盐、碱胁迫对大豆属植物的结构演化及生理特性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对辉南、通榆两地野生大豆和早丰5号、吉育59两种栽培大豆进行了盐、碱胁迫实验,采用石蜡切片和光学显微技术进行了同步结构比较研究和光合生理研究。解剖结构结果表明:
     1.辉南野生大豆在盐胁迫下根部傍管薄壁细胞大;茎部导管切向链演化为径向链,韧皮纤维细胞质壁分离现象严重;叶片栅栏组织增多,排列紧密。碱胁迫下,根部初生木质部演化为3原型;茎部导管增多,髓细胞变大,导管多为径向链,且细胞壁角隅加厚。
     2.通榆野生大豆在盐胁迫下根部髓细胞增多;茎部皮层加厚,细胞壁角隅加厚明显,凯氏带清楚,维管束数量少,韧皮纤维细胞木质化弱;叶片异型维管束消失,栅栏组织和海绵组织细胞排列紧密,胞间隙小。碱胁迫下根部导管直径变小;茎部皮层变薄,韧皮纤维细胞木质化弱;叶片机械组织少,栅栏组织演化成为4层。
     3.早丰5号盐胁迫根部髓细胞变多,木质部特化弱,有沙晶和单晶出现;碱胁迫后髓腔变大,导管数量少,木质化严重。盐胁迫下茎部髓腔较大,碱胁迫下茎部髓腔较小,盐、碱胁迫茎部韧皮纤维木质化增强,细胞壁角隅较厚强烈。盐、碱胁迫叶片栅栏组织细胞增多。
     4.吉育59盐胁迫根部髓腔变大,碱胁迫根部木质化较弱,导管有碱液出现,次生壁加厚。盐、碱胁迫茎部髓细胞排列密集,维管束和导管数目增多,盐胁迫细胞壁角隅加厚明显,碱胁迫表皮毛增多,原生质浓厚。盐胁迫叶片主脉突起强烈,碱胁迫主脉两侧出现大的异形胞。盐、碱胁迫叶片栅栏组织细胞增多,排列紧密。
     生理结果表明:
     1.盐、碱胁迫下两地野生大豆根、茎叶生物量下降。在60和120mM浓度NaCl中性盐胁迫下,两地野生大豆叶片净光合速率(Pn)、气孔导度(Gs)和蒸腾速率(Tr)均呈下降趋势。辉南野生大豆叶片的胞间二氧化碳浓度(Ci)随盐浓度升高而降低,通榆野生大豆叶片的Ci则随盐浓度的升高而升高。在30,、60和90mM碱盐胁迫下,辉南野生大豆的Pn、Gs和Tr均下降,通榆野生大豆在低碱胁迫下Pn则略有升高。碱胁迫下两地野生大豆品种的Ci都呈上升趋势。盐、碱胁迫下,抗盐野生大豆的Fv/Fm变化较小。不抗盐野生大豆在低浓度的盐、碱胁迫下Fv/Fm变化较小,在高浓度的盐、碱胁迫下呈下降趋势。两个大豆品种的Fv’/Fm’、ΦPSII、ETR和qP在盐、碱胁迫下均呈下降趋势。盐、碱胁迫下两地野生大豆叶绿素含量下降,脯氨酸含量急剧升高。辉南野生大豆可溶性糖含量随盐、碱浓度升高而下降,通榆野生大豆则升高。
     2.盐、碱胁迫下两种栽培大豆根、茎叶生物量下降。在60和120mM浓度NaCl中性盐胁迫下,两种栽培大豆叶片净光合速率(Pn)、气孔导度(Gs)和蒸腾速率(Tr)均呈下降趋势。在30、60和90mM碱盐胁迫下,早丰5号叶片Pn、Gs和Tr均下降,吉育59在低碱胁迫下Pn则略有升高,在90mM浓度下才呈下降趋势。在低浓度的盐碱胁迫下,叶绿素荧光变化较小,在高浓度的盐碱胁迫下,叶绿素荧光参数Fv/Fm、Fv’/Fm’、ΦPSII、ETR、qP均显著降低。盐、碱胁迫下两种大豆品种的叶绿素含量和对照相比均有所下降,早丰5号下降幅度大于吉育59。盐、碱胁迫下两种栽培大豆叶绿素含量下降,脯氨酸含量急剧升高。早丰5号可溶性糖含量随盐、碱浓度升高下降,吉育59则升高。
     综上结果表明,两地野生大豆和两种栽培大豆盐、碱胁迫下,已经演化出颉颃逆境系列结构,这些结构的变化规律说明了盐、碱胁迫直接影响了植物体的形态结构建成。从生理上的变化规律说明了通榆野生大豆和吉育59栽培大豆更具耐盐碱性。
The paper analyses the results of the experiment of salt stress and alkali stress for wildsoybeans--Huinan (salt sensitive) and Tongyu (salt resistant) and cultivatedsoybeans—Zaofen No.5(salt sensitive) and Jiyu No.59(salt resistant). The test has included acomparison of simultaneous structure and a photosynthetic physiological procedure with themethods of paraffin sections and optical microscopy.The elucidation of anatomical structures:
     1. The paratracheal parenchyma cells of Huinan became bigger at its root under saltstress and the stem catheter chains moved from tangential to radial direction as bast fibercytoplas cells go to the plasmolysis drastically; the palisade tissue of leaves increased with adense formation. When it comes to alkaline condition, the vascular cylinder of root graduallychanged from tetrarch to triarch,the number of the stem catheters was going up and the pithcells were getting bigger, and catheters among which radial chains prevailed with cell wallthickening.
     2. Tongyu under salt stress,with the pith cells of root increasing,the stem corticalthickening and the cell wall intensive thickening, made the Casparian strip of the endodermisclearer and the number of the vascular cylinder decreased, and then bast fiber lignificationdegree was going to be weak, the vascular cylinder of leaves disappeared, the palisade tissueand spongy parenchyma cells were closely arranged with narrow intercellular spaces, whileunder alkaline stress, the tracha diameter of root became smaller,the them cortical was gettingthinner, bast fiber lignification degree kept a weak index, lacking of the mechanical tissue ofleaves, the palisade tissue changed into the one of four layers.
     3. Zaofeng No.5’s pith cells of root increased under the salt stress and the xylemspecialization turned weak, sand and single crystal emerged; Under the alkaline stress, thepith antrum became larger with less catheters and the lignification of catheters were serious.The pith antrum of stems was large under salt stress and small under alkaline stress. The bastfiber lignification degree was strong under salt and alkaline stress, the cell wall wasthickening. The palisade tissue of leaves were increased.
     4. Jiyu No.59,however, its pith antrum was bigger under salt stress. The lignification ofcatheters was weak, the catheters contain lye and the secondary cell wall was thickeningunder the alkaline stress. Under the salt and alkaline stress, the pith cells of the stem arrangedclosely, the vascular cylinder and catheters increased, the cell wall was thickening obvious under the salt stress, the epidermal hair and protoplasm increased under the alkaline stress.The palisade tissue of leaves increased and arranged closely under the salt and alkaline stress.The physiological results showed that:
     1. The biomass of two varieties of wild soybeans were decrease under differentconcentrations salt stress and alkali stress. Two varieties (Hui Nan which is salt sensitive andTong Yu which is salt resistant) of wild soybean were treated with60mM or120mM sodiumchloride(NaCl) or alkali (30mM,60mM or90mM NaHCO3and Na2CO3) to induce differentstresses, which were indicated by the responses to photosynthesis and chlorophyllfluorescence. The net photosynthetic rate (Pn), stomata conductance(Gs)and transpirationrates(Tr)of the plant leaves declined when supplied with60and120mM of neutral NaCl, asa stress. Intercellular CO2concentrations of non-salt resistant wild soybean leaves decreasedwith increasing salt concentration. The Ciof salt resistant wild soybeans increased withincreasing salt concentration. The Pn, Gsand Trof non-salt resistant varieties increasinglydeclined with30,60and90mM alkaline salt (NaHCO3and Na2CO3) stress, but the Pnof saltresistant varieties increased slightly with low strength alkaline salts stress. The Ciof two wildsoybeans increased under the alkali stress. There was no obvious change in chlorophyllfluorescence under the salt and alkali stress. The Fv/Fm of non salt resistance wild soybeansunder low salt and alkali stress was also not obvious,While under high salt and alkali stress, itdecreased. The Fv’/Fm’, ΦPSII, ETR and qP all declined under the salt and alkali stress. Thechlorophyll content of the two wild soybeans were decreased under salt and alkali stress, theproline content were increased obviously. The soluble sugar content of wild soybean(Huinan)were decreased under the salt and alkaline stress, but the wild soybean of Tongyu wereincreased.
     2. The biomass of two varieties of soybeans cultivars were decrease under differentconcentrations salt stress and alkali stress. The net photosynthetic rate (Pn), stomatalconductance (Gs) and transpiration rate (Tr) of the leaves declined with60and120mM of theneutral salt (NaCl) stress. The Pn, Gsand Trof non-salt resistant varieties declined with the30,60and90mM of alkaline salt (NaHCO3and Na2CO3) stress, but the Pnof the salt resistancecultivar increased slightly with low levels of alkaline salt stress. There was no obvious changein chlorophyll fluorescence with low strengths of either salt or alkali stress. Chlorophyllfluorescence parameters, optimal photochemical efficiency of PSII in darkness (Fv/Fm),photochemical efficiency of PSII in the light (Fv’/Fm’) and photochemical quenching (qP)decreased significantly with high strengths of salt and alkali stress.Under the salt and alkalinestress, the chlorophyll content of two soybeans cultivars were decreased compared to thecontrol, and the5th Zaofeng declined more than59Jiyu. The chlorophyll content were decreased, the proline content were increased. The soluble sugar content of soybeanscultivar(Zaofeng No.5) were decreased under the salt and alkaline stress, but the soybeanscultivar of Jiyu No.59were increased.
     In conclusion, the results showed that the four kinds of soybeans have evolved a seriesof adversity structure under the salt and alkaline stress, which suggested that there was a adirect impact on the morphological structure of plant under the salt and alkali stress and thatTongyu and Jiyu59are more salinity resistant physiologically
引文
[1]权静,卢定强,张筱,李晖.大豆功能性成分的研究现状[J].大豆通报,2004,3:27-29.
    [2]陈应,张群远,孔繁玲.国家大豆品种区域试验精确度研究[J].2006,1:9-15.
    [3]孙寰.吉林大豆[M].吉林科学技术出版社.2005.
    [4]康小湖.大豆栽培与病虫害防治[M].北京:金盾出版社,1991.
    [5]陈成,刘文玉,杨青.大豆蛋白活性肽的生物学功能及其应用[J].黑龙江农业科学2004,3:41-42.
    [6]华聘聘,刘忠萍.可溶性大豆纤维部分生理功能的研究[J].中国油脂,2004,29(5):34-36.
    [7]中国农业百科全书编辑部编.中国农业百科全书(农作物卷:上)[M].北京:农业出版社,1991.
    [8]庄炳昌.中国野生大豆生物学研究[M].北京:科学出版社,1999.
    [9]王克晶,李福山等.中国河北省和日本东北部天然野生大豆群体性状调查比较[J].中国油料作物学报,2000,22(4):17-22.
    [10]李福山.大豆起源及其演化研究[J].大豆科学,1994,13(1):61-66.
    [11]中国农业百科全书编辑部编.中国农业百科全书(农作物卷:下)[M].北京:农业出版社,1991.
    [12]王金陵,孟庆喜,杨庆凯,武天龙,赵淑文。野生大豆蛋白质含量和性状间相关及通经分析[J]。东北农学院学报,1986,17(1):1-5.
    [13]徐豹等.中国大豆的蛋白质资源[J].大豆科学,1984,3(4):327-331.
    [14]徐豹等.中国野生大豆(G.soja)生态类型的研究[J].中国农业科学,1987,20(5):29-35.
    [15]徐豹等.大豆生态研究Ⅲ.野生大豆(G.soja)与栽培大豆(G.max)光周期效应的比较研究[J].大豆科学,1988,7(4):270-275.
    [16]王金陵.大豆遗传与育种[M].科学出版社,1958.
    [17]李福山,常汝镇,舒世珍.中国的大豆属(Glycine L.)植物[J].大豆科学,1983,2(2):109-117.
    [18]王忠.植物生理学[M].中国农业出版社,2000.
    [19]Cui Z L, Carter T E J r, Burton J W. Genetic base of651Chinese soybean cultivars released during1923-1995[J]. Crop Science,2000,40:1470-1481.
    [20]赵团结,盖钧镒,李海旺等.超高产大豆育种研究的进展与讨论[J].中国农业科学,2006,39(1):29-37.
    [21]Leudders V.D. Genetic improvement in yield of soybeans. Crop Science,1977,17:971-972.
    [22]Morrison M.J., Voldeng H.D., Cober E.R.. Physiological changes from58years of geneticimprovement of short-season soybean cultivars in Canada[J].Agron Journal.1999,91:685-689.
    [23]Wilcox J.R. et al. Genetic improvement of soybeans in the Midwest.Crop Science,1979,19:803-805.
    [24]Voldeng H.D.et al. Fifty eight years of genetic improvement of short-season soybean cultivars inCanada. Crop Science,1997,37:428-431.
    [25]张海泉,王铁军.大豆育种工作的现状与展望[J].沈阳农业大学学报,2000.
    [26]Frederick J.R, Woolley J.T, Hesketh J.D. Seed yield and agronomic traits of old and modern soybeancultivars under irrigation and soil water-deficit[J]. Field Crops Research,1991,27:71-82.
    [27]Kumudini S, Hume D J, Chu G. Genetic improvement in short season soybean: I. dry matteraccumulation, partitioning, and leaf area duration[J].Crop Science,2001,41:391-398.
    [28]Ustun A., Allen F.L., English B.C. Genetic progress in soybean of U. S. Midsouth[J]. Crop Science,2001,41:993-998.
    [29]Boerma H.R. Comparison of past and recently developed soybean cultivars in maturity groups VI, VIIand VIII[J]. Crop Science,1979,19:611-613.
    [30]Specht J.E,Hume D.J,Kumudini S.V. Soybean yield potential—a genetic and physiologicalperspective[J]. Crop Science,1999,39:1560-1570.
    [31]Wilcox,J.R. Sixty years of improvement in publicly developed elite gation and soilwater-deficit[J].Field Crops Res.1991,27:71-82.
    [32]崔章林,盖钧镒,T E Carter Jr等.中国大豆育成品种及其系谱分析[M].北京:中国农业出版社,1998.
    [33]Saratha K.D,David J.H,Godfrey C.Genetic improvement in shortseason soybeans:I.dry matteraccumulation partitioning,and leafarea duration[J].Crop science,2001,41:391-398.
    [34]郑洪兵,徐克章,赵洪祥,李大勇,杨光宇,刘武仁,陆静梅.吉林省大豆品种遗传改良过程中主要农艺性状的变化[J].作物学报,2008,34(6):1042-1050.
    [35]杨庆凯.黑龙江省大豆生产品种更替过程中农艺性状的演化趋势的初步分析[J].东北农学院学报,1982(2):21—45.
    [36]郑洪兵等.吉林省不同年代大豆品种某些株型性状的演变[J].中国油料作物学报,2006,28(3):276—281.
    [37]翟俊峰.吉林省大豆品种遗传改良过程中某些农艺性状的变化[D].吉林农业大学,2008.
    [38]田伟华,徐克章,邴鑫.吉林省不同年代育成大豆品种某些农艺性状的变化[J].中国油料作物学报,2007,29(4):397-401.
    [39]KarmakarPG, BhatnagarP S. Genetic improvementof soybean varieties released in India from1969to1993[J]. Euphytica,1996,90:95-103.
    [40]Morrison M.J,VoldengH.D.,Cober E.R. Agronomic changes from58yearsofgeneticimprovementofshort-season soybean cultivars inCana-da [J]. Agronomy Journa,2000,92:780-784.
    [41]Buttery B.R., Buzzell R.I., Findlay W.I. Relationship among photosynthetic rate, bean yield and othercharacters in field-grown cultivars of soybean [J]. Canadian Journal ofPlantScience,1981,61:191-198
    [42]王晓慧等.3种进化类型大豆叶片的某些生理特性比较[J].植物生理学通讯,2006,42(2):191-194
    [43]KaiserW M,HuberS C.Post-translational regulation of nitrate reductase: mechanism, physiologicalrelevance and environmental triggers[J]. Journal ofExperimentalBotany,2001,52:1981-1989
    [44]Mertens J.A, Shiraishi N, Campbell W.H.Recombinantexpression ofmolybdenum reductasefragmentsofplantnitrate reductase athigh lev-els inPichia pastoris[J]. PlantPhysiology,2000,123:743-756
    [45]洪剑明等.小麦硝酸还原酶活性与营养诊断和品种选育研究[J].作物学报,1996,22(5):633-638.
    [46]Eilrich G.L, Hageman R.H. Nitrate reductase activity and its relationship to accumulation ofvegetativeand grain nitrogen inwheat (TriticumaestivumL.)[J]. Crop Science,1973,13:59-66.
    [47]赵洪祥等.吉林省不同年代育成大豆品种硝酸还原酶活性变化及其与产量的关系[J]。南京农业大学学报2007,30(2):13~17
    [48]张含彬等.不同施氮量对套作大豆根系形态与生理特性的影响[J].作物学报,2007,33(1):107-112.
    [49]毛洪霞.不同水分处理对滴灌大豆干物质积累及生理参数的影响[J].大豆科学,2009,28(2):247-250
    [50]谷安根,陆静梅,王立军.维管植物演化形态学[M].1993,吉林科学技术出版社。
    [51]朱俊义等.大豆属植物根的初生结构及系统演化[J].东北师大学报(自然科学版)2003,35(4):112-116.
    [52]周波.吉林省大豆属三种植物演化结构研究[D].东北师范大学,2005.
    [53]王勋陵.植物形态结构与环境[M].兰州大学出版社,1989.
    [54]廉晓冬.吉林省三种不同高产性状大豆结构演化比对研究[D].东北师范大学,2005.
    [55]张涛.盐生和中生大豆属植物的结构比较研究[D].东北师范大学,2008.
    [56]陆时万,徐祥生,沈敏健.植物学[M].高等教育出版社,1991.
    [57]陆静梅,刘友良,胡波,历锡亮,庄炳昌。大豆属植物茎的次生木质部结构研究[J]。应用生态学报,1998,9(1):27-31
    [58]王金陵.大豆性状之演化[J].农报,1947,12(5):6-11.
    [59]王豫.不同进化类型大豆叶片解剖结构的比较研究[D].吉林农业大学,2006.
    [60]许守民,苗以农.大豆光合生理生态的研究[J].大豆科学,1988,7(1):35-40.
    [61]杨文杰,苗以农.野生大豆和栽培大豆光合作用特性的比较研究[J].大豆科学,1983,2(2):83-92.
    [62]Carlson.J.B.Soybean:Improvement,production and use[J].American Society of Agronomy.1973,Inc,62-63.
    [63]苗以农,殷爱武,李春荣等.大豆光合生理生态研究[J].大豆科学,1982,1(1):61-65.
    [64]付永彩,张贤泽.野生、半野生及栽培大豆的几个主要光合特性的研究[J].大豆科学,1993,(4):548-550.
    [65]Velagaleti, RR, Marsh, S., Influence of host cultivars and bradyrhizobium strains on the growth andsymbiotic performance of soybean under salt stress[J]. Plant and Soil,1989,119(1):133-138
    [66]邵桂花、常汝镇、陈一舞.大豆耐盐性研究进展[J].大豆科学,1993,12(3):244-248.
    [67]余叔文、汤章城主编,植物生理与分子生物学(第二版),科学出版社,1998.
    [68]陆静梅,刘友良,胡波,庄炳昌.中国野生大豆盐腺的发现[J].科学通报,1998,43(19):2074-2079.
    [69]朱俊义,杨光宇,赵凤娟,宋金枝,陆静梅.野生大豆抗盐解剖结构研究[J].东北师大学报自然科学版,2003,35(4):105-108.
    [70]常汝镇,陈一舞,邵桂花,万超文.盐对大豆农艺性状及籽粒品质的影响[J].大豆科学,1994,13(2):101-105.
    [71]邵桂花,常汝镇,陈一舞,闫淑荣.大豆耐盐性遗传的研究[J].作物学报,1994,20(6):721-726.
    [72]Durand M. and Lacan D. Sodium partitioning within the shoot of soybean[J]. Physiolgia Plantarum,1994,91:65-71.
    [73]Lacan D.,Durand M.. Na+-K+exchange at the xylem/symplast boundary[J]. Plant Physiol.1996,110:705-711.
    [74]Kingsbury R.W.,Epstein E. Salt sensitivity in wheat. Plant Physiol.1986,80:651-654.
    [75]於丙军,罗庆云,刘友良.NaCl胁迫下野生和栽培大豆幼苗体内离子的再转运。植物生理与分子生物学学报,2003,29(1):39-44
    [76]於丙军,罗庆云,曹爱忠,刘友良。栽培大豆和野生大豆耐盐性及离子效应的比较[J].植物资源与环境学报.2001,10(1):25-29.
    [77]张海燕,赵可夫.盐分和水分胁迫对盐地碱蓬幼苗渗透调节效应的研究[J].植物学报,1998,40(1):56-61.
    [78]Elsayed H.,Kirkwood R.C. Solute accumulation in soybean (Glycine max. L.)cells adapted to NaClsalinity. Phyton Horn.1992,31(2):233-249.
    [79]Elsamad H.M.A., Shaddad M.A.K. Salt tolerance of soybean cultivars[J]. Biologia Plantarum.1997,39(2):263-269
    [80]陈云昭,王玉国.在盐胁迫下获得的大豆愈伤组织及再生植株的生化反应[J].大豆科学,1992,11(1):70-73.
    [81] Krackhardt M.,Guerrier G. Effect of osmotic and ionic stresses on proline and organic acid contentsduring inbibition and germination of soybean seeds[J]. Journal of Plant Physiology.1995,146:725-730.
    [82] Moftah A.E., Michel B.E. The effect of sodium chloride on solute potential and proline accumulationin soybean leaves. Plant Physiol.1987,83(2):238-240.
    [83]於丙军,罗庆云,刘友良.盐胁迫对盐生野大豆生长和离子分布的影响[J].作物学报.2001,27(6):776-780.
    [84]杨晓英,刘友良,罗庆云,刘兆普.盐胁迫下野生大豆叶片中Na+、Cl-积累导致活性氧伤害[J].大豆科学.2003,22(2):83-87.
    [85]刘友良,毛才良,汪良驹.植物耐盐性研究进展[J].植物生理学通讯.1987,(4):1-7.
    [86]Zenoff A.M. et al. Changes in roots lipid composition and inhibition of theextrusion of protons duringsalt stress in two genotypes of soybean resistant or susceptible to stress. Varietal differences[J]. Plantand Cell Physiology.1994,35(5):729-735.
    [87]Huang C.Y. Salt stress induces lipid degradation and lipid phase transition in plasma membrane ofsoybean plants[J]. Taiwania.1996,41(2):96-104.
    [88]Surjus A.,Durand. M. Lipid changes in soybean root membranes in response to salt treatment[J].Journal ofExperimental Botany.1996,47(294):17-23.
    [89]龚红梅,於丙军,刘友良.脂肪酸对盐胁迫大麦幼苗液泡膜微囊膜脂组分及功能的影响[J].植物学报.1999,41(4):414-419.
    [90] Huang C.Y., Liau E.C, Kuo T.Y. Effects of salt stress on the biosynthesis of lipids in chloroplastmembranes of soybean plant[J]. Taiwanis.1997,42(1):63-72.
    [91]Huang C.Y., Chen Y.M. Role of glutathione reductase and related enzymes in salt-tolerant mechanismof soybean plants grown under salt-stress condition[J]. Taiwania.1995,40(1):21-34.
    [92]庄炳昌,徐豹,路琴华.萌发过程中野生大豆(G.soja)和栽培大豆(G.max)超氧物歧化酶的变化[J].大豆科学.1988,7(3):241-243.
    [93]王爱国等.大豆种子超氧物歧化酶的研究[J].植物生理学报.1983,9(1):77-83.
    [94]陈一舞,常汝镇,邵桂花,闫淑荣.盐胁迫下大豆超氧物歧化酶的变化[J].作物学报.1994,20(3):363-367.
    [95]陈一舞,邵桂花,常汝镇.盐胁迫对大豆幼苗子叶各细胞器超氧物歧化酶(SOD)的影响[J].作物学报.1997,23(2):214-219.
    [96]Askari H.,Edqvist J.,Haheidari M.,Saledeh G.H.Effects of salinity levels on proteome of Suaedaaegyptiaca leaves[J].Proteomics.2006,6(8)2542-2554.
    [97]王聪等.NaCl胁迫对菜用大豆种子球蛋白表达的影响[J].西北植物学报.2008,28(11):2145-2153.
    [98]李春梅,杨守萍,盖钧镒,喻德跃.野生大豆与栽培大豆种子差异蛋白质组学研究[J].生物化学与生物物理进展.2007,34(12):1296-1302.
    [99] Djanaguiraman M., Prasad P.V.V., Boyle D.L., Schapaugh W.T. High-temperature stress and soybeanleaves: Leaf anatomy and photosynthesis[J]. Crop Science.2011,(51)2125-2131.
    [100] Guan H., Zheng Z., Grey P.H., Li Y., Oppenheimer D.G. Conservation and divergence of plant LHP1protein sequences and expression patterns in angiosperms and gymnosperms[J]. Molecular Geneticsand Genomics.2011,(285)357-373.
    [101] Tucker M.L., Murphy C.A., Yang R. Gene expression profiling and shared promoter motif for cellwall-modifying proteins expressed in soybean cyst nematode-infected roots[J]. Plant Physiology.2011,(156)319-329.
    [102] Reiss K. et al. Structural and phylogenetic analyses of the GP42transglutaminase from Phytophthorasojae reveal an evolutionary relationship between oomycetes and marine Vibrio bacteria[J]. Journal ofBiological Chemistry.2011,(286)42585-42593.
    [103] Radhakrishnan R.,Lee I.J.Spermine Promotes Acclimation to Osmotic Stress by ModifyingAntioxidant, Abscisic Acid, and Jasmonic Acid Signals in Soybean[J]. Journal of Plant GrowthRegulation.2012,1-9.
    [104] Nouri M.Z.et al. Characterization of calnexin in soybean roots and hypocotyls under osmotic stress[J].Phytochemistry.2012,(74)20-29.
    [105] Wang Y. et al. Overexpression of the soybean GmWNK1altered the sensitivity to salt and osmoticstress in Arabidopsis[J]. Journal of Plant Physiology.2011,(168)2260-2267.
    [106] Mao C.X.et al. Protective Effect of Cerium Ion Against Ultraviolet B Radiation-Induced Water Stressin Soybean Seedlings[J]. Biological Trace Element Research,2011,1-7.
    [107] Wang Q., Chen L., Zhang H. Cloning Na+/H+antiporter gene (nhaA) and analysis of function insoybean[J]. Advanced Materials Research.2011,(183-185)744-747.
    [108] Amooaghaie R.Role of polyamines in the tolerance of soybean to water deficit stress[J]. WorldAcademy of Science, Engineering and Technology.2011,(80)498-502.
    [109] Komatsu S. et al. Characterization of a novel flooding stress-responsive alcohol dehydrogenaseexpressed in soybean roots[J].Plant Molecular Biology.2011,(77)309-322.
    [110] Arshi A., Ahmad A., Aref I.M., Iqbal M. Comparative studies on antioxidant enzyme action and ionaccumulation in soybean cultivars under salinity stress[J]. Journal of Environmental Biology.2012,(33)9-20.
    [111] Wu Y., Zhou Q., Yu B. Effects of seed soaking with soybean isoflavones on soybean seedlings undersalt stress[J]. Shengtai Xuebao/Acta Ecologica Sinica.2011,(31)6669-6676.
    [112] Zhang X.K., Zhou Q.H., Cao J.H., Yu B.J. Differential Cl-/Salt Tolerance and NaCl-InducedAlternations of Tissue and Cellular Ion Fluxes in Glycine max, Glycine soja and their HybridSeedlings[J]. Journal of Agronomy and Crop Science,2011,(1973)29-339.
    [113] Xue Z., Gao H., Liu J. Different response of photosynthetic apparatus between wild soybean (Glycinesoja) and cultivated soybean (Glycine max) to NaCl stress[J]. Shengtai Xuebao/Acta Ecologica Sinica,2011,(31)3101-3109.
    [114] Do an M. Ntioxidative and proline potentials as a protective mechanism in soybean plants undersalinity stress[J]. African Journal of Biotechnology.2011,(10)5972-5978.
    [115] Farhoudi R., Tafti M.M. Effect of salt stress on seedlings growth and ions homeostasis of soybean(Glysin Max) cultivars. Advances in Environmental Biology,2011,(5)2522-2526
    [116]Shi D.C,Yin L.J.Difference between salt(NaCl)and alkaline(Na2CO3)stresses on Puccinelliatenuiflora(Griseb.)Scribn.et Merr.Plants[J].Acta Bot Sin.1993,35:144-149(in Chiese with Englishabstract).
    [117]Yang C.W,Chong J.N,Li C.Y. et al.Osomtic adjustment and ion balance traits of an alkali resistanthalophyte Kochia sieversiana during adaptation to salt and alkali conditions[J].PlantSoil,2007,294:263-276.
    [118]Yang C.W,Wang P.,Li C.Y. et al.Comparison of effects of salt and alkali stresses on the growth andphotosynthesis of wheat[J].Photosynthetica.2008b,46(1):107-114.
    [119]王春娜,宫伟光.盐碱地改良的研究进展[J].防护林科技,2004,5:38-41.
    [120]Santos C.V. Regulation of chlorophyⅡ biosynthesis and degradation by salt stress in sunflower leavesScientia[J].Horticulturae.2004,103:93-99.
    [121]问雪丛.盐、碱胁迫对虎尾草幼苗光合及糖代谢的影响[D].东北师范大学,2011.
    [122]Baker N.R. A possible role for photosystemⅡ in environmental perturbations of photosynthesis[J].Physiol Plant.1991,81:563-570.
    [123] Everard J.D,Gucei R,Kann S.C,Flore J.A., Loescher W.H. Gas exehange and carbon partitioningin the leaves of celery(Apium graveolens L.)at various levels of root zone salinity[J].PlantPhysiol.2001,106:281-292.
    [124] Masojide k.J.,Hall D.O. Salinity and drought stresses are amplified by high irradiance insorghum[J].Photosynthetica.2002,27:159-171.
    [125] Brugnoli E.,Bjorkman O. Growth of cotton under continuous salinity stress: influence on allocationpattern,stomatal and non-stomatal components of photosynthesis and dissipation of exeess lightenergy[J].Planta.2001,187:335-347.
    [126] Liska A.J,Shevehenko A.,Piek U.,Katz A. Enhanced Photosynthesis and Redox Energy ProduetionContribute to Salinity Tolerance in Dunaliella as Revealed by Homology-Based Proteomics[J]. PlantPhysiology.2004,136:1-12.
    [127] Moradi F., Ismail A.M.Responses of Photosynthesis, ChloroPhy ⅡFluoreseence andROS-Seavenging Systems to Salt Stress During Seedling and Reproduetive Stages in Rice[J].Annalsof Botany.2007,99:1161-1173.
    [128]麻莹,曲冰冰,郭立泉.盐碱混合胁迫下抗碱盐生植物碱地肤的生长及其茎叶中溶质积累特点[J].草业科学.2007,16(4):25-33.
    [129]Yang C.W.,Shi D.C,Wang D.L. Comparative effects of salt and alkali stresses on growth, osmoticadjustment and ionic balance of an alkali-resistanthalophyte Suaeda glauca(Bge.)[J].Plant GrowthRegulation.2008,56:179-190.
    [130]Neil R. et al. Applications of chlorophyll fluorescence can improve crop production strategies:anexamination of future possibilities[J].J.Exp.Bot.2004,55(403):1607-1621.
    [131]Netondo G.W,Onyango J.C,Beck E..Sorghum and salinity:11.Gas exehange and chlorophyllfluorescence of sorghum under salts tress[J]. Crop Science.2004,44:806-811.
    [132] Qiu N.W,Lu Q.T,Lu C.M. Posynthesis,photosystem II efficiency and the anthophyllcycle in thesalt-adapted halophyte triplex entralasiatica[J].New Phytologist.2003,159:479-486.
    [133]陈少瑜,郎南军,李吉跃等.干旱胁迫下坡柳等幼苗质膜相对透性和脯氨酸含量的变化[J].广西植物,2006,1:80-84.
    [134]陈托兄,张金林,陆妮等.不同类型抗盐植物整株水平游离脯氨酸的分配[J].草业学报.2006,15(1):36-41.
    [135]尹尚军,石德成,颜宏.碱胁迫下星星草的主要胁变反应[J].草业学报.2003,12(4):51-57.
    [136]黎明,李福秀,马焕成等.香木莲对短时低温胁迫处理的生理生态响应[J].北方园艺,2006,(1):37-39.