蔗糖和ABA对铁皮石斛体细胞胚胎发生的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物体细胞转变为胚性细胞进而发育成为成熟体胚的过程是一个复杂的生理生化过程,该过程既被外界环境因素的影响,如蔗糖、ABA、氮源等,也受到植物体内许多基因的调控。本实验以铁皮石斛原球茎为外植体诱导出的愈伤组织在黑暗中继代培养2次后得到的胚性愈伤组织为实验材料,研究不同浓度蔗糖和ABA对铁皮石斛胚性愈伤组织生长发育及生理生化特性的影响。
     以继代2次的胚性愈伤组织为材料,固液两种条件下不同分化培养基上培养3、4、5、6个星期后,对获得的体胚进行形态观察发现,中等浓度的蔗糖(5%和6%)和ABA的组合最利于胚性愈伤组织的发育,且随着ABA浓度的增加,体胚一致性趋于整齐,长势较好,次生褐化程度低。对体胚进行统计发现,在6%蔗糖和0.76μmol/LABA的组合中体细胞胚胎的产量最高,该培养基上单位外植体平均生成32个体胚,产胚率高达59%。
     在不同处理对铁皮石斛胚性愈伤组织生长的影响的基础上,研究了固体条件下不同分化培养基培养3、4、5、6个星期后总蛋白图谱,发现培养5个星期后蛋白表达量到达高峰,该时期蛋白条带多而密;0.76μMABA和蔗糖的组合处理后组织中蛋白含量比0.57μMABA和0.95μMABA与蔗糖的组合处理要高,且出现了更多的小分子蛋白条带,尤其是一条分子量大约为44KDa的蛋白条带在这几个处理中强表达。
     研究固体培养条件下不同分化处理5个星期后的铁皮石斛体细胞胚的同工酶酶谱,我们发现POD酶和EST酶随着外界培养环境中激素和蔗糖的变化而发生了明显的变化。相对于对照组而言,经过分化培养基处理后得到的体细胞胚POD酶存在或多或少的酶带缺失现象,这表明处理组中铁皮石斛体细胞胚呼吸作用减弱;与之相反,处理组中EST酶谱相对对照组有新的酶带出现,这说明有新的基因表达,贮藏物质增加。
     通过分析体细胞胚胎发育调控LEC基因的性质,发现4种LEC蛋白中,有完全相似的理化性质,而对其功能结构域的生物信息学分析发现这几种基因在植物胚胎发育过程中起着重要的调控作用,其中LECl和LIL基因主要在胚胎发育早期发挥作用,LEC2和FUSCA3基因在胚胎发育成熟阶段能调控储藏蛋白的合成和积累,并使种子获得抗干燥胁迫的能力。
     综上所述,我们认为6%蔗糖和0.76μMABA组合最有利于铁皮石斛体细胞胚胎的产生,同时蛋白等贮藏物质积累最多,在0.76μMABA和中高浓度蔗糖的胁迫下,铁皮石斛体细胞胚胎在球形胚后期进入休眠期。
Somatic embryogenesis which is complicated has been an important pathway for studying plant embryogenesis. It is affected by some outer factors such as sucrose, ABA and nitrogen source, and regulated by genes. In this study, the embryonic calli was used as the original materials, which were induced by protocorm-like bodies (PLBs) of Dendrobium candidum Wall ex Lindl. The effect of sucrose and abscisic acid (ABA) were tested on the regulation of somatic embryos of Dendrobium candidum Wall ex Lindl.
     The embryogenic calli are cultured under the conditions of solid-liquid differentiation medium for 3,4,5,6 weeks, the results indicated that the combination of ABA and sucrose (5% and 6%) were most efficient for the development of embryogenic callus. And with the increase of ABA concentration, embryos development tends to be consistency, growing well, and with the low level of secondary browning. On the other hand, the combination of 6% sucrose and 0.76μmol/L ABA yields the highest level of somatic embryo, the medium of explants unit generated an average of 32 individual embryos, embryo production rate as high as 59%.
     On the basis of the results obtained above, the total protein pattern was tested with the embryonic callus growth on the solid differentiation medium. We found that after 5 weeks culture the protein expression reaches its peak, and the protein bands are more; The protein content of the treatment of 0.76,μM ABA and sucrose combination is higher than the treatment of 0.57μM ABA and 0.95μM ABA, and there are more small molecule protein bands. Particularly a molecular weight of about 44KDa protein band is strong expression under these treatments.
     We find that POD and EST enzyme activity outside the training environment with the hormone and changes in sucrose significant changes have taken place. Compared with the control group, the differentiation medium was obtained after somatic embryos POD enzyme deficiency exists more or less with the phenomenon of enzyme, indicating that treatment group Dendrobium somatic embryos decreased respiration; In contrast, treatment EST zymogram group relative control group emerged with a new enzyme, indicating that new gene expression, increase the storage material.
     Analysis of somatic embryogenesis by regulating the nature of LEC genes and found four kinds of LEC protein, there are totally similar physical and chemical properties, and its functional domain of Bioinformatic analysis found that several genes in plant embryo development plays an an important regulatory role, which LEC1 and L1L genes play a major role in early embryonic development, LEC2 and FUSCA3 genes in embryonic development stages of maturity can control storage protein synthesis and accumulation, and make seeds resistant to desiccation stress capacity.
     In summary, we believa that 6% sucrose and 0.76μM ABA Dendrobium most beneficial combination of somatic cell production, and storage protein accumulation largest,0.76μM ABA and high concentration of sucrose stress, somatic embryos Dendrobium. In the late globular embryo into the dormant period.
引文
[1]Haccis B. Question of uncellar origin on non-zygotic embryos in callus cultures. Phytomorphology,1978,28:74-81.
    [2]Steward F C, Mapes M O, Mears K. Growth and organized development of cultured cells. Organization in cultures grown from freely suspended cells. American journal of botany,1958,45:705-708.
    [3]Sharp W R, Sondahl M R, Caldass et al. The physiology of in vitro asexual embryogenesis. Hort Review,1980,2:268-310.
    [4]Preeti Sharma, Subedar Pandey, Amita Bhattacharya, P.K. Nagar. ABA associated biochemical changes duringsomatic embryo development in Camellia sinensis (L.) O. Kuntze. Plant Physiology,2004,161:1269-1276.
    [5]S.Chanprame, T. M. Kuo, J. M. Widholm. Soluble carbohydrate content of soybean [Glycine max (L) Merr.] somatic and zygotic embryos during development. In Vitro Cellular. Development Biology,1998,34:64-68.
    [6]S.Chanprame, J. M. Widholm. Comparision of oil, protein and sugars content in soybean (Glycine max cv. Jack) somatic and zygotic embryos. In Vitro Cellular. Development Biology,1996,32(3):90A.
    [7]Joan E. Krochko, Saroj K. Pramanik J. Derek Bewley. Contrasting Storage Protein Synthesis and Messenger RNA Accumulation during Development of Zygotic and Somatic Embryos of Alfalfa (Medicago sativa L.). Plant Physiology,1992.99:46-53.
    [8]Laurent Gutierrez, Olivier Van Wuytswinkel, Mathieu Castelain Catherine Bellini. Combined networks regulating seed maturation.Trends in plant Science,2007,12(7): 294-301.
    [9]Kapik R H. Changes in abscisic acid concentration during zygotic embryogenesis in Loblolly pine (Pinus taeda L.) as determined by indirect ELISA [D]. PhD thesis. Institute of Paper Science and Technology. Atlanta. Ga,1994.
    [10]Le lu M.A, Label P. Changes in the levels of abscisic acid and its glucose ester conjugate during maturation of hybrid larch (Larix x leptoeuropaea) somatic embryos, in relation to germination and plantlet recovery. Plant Physiology,1994,92:53-60.
    [11]Patrick von Aderkasa, Marie-Anne Lelub, Philippe Labelb. Plant growth regulator levels during maturation of larch somatic embryos. Plant Physiol, Biochem.2001,39: 495-502
    [12]Gingas V M, Linebrger R D. Asexual embryogenesis and plant regeneration in Quercus. Plant Cell Tissue Orgen Culture,1989,17:191-203.
    [13]师嘉临,师桂英.非洲紫罗兰叶片叶片体细胞胚培养及快繁技术研究.植物遗传资源学报,2005,6(4):453-456.
    [14]杨安元,李敏,陈庆余.茶树体细胞植株再生的光照效应.湖南农业大学学报,1999,25(2):112-115.
    [15]黄丽华,洪亚辉,戴雄泽等.光质对辣椒离体愈伤组织诱导及分化的影响,湖南农业大学学报,2009,35(6):615-617.
    [16]王亚丽,王晓东,赵兵.光质对玛咖愈伤组织生长、分化的影响.过程工程学报,2007,7(4):782-785.
    [17]崔凯荣,陈克明,王晓哲等.植物体细胞胚胎发生研究的某些现状.植物学报,1993,10:14-20.
    [18]王维荣,王咏冬,欧阳光察等.光质对黄瓜及番茄愈伤组织培养中分化和有关酶的影响.植物生理学报,1991,17(2):118-124.
    [19]范慈惠.光质对植物愈伤组织的诱导和植株形成的影响.植物生理学通讯,1981,17(1):25-33.
    [20]洪森荣,尹明华.光质对野葛叶片愈伤组织的诱导及其可溶性蛋白含量的影响.安徽农业科学,2007,35(9):2560-2563.
    [21]王学奎,李合生,刘武定.光对小麦叶片谷氨酰胺合成酶调节机理初探.华中农业大学学报,2000,19(2):102-105.
    [22]熊丽,周吉源,殷荣华.光质对石刁柏愈伤组织培养中生长和过氧化物酶的影响.武汉植物学研究,1995,13(3):253-257.
    [23]Vasil V., Z. K.Vasil. Induction and maintenance of embryogenic callus cultures of Gramineae. Cell Culture And Somatic Cell Genetics Of Plant,1984:36-42.
    [24]权军利,刘正全,陈耀锋等.蔗糖与激素对小麦幼穗体细胞无性系形成及生长特性的影响研究.西北植物学报,1999,19(6):87-91.
    [25]Choi Y E, Jeong J H. Dormancy induction of somatic embryos of Siberian ginseng by high sucrose concentrations enhances the conservation of hydrated artificial seeds and dehydration resistance. Plant Cell Reports,2002,20(12):1112-1116.
    [26]Ana Paula Korbes, Annette Droste. Carbon sources and polyethylene glycol on soybean somatic embryo conversion. Pesq. agropec. bras. Brasilia,2005,40(3):211-216.
    [27]周丽侬,邝哲师,马雪筠等.影响荔枝幼胚体细胞胚胎发生因素的研究.农业生物技术学报,1996,4(2):161-165.
    [28]甘烦远,郑光植,彭丽萍.云南红豆杉的悬浮培养.植物生理学报,1997,23(1):43-46.
    [29]Yang Z P. Sucrose regulates elongation of carrot somatic embryo radicles as a signal molecule. Plant molecular biology,2004,54 (3):441-459.
    [30]Rocha-Sosa M., Sonnewald U., Frommer W. et al. Both developmental and metabolic signals activate the promoter of a class 1 patatin gene. EMBO Journal,1989,8:23-29.
    [31]Muller-Rober B.T., KoBmann J., Hannah L.C. et al. One of the two ADP-glucose pyrophosphorylase genes from potato responds strongly to elevated levels of sucrose. Molecular and General Genetics,1990,224:136-146.
    [32]Visser R.G.F., Stolte A., Jacobsen E.. Expression of a chimeric granule-bound starch synthase-GUS gene in transgenie potato plants. Plant Molecular Biology,1991,17:691-699.
    [33]Salanoubat M., Belliard G. The steady state level of potato sucrose synthase mRNA is dependent on wounding, anaerobiosis, and sucrose concentration. Gene,1989,84:181-185.
    [34]Cakir B, Agasse A, Gaillard C et al. A grape ASR protein involved in sugar and abscisic acid signaling. Plant Cell,2003,15:2165-2180.
    [35]Laurent Linossier, Philippe Veisseire, Francoise Cailloux et al. Effects of abscisic acid and high concentrations of PEG on Hevea brasiliensis somatic embryos development. Plant Science,1997,124:183-191.
    [36]Bespalhok F, Hattori K. Friable embryogenic callus and somatic embryogenesis from cytoledon explants of African marigold (Tagetes erecta L.). Plant Cell Reports,1998, 17(11):870-875.
    [37]Preeti Sharma, Subedar Pandey, Amita Bhattacharya, P.K. Nagar.ABA associated biochemical changes during somatic embryo development in Camellia sinensis (L.) O. Kuntze. Plant Physiology,2004,161:1269-1276.
    [38]T. Dennis Thomas. Effect of Sugars, Gibberellic Acid and Abscisic Acid on Somtic Embryogenesis in Tylophora indica (Burm.f.) Merrill. Chinese Journal of Biotechnolog, 2006,22(3):465-471.
    [39]Fernando S C, Carnage C K. Abscisic acid ind uced somatic embryogenesis in immature embryi explants of coconut (Cocos nucifera L.). Plant Science,2000,152(2): 193-198.
    [40]Nishiwaki M., Fujino K., Koda Y. et al. Somatic embryogenesis induced by the simple application of acid to carrot (Daucus carota L.) seedlings in culture. Planta,2000,211: 756-759.
    [41]Bell L. M., Trihiano R. N., Conger B. V. Relationship of abscisic acid to somatic embryogenesis in Dactylis Glomerata. Environ Experiment Botany,1993,33:495-499.
    [42]刘春朝,王玉春,欧阳藩等.青杆胚性愈伤组织悬浮培养动力学及体细胞胚胎发 生.西北植物学报,1998,18:155-159.
    [43]崔凯荣,裴新梧,秦琳等.ABA对枸杞体细胞胚发生的调节作用.实验生物学报,1998,31(2):195-199.
    [44]Li C R, Loh C S, Sun W Q. An improved dehydration protocol for cryopreservation of Brassica napus somatic embryos. Cryo Letters,1999,20(4):263-268.
    [45]Tian L N, Brown Daniel C W. Improvement of soybean somatic embryo development and maturation by abscisic acid treatment. Canadian Journal of Plant Science,2000, 80(2):271-276.
    [46]Philip V. Ammirato. Hormonal Control of Somatic Embryo Development from Cultured Cells of Caraway. Plant Physiology,1977,59:579-586.
    [47]Tetteroo, F. A. A., Bomal, C., Hoekstra, F. A. et al. Effect of abscisic acid and slow drying on soluble carbohydrate content in developing embryoids of carrot (Daucus carota L.) and alfalfa (Medicago sativa L.). Seed Science Research,1994,4:203-210.
    [48]Sheila A. Blackman. Scott H. Wettlaufer, et al. Maturation Proteins Associated with Desiccation Tolerance in Soybean. Plant Physiol,1991,96:868-874.
    [49]C Ccile Thierry, Bruno Florin, Vincent PCtiard. Changes in protein metabolism during the acquisition of tolerance to cryopreservation of carrot somatic embryos. Plant Physiology and Biochemistry,1999,37 (2):145-154.
    [50]Preeti Sharma, Subedar Pandey, Amita Bhattacharya, P. K. Nagar. ABA associated biochemical changes during somatic embryo development in Camellia sinensis (L.) O. Kuntze. Plant Physiology,2004,161:1269-1276.
    [51]Beardmore T, Charest P. Black spruce somatic embryo germination tolerance. Ⅱ. Effect of an abscisic acid treatment on protein synthesis. Canadian Journal of Forest Research, 1995,25(11):1773-1782.
    [52]Lekha Sreedhar 1, J. Derek Bewley. Nitrogen and sulfur-containing compounds enhance the synthesis of storage reserves in developing somatic embryos of alfalfa (Medicago sati6a L.). Plant Science,1998,134:31-44.
    [53]Hakman I, Von Arnold S. Somatic embryogenesis and plant regeneration from suspension cultures of Picea glauca (White spruce). Plant Physiology,1988,72:579-587.
    [54]Attree S M, Pomeroy M K, Fowke L C. Manipulation of conditions for the culture of somatic embryos of white spruce for improved triacylglycerol biosynthesis and desiccation tolerance. Planta,1992,18:395.
    [55]Cailloux F, Julien, Linossier L et al. Long-term somatic embryogenesis and maturation of somatic embryos in Hevea brasiliensis. Plant Science Shannon,1996,120(2):185-196.
    [56]Buchheim J. Maturation of soybean somatic embryos and the transition to plantet growth. Plant Physiology,1989,89:268-275.
    [57]Thompson R G. Somatic embryogenesis and plant regeneration from immature embryos of western larch. Plant Cell Report,1992,11:379-385.
    [58]Kim Y K, Janick J. Abscisic acid and proline improve desiccation tolerance and increase fatty acid content of celery somatic embryos. Plant Cell Tissue Organ Culture, 1991,24:83-89.
    [59]Attree S M, Fowke L C. Embryogeny of gymnosperms:advances in synthetic seed technology of conifers. Plant Cell Tissue Organization Culture,1993,35:1-35
    [60]Li B C H, Wolyn D J. The effects of ancymido, abscisic acid, uniconazole and paclobutrazol on somatic embryogenesis of asparagus. Plant Cell Reports,1995,14(8): 529-533.
    [61]Fowke L C, Attree S M. Applied and basic studies of somatic embryogenesis in white spruce (Picea glauca L.) and black spruce (Picea mariana L.). In:Soh WY, Liu JR, Kamamine A (eds). Advances in Developmental Biology and Biotechnology of HigherPlants. Korea:The Korean Soc. Plant Tissue Culture,1993.5.
    [62]Gutmann M, Von Aderkas P, Label P et al. Effects of abscisic acid on somatic embryo maturation of hybrid larch. Journal of Experimental Botany,1996,47(305):1905-1917.
    [63]Krogstrup P, Eriksen EN, Muller J D et al. Somatic embryogenesis in Sitka spruce [Picea sitchensis (Bong.) Carr.]. Plant Cell Report,1988,7:594-597
    [64]Shiota, H, Kamada, H et al. C-ABI3, the carrot homologue of the Arabidopsis ABI3, is expressed during both zygotic and somatic embryogenesis and functions in the regulation of embryo-specific ABA-inducible genes. Plant Cell Physiology,1998,39: 1184-1193.
    [65]Preeti Sharma, Subedar Pandey, Amita Bhattacharya, P.K. Nagar. ABA associated biochemical changes duringsomatic embryo development in Camellia sinensis (L.) O. Kuntze. Plant Physiology,2004,161:1269-1276.
    [66]Chalupa V. Somatic embryogenesis and plant regeneration in Norway spruce [Picea abies (L.) Karst.]. Acta Universitatis Carolinae Biologica,1997,41(1-2):13-22.
    [67]Kiyosue T, Takano K, Kamada H, Harada H. Induction of somatic embryogenesis in carrot by heavy metal ions. Canadian Journal of Botany,1990,68:2301-2303.
    [68]Williams J, Pink D A C, Biddington N L. Effect of silver nitrate on long-term culture and regeneration of callus from Brassica oleracea var. gernmifera. Plant Cell Tissue, Organ Culture.1990,21:61
    [69]王景雪,孙毅,胡晶晶等.玉米自交系高频率再生因素研究.作物学报,2004,
    30(6):398-402.
    [70]杨金玲,桂耀林,杨映银等.白扦体细胞胚发生及其植株再生.植物学报,1997,39(4):315-321.
    [71]Fuentes S R L, Calheiros M B P, Manetti-Filho J et al. The effects of silver nitrate and different carbohydrate sources on somatic embryogenesis in Coffea canephora. Plant Cell Tissue Organazation Culture,2000,60:5-13.
    [72]胡忠,徐艳,高欢欢等.影响宁夏枸杞愈伤组织体细胞胚发生的因素.汕头大学学报,2006,21(4):57-62.
    [73]Beyer E M. A potent inhititor of ethylene action in plants. Plant Physiology,1976,58: 268-271.
    [74]Halperin W, Wetherel W F. Ontogeny of Adventive Embryos of Wild Carrot. Science, 1966,153:1287-1288.
    [75]Tremblay L, Ttemblay F M. Effects of gelling agents, ammounium nitrate, and light on the development of Picea mariana (Mill) B. S. P. (black spruce) and Picea rubens Sarg. (red spruce) somatic embryo. Plant Science,1991,77:233-242.
    [76]李哲,黄敬文,黄霞等.氮源对巴西香蕉薄片愈伤组织诱导的影响.中山大学学报,2005,44(2):91-93.
    [77]卢洪,习武.碳源和氮源对大豆愈伤组织生长和染料木素积累的影响.海口经济学院学报,2009,8(3):91-96.
    [78]高述民,陆帼一.大蒜体细胞胚胎发生研究进展.植物学通报,2000,17(4):338-344.
    [79]王亚馥,崔凯荣,陈克明等.小麦组织培养中体细胞胚胎发生的细胞胚胎学及淀粉消长动态的研究.实验生物学报,1993,26(3):259-267.
    [80]高述民,陆帼一,杜慧芳等.大蒜体细胞胚发育分化中特异蛋白质和某些生理生化变化.植物生理学通讯,2001,37(3):207-23
    [81]周燕,高述民等.胡萝卜体细胞胚胎发生中的细胞组织化学和蛋白质组分变化.植物生理学通讯,2004,40(2):181-183
    [82]郝建平,周小梅,李绍清.茴香组织培养中体细胞胚胎发生的组织细胞学研究.实验生物学报,1995,28(3):339-345.
    [83]Tian G W, Shen J H. The ultracytochemical localization of ATPase activity in the ovules of wheat during fertilization. Acta Botanica Sinica,1993,35(5):329-336
    [84]Cui K R, Xing G M, Wang Y F. Ultrastructural and cytochemical localization of ATPase activity studies of embryogenic cell differentiation in Lycium barbarum L. Acta Botanica Borealioccidentalia Sinica,1997,17(6):106-110
    [85]崔凯荣,邢更生,周功克等.体细胞胚发生的生化基础.生命科学,2001,13(1): 28-33.
    [86]Coppens L, Gillis E. Isoenzyme electrofocusing as a biochemical marker system of embryogenesis and organogenesis in callus tissues of Hordeum vulgare L. Plant Physiology,1987,127:153-158.
    [87]N. P. Everett, M. J. Wach, D. J. Ashworth. Biochemical markers of embryogenesis in tissue cultures of the maize inbred B73. Plant Science,1985,41:133-140.
    [88]刘明志,陈勤,刘希.洋桔梗体细胞胚性愈伤组织诱导过程中超氧化物歧化酶和酯酶变化.广西植物,2008,28(2):247-250
    [89]潘有福,王星,孟玉玲等.秦艽体细胞胚不同发育阶段几种同工酶的特性.西北植物学报,1994,15(5):6-10.
    [90]胡忠,刘天磊,江晓雯等.宁夏枸杞愈伤组织器官发生和体细胞胚发生过程中过氧化物酶和酸性磷酸酶同工酶的研究.兰州大学学报,2000,36(3):147-153.
    [91]沈宗英,沈曾佑,张志良.花椰菜下胚轴培养过程中过氧化物酶活性及同工酶谱的变化.植物生理学报,1985,11(1):17-24.
    [92]杨和平,程井辰.石刁柏体细胞胚发生发育过程中蛋白质及同工酶变化的研究.实验生物学报,1992,25(1):17-23.
    [93]王亚馥,王仑山,陆卫.枸杞组织培养中过氧化物酶和可溶性蛋白的变化.实验生物学报,1989,22(3):22-25
    [94]崔凯荣,戴若兰.植物体细胞胚胎发生的分子生物学.第一版.科学出版社.2000:38-39.
    [95]Sung Z R, Okimoto R. Embryonic proteins in somatic embryos of carrot. Proceedings of the National Academy of Sciences,1981,78:3683-3687.
    [96]Stirn S, Jacobsen H.J. Marker proteins for embryogenic differentiation patterns in pea callus. Plant Cell,1987,6:50-54.
    [97]崔凯荣,王晓哲,陈雄等.小麦体细胞胚发生中DNA, RNA和蛋白质的合成动态.核农学报,1997,11(4):209-214.
    [98]Sengupta c, Raghavan V. Somatic embryogenesis in carrot cell suspension, Ⅱ. Pattern of ribosomal RNA and poly(A)RNA. Experiment Botany,1980,31:259-268.
    [99]SenguPta C,Raghavan V. Somatic embryogenesisi in carrot cell suspension. I. Pattern of protein and nucleic acid synthesis. Experiment Botany,1980,31:247-258.
    [100]Fujimura T, Kommineand A, Matdumoto H. Aspects of DNA, RNA and protein synthesis during somatic embryogenesis in a carrot cell suspension culture. Physiologia Plant,1980,49:255-260.
    [101]王仑山,丁慧宾,林清云.放线菌索D和环已亚胺对伊贝母胚性愈伤组织中胚性细胞团和球形胚发生及大分子代谢动态的影响.遗传学报,1993,20(2):159-166.
    [102]路铁刚,郑国铝.红豆草体细胞胚胎发生早期DNA、 RNA和蛋白的合成动态变化.生物技术,1991,1(1):34-38.
    [103]唐巍,吴绛云.平贝母体细胞胚胎发生中的核酸与蛋白质合成研究.植物学报,1989,31(10):757-762.
    [104]胡忠,丁慧宾,王默等.宁夏枸杞器官发生和体细胞胚胎发生过程中DNA、 RNA和蛋白质合成动态的比较研究.实验生物学报,1998,31(4):403-411.
    [105]叶克难,李文雷,徐增富等.苜蓿体细胞胚胎发生过程中DNA、 RNA和蛋白质的合成动态.实验生物学报,1992,25(4):403-410.
    [106]王亚馥,刘志学,徐庆.红豆草胚性细胞系和非胚性细胞系DNA代谢动态的研究.植物学通报,1991,8:37-39.
    [107]David W. Meinke. A Homeoeotic Mutant of Arabidopsis thaliana with Leafy Cotyledon. Science,1992,258:1647-1649.
    [108]Raymond W Kwong, Anhthu Q Bui, Hyeseung Lee et al. LEAFY COTYLEDON1-LIKE Defines a Class of Regulators Essential for Embryo Development. Plant Cell, 2003,15:5-18.
    [109]David W Meinke, Linda H Franzmann, Todd C Nickle et al. Leafy Cotyledon Mutants of Arabidopsis. Plant Cell,1994,6:1049-1064.
    [110]Carlos M. Vicient, Natacha Bies-Etheve, Michel Delseny. Changes on gene expression in the leafy cotyledon1(lec1) and fusca3 (fus3) mutants of Arabidopsis thaliana L. Journal of Expreimental Botany,2000,51(237):995-1003.
    [111]Lars O. Baumbusch, D. Wayne Hughes, Galaus et al. LEC1, FUS3, ABI3 and Em expression reveals no correlation with dormancy in Arabidopsis. Journal of Expreimental Botany,2004,55(394):77-87.
    [112]Sandra L. Stone, Linda W. Kwong, Kelly Matsudaira Yee et al. LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development. PNAS,2001,98(20):11806-11811.
    [113]Gaj M.D., Zhang S. B., Harada J. J. et al. Leafy cotyledon genes are essential for induction of somatic embryogenesis of Arabidopsis. Planta,2005,222:977-988.
    [114]Sandra L. Stone, Siobhan A. Braybrook, Stephanie L. Paula et al. Arabidopsis LEAFY COTYLEDON2 induces maturation traits and auxin activity:Implications for somatic embryogenesis. PNAS,2008,105(8):3151-3156.
    [115]Heck G R, Perry S E, Nichols K W et al. AGL15,a MADS domain protein expressed in developing embryos. Plant Cell,1995,7:1271-1282.
    [116]Harding E W, Tang W, Nichols K W et al. Expression and maintenance of embryogenic potential is enhanced through constitutive expression of AGAMOUS
    -LIKE15. Plant Physioly,2003,133:653-663.
    [117]Dhiraj Thakare,Weining Tang, Kristine Hill et al. The MADS-Domain Transcriptional Regulator AGAMOUS-LIKE15 Promotes Somatic Embryo Development in Arabidopsis and Soybean. Plant Physiology,2008,146:1663-1672.
    [118]Schmidt E D, Guzzo F, Toonen M A J et al. A leucine-rich repeat containing receptor-like kinase marks somatic plant cell competent to form embryos. Development, 1997,124(10):2049-2062.
    [119]Santos M D O, Romano E, Yotoko K S C et al. Characterisation of the cacao somatic embryogenesis receptor-like kinase (SERK) gene expressed during somatic embryogenesis. Plant Science,2005,168(3):723-729.
    [120]Hecht V, Calzada J P V, Hartog M V, Schmidt Ed DL et al. The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiology,2001,127(3):803-816.
    [121]赵鹏,冯佛生,王万军.铁皮石斛愈伤组织的诱导及再生植株.四川省遗传学会第七届代表大会暨学术讨论会.2004
    [122]杨中奇,唐静仪,王万军.铁皮石斛体细胞胚胎发育的调控条件.西南交通大学学报,2008,43:160-163.
    [123]伍菲,王为,樊晓霞等.糖对铁皮石斛愈伤组织生长的影响.西南交通大学学报,2008,43:143-146.
    [124]C.D.R.Rock, R.S. Quatrano. The role of hormones during seed development. Plant Hormones, Physiology Biochemistry and Molecular physiology,1995:671-697.
    [125]Arnold S von, Hakman I. Regulation of somatic embryo development in Picea abies by abscisic acid(ABA). Plant Physiology,1988,132:164-169.
    [126]Choi YE, Jeong JH. Dormancy induction of somatic embryo of Siberian ginseng by high sucrose concentrations enhances the conservations of hydrated artificial seeds and dehydrations resistance. Plant Cell Reports,2002,20:1112-1116.
    [127]任江萍,尹钧,师学珍等.小麦转基因再生植株培养体系的优化.华北农学报,2003,18(1):22-25.
    [128]李双成,王世全,尹福强等.籼稻成熟胚愈伤组织培养影响因素研究.四川农业大学学报,2004,22(4):296-331.
    [129]贺杰,校现周,李瑞芬.结缕草成熟胚愈伤组织的诱导及再生体系的研究.山西农业大学学报,2005,25(3):211-213.
    [130]Rodney L. Robichauda, Veronica C. Lessardb, Scott A. Merklea. Treatments affecting maturation and germination of American chestnut somatic embryos. Journal of Plant Physiology,2004,161:957-969.
    [131]Yang JL. Studies on peroxidase and esterase isozyme patterns during somatic embryogenesis of Picea Meyeri. Journal of Wuhan Botanical Research,1999.17: 279-281.
    [132]Liu TL, Jiang XW, Wang LS. The analysis of special proteins and isoenzymes in globular embryogenesis of alfalfa in tissue culture. Acta. Botanica Boreali-Occidentalia Sinica,2002, (3):625-628.
    [133]Jay Danao, Kelly Matsudalra Yee, John J Harada et al. LEAFY COTYLEDON1 is an Essential Regulator of Late Embryogenesis and Cotyledon identity in Arabidopsis. Plant Cell,1994,6:1731-1745.
    [134]John J, Harada. Role of Arabidopsis LEAFY COTYLEDON genes in seed development. Plant Physiol,2001,158:405-409.
    [135]Hironaka Tsukagoshi, Atsushi Morikami, Kenzo Nakamura. Seedlings Arabidopsis maturation genes in Two B3 domain transcriptional repressors prevent sugar inducible expression of seed. Proceedings of the National Academy,2007,104:2543-2547.
    [136]Masaharu Suzuki, Heidi H, Y, Wang, Donald R. McCarty. Repression of the LEAFY COTYLEDON 1/B3 Regulatory Network in Plant Embryo Development by VP1/ABSCISIC ACID INSENSITIVE 3-LIKE B3 Genes. Plant Physiology,2007, 143(2):902-911.
    [137]陈金军,张学文.植物胚胎发生基因调控的研究进展.西北植物学报,2004,24(11):2183-2187.
    [138]Luqer K, Richmond R K, Sarqent D F et al. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature,1997,389(6648):231-233.
    [139]郭晓芳,严海燕,何骥等.花生ABI3同源基因的定位分析.武汉植物学研究,2006,24(1):22-26.
    [140]KatsumiYazawa, Kiminori Takahat, Hiroshi Kamada. Isolation of the gene encoding Carrot leafy cotyledonl and expression analysis during somatic and zygotic embryogenesis. Plant Physiology and Biochemistry,2004,42:215-223.
    [141]Hyeseung Lee, Robert L, Harada et al. Arabidopsis LEAFY COTYLEDON1 represents a functionally specialized subunit of the CCAAT binding transcription factor. Science,2003,100:2152-2156.