin interact and protect cells against apoptosis induced by antiblastic agents[J]. Cancer Res.2010,70(16):6577-6586.
    [103]Noordeen N A, Meur G, Rutter G A, et al. Glucose-induced nuclear shuttling of ChREBP is mediated by sorcin and Ca(2+) ions in pancreatic beta-cells[J]. Diabetes.2012,61(3):574-585.
    [104]Levy D E, Kessler D S, Pine R, et al. Interferon-induced nuclear factors that bind a shared promoter element correlate with positive and negative transcriptional control[J]. Genes Dev.1988, 2(4):383-393.
    [105]Dale T C, Imam A M, Kerr I M, et al. Rapid activation by interferon alpha of a latent DNA-binding protein present in the cytoplasm of untreated cells[J]. Proc Natl Acad Sci U S A.1989, 86(4):1203-1207.
    [106]Fu X Y. A transcription factor with SH2 and SH3 domains is directly activated by an interferon alpha-induced cytoplasmic protein tyrosine kinase(s)[J]. Cell.1992,70(2):323-335.
    [107]Velazquez L, Fellous M, Stark G R, et al. A protein tyrosine kinase in the interferon alpha/beta signaling pathway[J]. Cell.1992,70(2):313-322.
    [108]Muller M, Briscoe J, Laxton C, et al. The protein tyrosine kinase JAK1 complements defects in interferon-alpha/beta and-gamma signal transduction[J]. Nature.1993,366(6451):129-135.
    [109]Larner A C, David M, Feldman G M, et al. Tyrosine phosphorylation of DNA binding proteins by multiple cytokines[J]. Science.1993,261(5129):1730-1733.
    [110]Fu X Y, Zhang J J. Transcription factor p91 interacts with the epidermal growth factor receptor and mediates activation of the c-fos gene promoter[J]. Cell.1993,74(6):1135-1145.
    [111]Ruff-Jamison S, Zhong Z, Wen Z, et al. Epidermal growth factor and lipopolysaccharide activate Stat3 transcription factor in mouse liver[J]. J Biol Chem.1994,269(35):21933-21935.
    [112]Yu C L, Meyer D J, Campbell G S, et al. Enhanced DNA-binding activity of a Stat3-related protein in cells transformed by the Src oncoprotein[J]. Science.1995,269(5220):81-83.
    [113]Su W C, Kitagawa M, Xue N, et al. Activation of Statl by mutant fibroblast growth-factor receptor in thanatophoric dysplasia type Ⅱ dwarfism[J]. Nature.1997.386(6622):288-292.
    [114]Yu H, Jove R. The STATs of cancer--new molecular targets come of age[J]. Nat Rev Cancer. 2004,4(2):97-105.
    [115]Schindler C, Levy D E, Decker T. JAK-STAT signaling:from interferons to cytokines[J]. J Biol Chem.2007,282(28):20059-20063.
    [116]Takeda K, Akira S. STAT family of transcription factors in cytokine-mediated biological responses[J]. Cytokine Growth Factor Rev.2000,11(3):199-207.
    [117]Darnell J J, Kerr I M, Stark G R. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins[J]. Science.1994,264(5164):1415-1421.
    [118]Heinrich P C, Behrmann I, Muller-Newen G, et al. Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway[J]. Biochem J.1998,334 (Pt 2):297-314.
    [119]Takeda K, Akira S. STAT family of transcription factors in cytokine-mediated biological responses[J]. Cytokine Growth Factor Rev.2000,11(3):199-207.
    [120]Zhong Z, Wen Z, Darnell J J. Stat3:a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6[J]. Science.1994, 264(5155):95-98.
    [121]Darnell J J, Kerr I M, Stark G R. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins[J]. Science.1994,264(5164):1415-1421.
    [122]Yu H, Jove R. The STATs of cancer--new molecular targets come of age[J]. Nat Rev Cancer. 2004,4(2):97-105.
    [123]Darnell J J, Kerr IM, Stark G R. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins[J]. Science.1994,264(5164):1415-1421.
    [124]Mantovani A, Allavena P, Sica A, et al. Cancer-related inflammation[J]. Nature.2008,454(7203): 436-444.
    [125]Kujawski M, Kortylewski M, Lee H, et al. Stat3 mediates myeloid cell-dependent tumor angiogenesis in mice[J]. J Clin Invest.2008,118(10):3367-3377.
    [126]Kortylewski M, Xin H, Kujawski M, et al. Regulation of the IL-23 and IL-12 balance by Stat3 signaling in the tumor microenvironment[J]. Cancer Cell.2009,15(2):114-123.
    [127]Shain K H, Yarde D N, Meads M B, et al. Betal integrin adhesion enhances IL-6-mediated STAT3 signaling in myeloma cells:implications for microenvironment influence on tumor survival and proliferation[J]. Cancer Res.2009,69(3):1009-1015.
    [128]Karin M, Greten F R. NF-kappaB:linking inflammation and immunity to cancer development and progression[J]. Nat Rev Immunol.2005,5(10):749-759.
    [129]Baud V, Karin M. Is NF-kappaB a good target for cancer therapy? Hopes and pitfaIls[J]. Nat Rev Drug Discov.2009,8(1):33-40.
    [130]Yu H, Jove R. The STATs of cancer--new molecular targets come of age[J]. Nat Rev Cancer. 2004,4(2):97-105.
    [131]Basseres D S, Baldwin A S. Nuclear factor-kappaB and inhibitor of kappaB kinase pathways in oncogenic initiation and progression[J]. Oncogene.2006,25(51):6817-6830.
    [132]Grivennikov S, Karin E, Terzic J, et al. IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer[J]. Cancer Cell.2009,15(2):103-113.
    [133]Heinrich P C, Behrmann I, Muller-Newen G, et al. Interleukin-6-type cytokine signalling through the gpl30/Jak/STAT pathway[J]. Biochem J.1998,334 (Pt 2):297-314.
    [134]Lee H, Herrmann A, Deng J H, et al. Persistently activated Stat3 maintains constitutive NF-kappaB activity in tumors[J]. Cancer Cell.2009,15(4):283-293.
    [135]Aegeansoftware. NoteExpress[DB/CD].2.0 ed.2005.
    [136]Yu H, Jove R. The STATs of cance--new molecular targets come of age[J]. Nat Rev Cancer. 2004,4(2):97-105.
    [137]Basseres D S, Baldwin A S. Nuclear factor-kappaB and inhibitor of kappaB kinase pathways in oncogenic initiation and progression[J]. Oncogene.2006,25(51):6817-6830.
    [138]Kortylewski M, Xin H, Kujawski M, et al. Regulation of the IL-23 and IL-12 balance by Stat3 signaling in the tumor microenvironment[J]. Cancer Cell.2009,15(2):114-123.
    [139]Ostrand-Rosenberg S, Sinha P. Myeloid-derived suppressor cells:linking inflammation and cancer[J]. J Immunol.2009,182(8):4499-4506.
    [140]Mantovani A, Allavena P, Sica A, et al. Cancer-related inflammation[J]. Nature.2008,454(7203): 436-444.
    [141]Kortylewski M, Xin H, Kujawski M, et al. Regulation of the IL-23 and IL-12 balance by Stat3 signaling in the tumor microenvironment[J]. Cancer Cell.2009,15(2):114-123.
    [142]Kortylewski M, Kujawski M, Wang T, et al. Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity[J]. Nat Med.2005,11(12):1314-1321.
    [143]Yu H, Pardoll D, Jove R. STATs in cancer inflammation and immunity:a leading role for STAT3[J]. Nat Rev Cancer.2009,9(11):798-809.
    [144]Yoshimura A, Naka T, Kubo M. SOCS proteins, cytokine signalling and immune regulation[J]. Nat Rev Immunol.2007,7(6):454-465.
    [145]Hirano T, Ishihara K, Hibi M. Roles of STAT3 in mediating the cell growth, differentiation and survival signals relayed through the IL-6 family of cytokine receptors[J]. Oncogene.2000,19(21): 2548-2556.
    [146]Yuan Z L, Guan Y J, Chatterjee D, et al. Stat3 dimerization regulated by reversible acetylation of a single lysine residue[J]. Science.2005,307(5707):269-273.
    [147]Alexander W S, Hilton D J. The role of suppressors of cytokine signaling (SOCS) proteins in regulation of the immune response[J]. Annu Rev Immunol.2004,22:503-529.
    [148]Shuai K, Liu B. Regulation of gene-activation pathways by PIAS proteins in the immune system[J]. Nat Rev Immunol.2005,5(8):593-605.
    [149]Sun S, Steinberg B M. PTEN is a negative regulator of STAT3 activation in human papillomavirus-infected cells[J]. J Gen Virol.2002,83(Pt 7):1651-1658.
    [150]Irie-Sasaki J, Sasaki T, Matsumoto W, et al. CD45 is a JAK phosphatase and negatively regulates cytokine receptor signaning[J]. Nature.2001.409(6818):349-354.
    [151]Migone T S, Cacalano N A, Taylor N, et al. Recruitment of SH2-containing protein tyrosine phosphatase SHP-1 to the interleukin 2 receptor; loss of SHP-1 expression in human T-lymphotropic virus type I-transformed T ceils[J]. Proc Natl Acad Sci U S A.1998,95(7):3845-3850.
    [152]Schaper F, Gendo C, Eck M, et al. Activation of the protein tyrosine phosphatase SHP2 via the interIeukin-6 signal transducing receptor protein gp130 requires tyrosine kinase Jakl and limits acute-phase protein expression[J]. Biochem J.1998,335 (Pt 3):557-565.
    [153]Yu H, Kortylewski M, Pardoll D. Crosstalk between cancer and immune cells:role of STAT3 in the tumour microenvironment[J]. Nat Rev Immunol.2007,7(1):41-51.
    [154]Barnett P V, Carabin H. A review of emergency foot-and-mouth disease (FMD) vaccines[J]. Vaccine.2002,20(11-12):1505-1514.
    [155]Kuhn R, Luz N, Beck E. Functional analysis of the internal translation initiation site of foot-and-mouth disease virus[J]. J Virol.1990,64(10):4625-4631.
    [156]Mason P W, Chinsangaram J, Moraes M P, et al. Engineering better vaccines for foot-and-mouth disease[J]. Dev Biol (Basel).2003,114:79-88.
    [157]Belsham G J, Mcinerney G M, Ross-Smith N. Foot-and-mouth disease virus 3C protease induces cleavage of translation initiation factors eIF4A and eIF4G within infected cells[J]. J Virol.2000,74(1): 272-280.
    [158]Kim S M, Park J H, Lee K N, et al. Enhanced inhibition of foot-and-mouth disease virus by combinations of porcine interferon-alpha and antiviral agents[J]. Antiviral Res.2012,96(2):213-220.
    [159]de Hemptinne V, Rondas D, Toepoel M, et al. Phosphorylation on Thr-106 and NO-modification of glyoxalase I suppress the TNF-induced transcriptional activity of NF-kappaB[J]. Mol Cell Biochem. 2009,325(1-2):169-178.
    [160]Zhang Z, Zheng Z, Luo H, et al. Human bocavirus NP1 inhibits IFN-beta production by blocking association of IFN regulatory factor 3 with IFNB promoter[J]. J Immunol.2012,189(3):1144-1153.
    [161]D'Agostino P M, Yang J, Reiss C S. DISTINCT MECHANISMS OF INHIBITION OF VSV REPLICATION IN NEURONS MEDIATED BY TYPE I AND TYPE II IFN[J]. Virus Rev Res. 2009,14(2):20-29.
    [162]Barber G N. Vesicular stomatitis virus as an oncolytic vector[J]. Viral Immunol.2004,17(4): 516-527.
    [163]Grubman M J, Baxt B. Foot-and-mouth disease[J]. Clin Microbiol Rev.2004,17(2):465-493.
    [164]Sellers R F. THE USE OF A LINE OF HAMSTER KIDNEY CELLS (BHK 21) FOR GROWTH OF ARTHROPOD-BORNE VIRUSES[J]. Trans R Soc Trop Med Hyg.1963,57:433-437.
    [165]Kim J M, Cho H H, Lee S Y, et al. Role of IRAKI on TNF-induced proliferation and NF-kB activation in human bone marrow mesenchymal stem cells[J]. Cell Physiol Biochem.2012,30(1): 49-60.
    [166]Su B, Wang J, Wang X, et al. The effects of IL-6 and TNF-alpha as molecular adjuvants on immune responses to FMDV and maturation of dendritic cells by DNA vaccination[J]. Vaccine.2008, 26(40):5111-5122.
    [167]Zhang Z, Zheng Z, Luo H, et al. Human bocavirus NP1 inhibits IFN-beta production by blocking association of IFN regulatory factor3 with IFNB promoter[J]. J Immunol.2012,189(3):1144-1153.
    [168]Camporeale A, Poli V. IL-6, IL-17 and STAT3:a holy trinity in auto-immunity?[J]. Front Biosci (Landmark Ed).2012,17:2306-2326.
    [169]Quinton L J, Blahna M T, Jones M R, et al. Hepatocyte-specific mutation of both NF-kappaB RelA and STAT3 abrogates the acute phase response in mice[J]. J Clin Invest.2012,122(5): 1758-1763.
    [170]Bollrath J, Greten F R. IKK/NF-kappaB and STAT3 pathways:central signalling hubs in inflammation-mediated tumour promotion and metastasis[J]. EMBO Rep.2009,10(12):1314-1319.
    [171]Rotin D, Staub O. Role of the ubiquitin system in regulating ion transport[J]. Pflugers Arch.2011, 461(1):1-21.
    [172]Yang W L, Wang J, Chan C H, et al. The E3 ligase TRAF6 regulates Akt ubiquitination and activation[J]. Science.2009,325(5944):1134-1138.
    [173]Deans B, Griffin C S, O'Regan P, et al. Homologous recombination deficiency leads to profound genetic instability in cells derived from Xrcc2-knockout mice[J]. Cancer Res.2003,63(23):8181-8187.
    [174]Kato T, Miyata K, Sonobe M, et al. Production of Sry knockout mouse using TALEN via oocyte injection[J]. Sci Rep.2013,3:3136.
    [175]Zhou J, Wang J, Shen B, et al. Dual sgRNAs facilitate CRISPR/Cas9-mediated mouse genome targeting[J]. FEBS J.2014,281(7):1717-1725.
    [176]Lafont V, Dornand J, D'Angeac A D, et al. Jacalin, a lectin that inhibits in vitro HIV-1 infection, induces intracellular calcium increase via CD4 in cells lacking the CD3/TcR complex[J]. J Leukoc Biol. 1994,56(4):521-524.
    [177]Sanchez-Lockhart M, Graf B, Miller J. Signals and sequences that control CD28 localization to the central region of the immunological synapse[J]. J Immunol.2008,181(11):7639-7648.
    [178]Lum L G, Lefever A V, Treisman J S, et al. Immune modulation in cancer patients after adoptive transfer of anti-CD3/anti-CD28-costimulated T cells-phase Ⅰ clinical trial[J]. J Immunother.2001,24(5): 408-419.
    [179]Shao X, Qian Y, Xu C, et al. The protective effect of intrasplenic transplantation of Ad-IL-18BP/IL-4 gene-modified fetal hepatocytes on ConA-induced hepatitis in mice[J]. PLoS One. 2013,8(3):e58836.
    [180]Jiang N, Zhang X, Zheng X, et al. A novel in vivo siRNA delivery system specifically targeting liver cells for protection of ConA-induced fulminant hepatitis[J]. PLoS One.2012,7(9):e44138.
    [181]Dong L, Watanabe K, Itoh M, et al. CD4+T-cell dysfunctions through the impaired lipid rafts ameliorate concanavalin A-induced hepatitis in sphingomyelin synthase 1-knockout mice[J]. Int Immunol.2012,24(5):327-337.