牛CD8αα/BoLA-I相关单体与复合体的晶体结构和多肽呈递的功能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
呈递病毒表位的主要组织相容性复合体Ⅰ类分子(pMHC Ⅰ)被T细胞受体(TCR)和共受体分子CD8识别,激活细胞毒性T细胞(CTL),诱导机体产生针对特定病原的细胞性免疫应答,从而清除病毒感染的细胞。与人和鼠MHCⅠ分子的研究相比,牛MHC I(称为BoLA-Ⅰ)分子的研究较少且缺乏精细结构生物学方面的积累。近年来,随着牛传染病的不断爆发,如牛口蹄疫等疾病的爆发,不仅导致了牛养殖业的重大经济损失,而且直接威胁着人类健康。迄今为止,对牛细胞介导的抗病毒免疫应答的研究仍然十分缺少,尤其是牛BoLA-Ⅰ递呈病毒抗原多肽的机制以及CD8作为辅助受体在其CTL免疫应答中与MHC Ⅰ分子的相互作用机理尚不清楚。由此可见,深入研究牛BoLA-Ⅰ和CD8分子单体和复合体的精细结构,对于阐明牛CTL免疫应答机理以及控制牛源传染病都有着重要的意义。因此,本文采用了分子克隆与结构生物学技术,表达、纯化、结晶并解析了牛BoLA-Ⅰ分子(BoLA-2*02201)与源于口蹄疫病毒(FMDV)多肽的单体、牛CD8αα二聚体以及CD8αα/BoLA-2*02201复合体结构;并对上述晶体进行了精细结构分析;获得了牛CTL免疫应答相关的第一手免疫学数据。
     BoLA-2*02201总体结构框架与已解析的人和鼠MHC Ⅰ类似,但是,BoLA-Ⅰ具有明显的牛种属特征。与已解析的两套牛BoLA-Ⅰ结构相比,BoLA-2*02201分子具有突出的结构特点,其具有更大的“开放”型A口袋,带负电荷的B口袋较大较深以及体积最大的F口袋。这些结果使得BoLA-2*02201可递呈多肽的特征为:1)P1位锚定残基可以是较大构象的氨基酸;2)P2可以是具有长侧链、带正电荷的氨基酸;3)P9位可以是具有较大芳香苯环的氨基酸。根据上述BoLA-2*02201抗原结合槽的结构特征本文推定了其表位多肽结合基序。
     随后,对牛CD8αα基因进行了修饰,获得了高效表达且复性效果好的牛CD8αα同源二聚体蛋白,并结晶、解析了其结构。参照人和鼠CD8αα/pMHCⅠ复合体中CD8αα的数据分析,关键性的氨基酸:R6、N102和S103在牛CD8αα中保守,它们也可能是牛CD8αα与BoLA-Ⅰ相互作用的核心位点。
     最后,分析了牛CD8αα/BoLA-2*02201复合体结构并揭示:1)牛CD8αα与BoLA-Ⅰ结合后并不改变BoLA-2*02201递呈多肽的构象;2)BoLA-2*02201与CD8αα结合后的变化是其α3CDloop发生了方向的偏移;3)CD8αα与BoLA-2*02201结合后的变化是其CDR like loop发生了偏移;4)与人和鼠CD8αα/pMHCⅠ复合体结构相比,牛CD8αα/BoLA-2*02201具有更小的接触面积和亲和力。牛CD8αα与BoLA-Ⅰ分子之间相互作用方式是“抗原-抗体”式结合方式。
     综上所述,本文解析了pBoLA-Ⅰ (BoLA-2*02201)的晶体结构,阐述了BoLA-2*02201递呈多肽的特点,阐明了BoLA-2*02201递呈抗原多肽的主要机制,其结果为牛CTL表位疫苗的研发提供了结构生物学参数;解析了牛CD8αα晶体结构,阐述了其特征:解析了牛CD8αα/BoLA-Ⅰ复合体结构,结果显示,牛CD8αα与BoLA-2*02201的相互作用具有种属特征,在已发现的哺乳动物CD8αα/pMHCⅠ结构中其接触面和亲和力最小。
     总之,本研究推进了牛细胞免疫学中CTL免疫应答相关的结构免疫学的研究。
The main histocompatibility complex class1molecule presents viral epitopes (pMHC1) and is recognized by T cell receptor (TCR) and the CD8co-receptor molecules, this formation of an immune synapse results in the proliferation of cytotoxic lymphocyte (CTL), induction cellular immune responses against specific pathogens, lyses and eventual clearance of the target cells. About the researching of MHC I molecules, compared with human and mouse, there is a few research in structural studies about bovine leukocyte antigen I (BoLA-I). These years, viral diseases and other infections have been caused by zoonosis of cattle, such as foot-and-mouth disease virus (FMDV) which brought great economic losses and post a threat to human health,. So far, there are a few studies of the bovine cellular immune response which mediated by viruses, especially the mechanism of BoLA-I presenting viral antigen peptides and CD8as the auxiliary receptor interaction with MHC I molecules in CTL immune response is not clear. Therefore, father studies of the refined crystal structures of the monomer and complex of bovine MHC I (BoLA-I) and CD8(bCD8) are essential in order to clarify the mechanism of immune response of CTL and overcome bovine-origin Zoonotic diseases. Here, with the methods of molecular cloning and structural biology, the crystal structure of BoLA (BoLA-2*02201) complexed with peptide derived from the FMDV virus was solved. Furthermore, we solved the bCD8aa homodimer structure. Finally, CD8aa/BoLA-I crystal structure was also determined. We first acquired immunological data of bovine CTL immune response.
     The overall structure of bovine BoLA-I is similar with the structures of human and mouse MHC I which have been determined, but has the characteristic of particular species or genera. Compared the structure with other two BoLA-I molecules, there are some prominent structural features of BoLA-2*02201. It has a large "open" A pocket, negatively charged B pocket and deeply and the largest volume of the F pocket. The peptide which can be presented by BoLA-2*02201has such characteristics:1) the anchor residues of P1can be larger conformation amino acids;2) P2positively charged with long side chains of amino acid,3) the anchor residues of P9position should be with a larger aromatic rings. According to the results of structure analysis and peptide binding, we put forward the peptide binding motif of the BoLA-2*02201molecule.
     After modification the gene of CD8aa, it can be expressed and folded as bovine CD8aa homodimer, and its structural was crystallized and determined. According to the residues of CD8aa which interact with MHC I in human and mouse CD8aa/pMHC I complexes, the three R6, N102and S103amino acids are relatively conservative in bovine CD8aa molecule, these may be the residues which mediated the interaction between bovine CD8αα and MHC I molecules.
     Finally, the results of bovine CD8aa/BoLA-2*02201complex are as follows:1) Bovine CD8aa of CD8aa/BoLA-2*02201complex cannot change the conformation of the peptide;2) After contacted with bovine CD8αα, the main change of BoLA-2*02201is offset direction of α3CD loop;3) The change of bovine CD8αα is mainly about the offset direction of CDR like loops.4) Compared with human and mouse CD8aa/MHC I complexes, the bovine CD8aa/BoLA-2*02201complex has least contaction area and minimal interactions. Determinately, the interaction between bovine CD8αα and BoLA-I is in antigen-antibody contact manner.
     In brief, we solved the crystal structure of BoLA-I (BoLA-2*02201) and illustrate the structure basis of BoLA-I presenting peptides, and further screened and identified some potential CTL epitopes of FMDV-VP1. In addition, the crystal structure of bCD8aa was also determined, and carified the structure characteristics of bCD8aa. Analysis of the crystal structure of bovine CD8aa/BoLA-2*02201complex, we found the species characteristics between bovine CD8aa and BoLA-2*02201interaction, and it has least contaction area and minimal interactions.
     In conclusion, these results might promote the development of the structural immunology of CTL immune response in bovine cellular immunology.
引文
1. Barth, R., et al.. Strong and weak histocompatibility gene differences in mice and their role in the rejection of homografts of tumors and skin. Ann Surg,1956.144(2):p.198-204.
    2. Klein, J. and A. Sato, The HLA system. First of two parts. N Engl J Med,2000.343(10):p.702-9.
    3. Klein, J. and A. Sato, The HLA system. Second of two parts. N Engl J Med,2000.343(11):p. 782-6.
    4. Parham, P., E.J. Adams and K.L. Arnett, The origins of HLA-A,B,C polymorphism. Immunol Rev, 1995.143:p.141-80.
    5. Litman, G.W., J.P. Cannon and L.J. Dishaw, Reconstructing immune phylogeny:new perspectives. Nat Rev Immunol,2005.5(11):p.866-79.
    6. Okamura, K., et al., The most primitive vertebrates with jaws possess highly polymorphic MHC class I genes comparable to those of humans. Immunity,1997.7(6):p.777-90.
    7. Vaiman, M., et al., Evidence for a histocompatibility system in swine (SL-A). Transplantation, 1970.10(2):p.155-64.
    8. Babiuk, S., et al., BoLA class I allele diversity and polymorphism in a herd of cattle. Immunogenetics,2007.59(2):p.167-76.
    9. Snell, G.D., Studies in histocompatibility. Science,1981.213(4504):p.172-8.
    10. Howard, J., MHC restriction, self-tolerance and the thymus. Nature,1980.286(5768):p.15-6.
    11. Bjorkman, P.J., MHC restriction in three dimensions:a view of T cell receptor/ligand interactions. Cell,1997.89(2):p.167-70.
    12. Snell, G.D., T cells, T cells recognition structures, and the major histocompatibility complex. Immunol Rev,1978.38:p.3-69.
    13. Snell, R.S. and N. McIntyre, Changes in the histochemical appearances of cholinesterase at the motor and plate following denervation. Br J Exp Pathol,1956.37(1):p.44-8.
    14. Zinkernagel, R.M. and P.C. Doherty, Immunological surveillance against altered self components by sensitised T lymphocytes in lymphocytic choriomeningitis. Nature,1974.251(5475):p.547-8.
    15. Bjorkman, P.J., et al., The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens. Nature,1987.329(6139):p.512-8.
    16. Gao, G.F., Z. Rao and J.I. Bell, Molecular coordination of alphabeta T-cell receptors and coreceptors CD8 and CD4 in their recognition of peptide-MHC ligands. Trends Immunol,2002. 23(8):p.408-13.
    17. Gao, G.F., et al., Crystal structure of the complex between human CD8alpha(alpha) and HLA-A2. Nature,1997.387(6633):p.630-4.
    18. De Graaf, N., et al., PA28 and the proteasome immunosubunits play a central and independent role in the production of M.HC class I-binding peptides in vivo. Eur J Immunol,2011.41(4):p.926-35.
    19. Merzougui, N., et al., A proteasome-dependent, TAP-independent pathway for cross-presentation of phagocytosed antigen. EMBO Rep,2011.12(12):p.1257-64.
    20. Anton. L.C. and E.M. Villasevil. Is there an alternative to the proteasome in cytosolic protein degradation? Biochem Soc Trans,2008.36(Pt 5):p.839-42.
    21. Arnold, D., et al., Proteasome subunits encoded in the MHC are not generally required for the processing of peptides bound by MHC class 1 molecules. Nature,1992.360(6400):p.171-4.
    22. Basler, M., et al., The proteasome inhibitor bortezomib enhances the susceptibility to viral infection. J Immunol,2009.183(10):p.6145-50.
    23. Belich, M.P., et al., Proteasome components with reciprocal expression to that of the MHC-encoded LMP proteins. Curr Biol,1994.4(9):p.769-76.
    24. Belich, M.P. and J. Trowsdale, Proteasome and class I antigen processing and presentation. Mol Biol Rep,1995.21(1):p.53-6.
    25. Doytchinova, I.A. and D.R. Flower, Class I T-cell epitope prediction:improvements using a combination of proteasome cleavage, TAP affinity, and MHC binding. Mol Immunol,2006.43(13): p.2037-44.
    26. Cresswell, P., et al., Mechanisms of MHC class I-restricted antigen processing and cross-presentation. Immunol Rev,2005.207:p.145-57.
    27. Pamer, E. and P. Cresswell, Mechanisms of MHC class I--restricted antigen processing. Annu Rev Immunol,1998.16:p.323-58.
    28. Hughes, E.A., C. Hammond and P. Cresswell, Misfolded major histocompatibility complex class I heavy chains are translocated into the cytoplasm and degraded by the proteasome. Proc Natl Acad Sci U S A,1997.94(5):p.1896-901.
    29. Koopmann, J.O., et al., Export of antigenic peptides from the endoplasmic reticulum intersects with retrograde protein translocation through the Sec61p channel. Immunity,2000.13(1):p. 117-27.
    30. Neefjes, J., et al., Towards a systems understanding of MHC class I and MHC class Ⅱ antigen presentation. Nat Rev Immunol,2011.11(12):p.823-36.
    31. Rock, K.L., et al., Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell,1994.78(5):p.761-71.
    32. Baumeister, W., et al., The proteasome:paradigm of a self-compartmentalizing protease. Cell, 1998.92(3):p.367-80.
    33. Levitskaya, J., et al., Inhibition of antigen processing by the internal repeat region of the Epstein-Barr virus nuclear antigen-1. Nature,1995.375(6533):p.685-8.
    34. Butler, J.E., et al., Proteasome regulation of ULBPI transcription. J Immunol,2009.182(10):p. 6600-9.
    35. Chapiro, J., et al., Destructive cleavage of antigenic peptides either by the immunoproteasome or by the standard proteasome results in differential antigen presentation. J Immunol,2006.176(2):p. 1053-61.
    36. Chen, M., et al., Hepatocytes express abundant surface class Ⅰ MHC and efficiently use transporter associated with antigen processing, tapasin, and low molecular weight polypeptide proteasome subunit components of antigen processing and presentation pathway. J Immunol.2005.175(2):p. 1047-55.
    37. Dantuma, N.P., et al.. Inhibition of proteasomal degradation by the gly-Ala repeat of Epstein-Barr virus is influenced by the length of the repeat and the strength of the degradation signal. Proc Natl Acad Sci U S A,2000.97(15):p.8381-5.
    38. Kwun, H.J., et al., Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen 1 mimics Epstein-Barr virus EBNA1 immune evasion through central repeat domain effects on protein processing. J Virol,2007.81(15):p.8225-35.
    39. Zaldumbide, A., et al., In cis inhibition of antigen processing by the latency-associated nuclear antigen I of Kaposi sarcoma herpes virus. Mol Immunol,2007.44(6):p.1352-60.
    40. Ahn, K., et al., The ER-luminal domain of the HCMV glycoprotein US6 inhibits peptide translation by TAP. Immunity,1997.6(5):p.613-21.
    41. Hill, A., et al., Herpes simplex virus turns off the TAP to evade host immunity. Nature,1995. 375(6530):p.411-5.
    42. Bagai, R., et al., Mouse endothelial cells cross-present lymphocyte-derived antigen on class I MHC via a TAP1- and proteasome-dependent pathway. J Immunol,2005.174(12):p.7711-5.
    43. Bandoh, N., et al., Development and characterization of human constitutive proteasome and immunoproteasome subunit-specific monoclonal antibodies. Tissue Antigens,2005.66(3):p. 185-94.
    44. Hislop, A.D., et al., A CD8+ T cell immune evasion protein specific to Epstein-Barr virus and its close relatives in Old World primates. J Exp Med,2007.204(8):p.1863-73.
    45. Horst, D., et al., Specific targeting of the EBV lytic phase protein BNLF2a to the transporter associated with antigen processing results in impairment of HLA class I-restricted antigen presentation. J Immunol,2009.182(4):p.2313-24.
    46. Koppers-Lalic, D., et al., Varicelloviruses avoid T cell recognition by UL49.5-mediated inactivation of the transporter associated with antigen processing. Proc Natl Acad Sci U S A,2005. 102(14):p.5144-9.
    47. Koppers-Lalic, D., et al., Varicellovirus UL 49.5 proteins differentially affect the function of the transporter associated with antigen processing, TAP. PLoS Pathog,2008.4(5):p. e1000080.
    48. Ahn, K., et al., Molecular mechanism and species specificity of TAP inhibition by herpes simplex virus ICP47. EMBO J,1996.15(13):p.3247-55.
    49. Gatfield, J., et al., Cell lines transfected with the TAP inhibitor ICP47 allow testing peptide binding to a variety of HLA class I molecules. Int Immunol,1998.10(11):p.1665-72.
    50. Wei, M.L. and P. Cresswell, HLA-A2 molecules in an antigen-processing mutant cell contain signal sequence-derived peptides. Nature,1992.356(6368):p.443-6.
    51. Benham, A.M., M. Gromme and J. Neefjes, Allelic differences in the relationship between proteasome activity and MHC class I peptide loading. J Immunol,1998.161(1):p.83-9.
    52. Benham, A.M. and J.J. Neefjes, Proteasome activity limits the assembly of MHC class Ⅰ molecules after IFN-gamma stimulation.J Immunol.1997.159(12):p.5896-904.
    53. Ben-Shahar, S., et al.,26 S proteasome-mediated production of an authentic major histocompatibility class Ⅰ-restricted epitope from an intact protein substrate. J Biol Chem.1999. 274(31):p.21963-72.
    54. Bhat, K.P., et al., The 19S proteasome ATPase Sugl plays a critical role in regulating MHC class Ⅱ transcription. Mol Immunol,2008.45(8):p.2214-24.
    55. Yang, B., et al., The requirement for proteasome activity class Ⅰ major histocompatibility complex antigen presentation is dictated by the length of preprocessed antigen. J Exp Med,1996.183(4):p. 1545-52.
    56. Zaiss, D.M., et al., Proteasome immunosubunits protect against the development of CD8 T cell-mediated autoimmune diseases. J Immunol,2011.187(5):p.2302-9.
    57. Zaiss, D.M., et al., PI31 is a modulator of proteasome formation and antigen processing. Proc Natl Acad Sci U S A,2002.99(22):p.14344-9.
    58. Brown, M.G., J. Driscoll and J.J. Monaco, Structural and serological similarity of MHC-linked LMP and proteasome (multicatalytic proteinase) complexes. Nature,1991.353(6342):p.355-7.
    59. Brown, M.G., J. Driscoll and J.J. Monaco, MHC-linked low-molecular mass polypeptide subunits define distinct subsets of proteasomes. Implications for divergent function among distinct proteasome subsets. J Immunol,1993.151(3):p.1193-204.
    60. Bubeck, A., et al., The glycoprotein gp48 of murine cytomegalovirusL proteasome-dependent cytosolic dislocation and degradation. J Biol Chem,2002.277(3):p.2216-24.
    61. Burlet-Schiltz, O., et al., The use of mass spectrometry to identify antigens from proteasome processing. Methods Enzymol,2005.405:p.264-300.
    62. Zaiss, D.M., N. de Graaf and A.J. Sijts, The proteasome immunosubunit multicatalytic endopeptidase complex-like 1 is a T-cell-intrinsic factor influencing homeostatic expansion. Infect Immun,2008.76(3):p.1207-13.
    63. Zhou, P., et al., Genomic organization and tissue expression of mouse proteasome gene Lmp-2. Genomics,1993.16(3):p.664-8.
    64. Zhou, X., et al., Presentation of viral antigens restricted by H-2Kb, Db or Kd in proteasome subunit LMP2-and LMP7-deficient cells. Eur J Immunol,1994.24(8):p.1863-8.
    65. Wilk, S., W.E. Chen and R.P. Magnusson, Modulation of the PA28alpha-20S proteasome interaction by a peptidyl alcohol. Arch Biochem Biophys,1999.362(2):p.283-90.
    66. Wilk, S., W.E. Chen and R.P. Magnusson, Modulators of the activation of the proteasome by PA28 (11S reg). Mol Biol Rep,1999.26(1-2):p.39-44.
    67. Wilk, S., W.E. Chen and R.P. Magnusson, Properties of the proteasome activator subunit PA28 alpha and its des-tyrosyl analog. Arch Biochem Biophys,1998.359(2):p.283-90.
    68. Stoltze, L., et al., The function of the proteasome system in MHC class Ⅰ antigen processing. Immunol Today,2000.21(7):p.317-9.
    69. Tewari, M.K., et al., A cytosolic pathway for MHC class Il-restricted antigen processing that is proteasome and TAP dependent. Nat Immunol.2005.6(3):p.287-94.
    70. Vinitsky, A., et al., The generation of MHC class I-associated peptides is only partially inhibited by proteasome inhibitors:involvement of nonproteasomal cytosolic proteases in antigen processing? J Immunol,1997.159(2):p.554-64.
    71. Wherry, E.J., et al., Re-evaluating the generation of a "proteasome-independent" MHC class I-restricted CD8 T cell epitope. J Immunol,2006.176(4):p.2249-61.
    72. Fehling, H.J., et al., MHC class I expression in mice lacking the proteasome subunit LMP-7. Science,1994.265(5176):p.1234-7.
    73. Finn, J.D., et al., Proteasome inhibitors decrease AAV2 capsid derived peptide epitope presentation on MHC class I following transduction. Mol Ther,2010.18(1):p.135-42.
    74. Tanahashi, N., et al., Molecular properties of the proteasome activator PA28 family proteins and gamma-interferon regulation. Genes Cells,1997.2(3):p.195-211.
    75. Tanaka, K. and M. Kasahara, The MHC class I ligand-generating system:roles of immunoproteasomes and the interferon-gamma-inducible proteasome activator PA28. Immunol Rev,1998.163:p.161-76.
    76. Taylor, R.G., et al., Proteolytic activity of proteasome on myofibrillar structures. Mol Biol Rep, 1995.21(1):p.71-3.
    77. Sijts, A., et al., The role of the proteasome activator PA28 in MHC class I antigen processing. Mol Immunol,2002.39(3-4):p.165-9.
    78. Sijts, E.J. and P.M. Kloetzel, The role of the proteasome in the generation of MHC class I ligands and immune responses. Cell Mol Life Sci,2011.68(9):p.1491-502.
    79. Starodubova, E.S., M.G. Isaguliants and V.L. Karpov, [Artifitial increase of HIV-1 reverse transcriptase turnover through proteasome pathway]. Mol Biol (Mosk),2006.40(6):p.982-8.
    80. van Endert, P., Post-proteasomal and proteasome-independent generation of MHC class I ligands. Cell Mol Life Sci,2011.68(9):p.1553-67.
    81. Harding, C.V., et al., Novel dipeptide aldehydes are proteasome inhibitors and block the MHC-I antigen-processing pathway. J Immunol,1995.155(4):p.1767-75.
    82. Luckey, C.J., et al., Differences in the expression of human class I MHC alleles and their associated peptides in the presence of proteasome inhibitors. J Immunol,2001.167(3):p.1212-21.
    83. Milner, E., et al., The effect of proteasome inhibition on the generation of the human leukocyte antigen (HLA) peptidome. Mol Cell Proteomics,2013.12(7):p.1853-64.
    84. Schmid, B.V., C. Kesmir and R.J. de Boer, The specificity and polymorphism of the MHC class I prevents the global adaptation of HIV-1 to the monomorphic proteasome and TAP. PLoS One, 2008.3(10):p. e3525.
    85. Schmidtke, G., et al., Inactivation of a defined active site in the mouse 20S proteasome complex enhances major histocompatibility complex class I antigen presentation of a murine cytomegalovirus protein. J Exp Med,1998.187(10):p.1641-6.
    86. Schwarz, K., et al., The proteasome regulator PA28alpha/beta can enhance antigen presentation without affecting 20S proteasome subunit composition. Eur J Immunol.2000.30(12):p.3672-9.
    87. Bjorkman, P.J., et al.. Structure of the human class I histocompatibility antigen, HLA-A2. Nature, 1987.329(6139):p.506-12.
    88. Saper, M.A., P.J. Bjorkman and D.C. Wiley, Refined structure of the human histocompatibility antigen HLA-A2 at 2.6 A resolution. J Mol Biol,1991.219(2):p.277-319.
    89. Zamoyska, R., CD4 and CD8:modulators of T-cell receptor recognition of antigen and of immune responses? Curr Opin Immunol,1998.10(1):p.82-7.
    90. Turner, S.J., et al., Structural determinants of T-cell receptor bias in immunity. Nat Rev Immunol, 2006.6(12):p.883-94.
    91. Cockfield, S.M. and P.F. Halloran, A view from the groove:peptide binding by MHC molecules and the implications for regional immune responses. Reg Immunol,1989.2(4):p.266-72.
    92. Garrett, T.P., et al., Specificity pockets for the side chains of peptide antigens in HLA-Aw68. Nature,1989.342(6250):p.692-6.
    93. Mata, M., et al., The MHC class I-restricted immune response to HIV-gag in BALB/c mice selects a single epitope that does not have a predictable MHC-binding motif and binds to Kd through interactions between a glutamine at P3 and pocket D. J Immunol,1998.161(6):p.2985-93.
    94. Shreffler, D.C., Seventy-five years of immunology:the view from the MHC. J Immunol,1988. 141(6):p.1791-8.
    95. Amorena, B. and W.H. Stone, Serologically defined (SD) locus in cattle. Science,1978.201(4351): p.159-60.
    96. Guzman, E., et al., Induction of a cross-reactive CD8(+) T cell response following foot-and-mouth disease virus vaccination. J Virol,2010.84(23):p.12375-84.
    97. Ellis, S.A., K.A. Staines and W.I. Morrison, cDNA sequence of cattle MHC class I genes transcribed in serologically defined hapiotypes A18 and A31. Immunogenetics,1996.43(3):p. 156-9.
    98. Ellis, S., The cattle major histocompatibility complex:is it unique? Vet Immunol Immunopathol, 2004.102(1-2):p.1-8.
    99. Ellis, S.A. and K.T. Ballingall, Cattle MHC:evolution in action? Immunol Rev,1999.167:p. 159-68.
    100. Ellis, S.A. and G. Codner, The impact of MHC diversity on cattle T cell responses. Vet Immunol Immunopathol,2011.
    101. Ellis, S.A., et al., DNA typing for BoLA class I using sequence-specific primers (PCR-SSP). Eur J Immunogenet,1998.25(5):p.365-70.
    102. Macdonald, I.K., et al., MHC class I bound to an immunodominant Theileria parva epitope demonstrates unconventional presentation to T cell receptors. PLoS Pathog,2010.6(10):p. el001149.
    103. Li, X., et al., Two distinct conformations of a rinderpest virus epitope presented by bovine major histocompatibility complex class I N*01801:a host strategy to present featured peptides. J Virol, 2011.85(12):p.6038-48.
    104. Guzman, E., et al., An MHC-restricted CD8+ T-cell response is induced in cattle by foot-and-mouth disease virus (FMDV) infection and also following vaccination with inactivated FMDV. J Gen Virol,2008.89(Pt 3):p.667-75.
    105. Grubman, M.J. and B. Baxt, Foot-and-mouth disease. Clin Microbiol Rev,2004.17(2):p.465-93.
    106. Childerstone, A.J., et al., Demonstration of bovine CD8+ T-cell responses to foot-and-mouth disease virus. J Gen Virol,1999.80 (Pt 3):p.663-9.
    107. Zhang, H., et al., Global transcriptional analysis of model of persistent FMDV infection reveals critical role of host cells in persistence. Vet Microbiol,2013.162(2-4):p.321-9.
    108. Birtley, J.R., et al., Crystal structure of foot-and-mouth disease virus 3C protease. New insights into catalytic mechanism and cleavage specificity. J Biol Chem,2005.280(12):p.11520-7.
    109. Sedeh, F.M., et al., Comparison of immune responses against FMD by a DNA vaccine encoding the FMDV/O/IRN/2007 VP1 gene and the conventional inactivated vaccine in an animal model. Virol Sin,2012.27(5):p.286-91.
    110. Ren, J., et al., CpG oligodeoxynucleotide and montanide ISA 206 adjuvant combination augments the immune responses of a recombinant FMDV vaccine in cattle. Vaccine,2011.29(45):p. 7960-5.
    111. Mohana Subramanian, B., et al., Development of foot-and-mouth disease virus (FMDV) serotype O virus-like-particles (VLPs) vaccine and evaluation of its potency. Antiviral Res,2012.96(3):p. 288-95.
    112. Romanutti, C., et al., Evaluation of the immune response elicited by vaccination with viral vectors encoding FMDV capsid proteins and boosted with inactivated virus. Vet Microbiol,2013.165(3-4): p.333-40.
    113. Dembic, Z., et al., Transfection of the CD8 gene enhances T-cell recognition. Nature,1987. 326(6112):p.510-1.
    114. Garcia, K.C., et al., CD8 enhances formation of stable T-cell receptor/MHC class I molecule complexes. Nature,1996.384(6609):p.577-81.
    115. Ingold, A.L., et al., Co-engagement of CD8 with the T cell receptor is required for negative selection. Nature,1991.352(6337):p.721-3.
    116. Luescher, I.F., et al., CD8 modulation of T-cell antigen receptor-ligand interactions on living cytotoxic T lymphocytes. Nature,1995.373(6512):p.353-6.
    117. Norment, A.M., et al., Cell-cell adhesion mediated by CD8 and MHC class I molecules. Nature, 1988.336(6194):p.79-81.
    118. Holler, P.D. and D.M. Kranz, Quantitative analysis of the contribution of TCR/pepMHC affinity and CD8 to T cell activation. Immunity,2003.18(2):p.255-64.
    119. Gao, G.F. and B.K. Jakobsen, Molecular interactions of coreceptor CD8 and MHC class I:the molecular basis for functional coordination with the T-cell receptor. Immunol Today,2000.21(12): p.630-6.
    120. Leahy. D.J.. R. Axel and W.A. Hendrickson. Crystal structure of a soluble form of the human T cell coreceptor CD8 at 2.6 A resolution. Cell,1992.68(6):p.1145-62.
    121. Chang, H.C., et al.. Structural and mutational analyses of a CD8alpha beta heterodimer and comparison with the CD8alpha alpha homodimer. Immunity,2005.23(6):p.661-71.
    122. Zong, L., et al.. Rhesus macaque:a tight homodimeric CD8alpha alpha. Proteins,2009,75(1):p. 241-4.
    123. Kern, P.S., et al., Structural basis of CD8 coreceptor function revealed by crystallographic analysis of a murine CD8alpha alpha ectodomain fragment in complex with H-2Kb. Immunity,1998.9(4): p.519-30.
    124. Wang, R., K. Natarajan and D.H. Margulies, Structural basis of the CD8 alpha beta/MHC class I interaction:focused recognition orients CD8 beta to a T cell proximal position. J Immunol,2009. 183(4):p.2554-64.
    125. Gao, G.F., et al., Crystal structure of the complex between human CD8alpha(alpha) and HLA-A2. Nature,1997.387(6633):p.630-4.
    126. Shi, Y., et al., Plasticity of human CD8alphaalpha binding to peptide-HLA-A*2402. Mol Immunol, 2011.48(15-16):p.2198-202.
    127. Bjorkman, P.J., et al., Structure of the human class I histocompatibility antigen, HLA-A2. Nature, 1987.329(6139):p.506-12.
    128. Otwinowski, Z. and W. Minor, Processing of X-ray Diffraction Data Collected in Oscillation Mode. Methods in Enzymology,1997.276(Macromolecular Crystallography, part A):p.307-326.
    129. Hegde, N.R., et al., Peptide motif of the cattle MHC class I antigen BoL A-A11. Immunogenetics, 1995.42(4):p.302-3.
    130.Liu, Y., et al., The crystal structure of a TL/CD8alpha alpha complex at 2.1 A resolution: implications for modulation of T cell activation and memory. Immunity,2003.18(2):p.205-15.