吉林省龙井原位保护区野生大豆遗传多样性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本实验利用GPS定位对吉林省龙井原位保护区野生大豆进行单株采种,取样点覆盖整个龙井原位保护区,种群(90)共90份材料(取样距离设计为50m)。把整个龙井原位保护区的野生大豆按天然地理分布人为分成小种群A、小种群B、小种群C三个小种群;同时,在小种群B中选取一个小种群(32),共32份材料(取样距离设计为18m),做了不同采样方式的比较。
     利用25对多态性较好的SSR引物对龙井原位保护区的种群(90)、小种群A、小种群B、小种群C以及小种群(32)的野生大豆进行遗传多样性及遗传关系分析。分析结果如下:
     1.利用25对SSR引物对龙井原位保护区种群(90)进行遗传多样性分析,共检测到138个等位变异,平均5.52个。Simpson指数分布在0.3072~0.8393之间,平均值为0.6788:Shannon-weaver指数在0.5856~1.9348之间,平均值为1.3663。表明龙井原位保护区的野生大豆具有很高的遗传多样性。
     2.三个小种群的遗传多样性指数趋势一样:小种群C>小种群B>小种群A,并且小种群A和小种群C遗传多样性指数数值相差很多,说明小种群间的遗传多样性存在很大差异。
     小种群B为50m采样,小种群(32),为18m采样;从地理位置上看,小种群(320在小种群B的地理范围内,说明取样方式的不同直接影响遗传多样性的高低。小种群(32)和小种群B的遗传多样性指数差距很大,进一步说明龙井原位保护区野生大豆小种群内的遗传差异很大。
     3.龙井原位保护区野生大豆群体间的分化指数Fst=0.1419,检测发现基因流Nm=1.5112,说明龙井原位保护区野生大豆14.19%的遗传变异存在于小种群间,基因流频率较高。
     4.龙井原位保护区的野生大豆遗传相似系数为0.56-0.99,平均遗传相似系数为0.66。从聚类结果看出:龙井原位保护区的野生大豆呈斑块分布,并且小种群间的遗传相似系数与地理距离有一定的相关性。
In this experiment we studied the genetic diversity and relationship in wild soybean. A total of 90 wild soybean samples were collected from in-situ conserved region in Longjing county of Jilin Province by GPS positioning (collection interval is 50m), which covers the whole in-situ conserved region. According to the geographical locations, we divide all the wild soybean into three sub-populations A, B and C respectively. Furthermore, we collected 32 wild soybean samples in sub-population B for collection strategy study (collection interval is 18 m).
     In order to discover the genetic diversity among wild soybean and genetic relationship, the 90 samples (population(90))), sub-population A, sub-population B, sub-population C, and the 32 samples (from sub-population(32)) were analyzed by using 25 pairs of SSR markers with good reproducibility and polymorphism.The results showed that:
     1. By using the 25 pairs of SSR markers, we detect 138 allelic variants, on the average of 5.52. Simpson index distribution from 0.3072 to 0.8393, with an average of 0.6788. Shannon-weaver index distribution from 0.5856 to 1.9348, with a mean of 1.3663. These results show that wild soybean population(90)presents a highly genetic divergence in Longjing in-situ conserved region of Jilin Province.
     2. We can learn that genetic diversity of the three sub-populations have the same trend: C>B>A, and there are a great deal of differences between sub-population A and sub-population C. It suggested that genetic diversities of each sub-population is different.
     Wild soybean samples of sub-population B were collected in the interval of 50 m,and wild soybean samples of sub-population(32) were collected by 18 m and the genetic diversity index between them was large margin. Geographically, it means sampling methods had reflected the results, and the genetic diversity of each sub-population was distinct in the Longjing in-situ conserved region.
     3. The index of subdivision (Fst) among the sub-populations is 0.1419 and the gene flow (Nm) is 1.5112. These indicated that the sub-populations had about 14.19% of genetic variations. It means higher frequency of gene flow among the sub-populations, relatively.
     4.The coefficient of genetic similarity is between 0.56 and 0.99, with an average of 0.66. Clustering analysis shows that the distribution of the wild soybeans in Longjing is spotted, and the coefficient of genetic similarity among sub-populations has relativity between geographical distance.
引文
[1]李福山.中国的大豆属植物[J].大豆科学,1983,2:107一113.
    [2]Singh R J, Kollipara K P, Hymowitz T. Intergenomic relationships among wild perennial Glycine species[C]. World Soybean Research Conference V. Thailand:Chiang Mei,1994:40-43.
    [3]付沛云,陈佐安.辽宁省大豆属植物野生种的分类研究[J].植物研究,1986,6:117-123.
    [4]中国农业科学院作物品种资源研究所.中国野生大豆资源目录[M].北京:中国农业出版社,1990.
    [5]Skvortzow B W. The soybean—wild and cultivated in Eastern Asia[C]. In Proceedings of the Manchurian Research Society. Harbin,China. Natural History Section Publication Series A.1927,2-16.
    [6]王克晶,李福山.我国野生大豆(G.soja)种质资源及其种质创新利用[J].中国农业科技导报,2000,2(6):69-72.
    [7]庄炳昌,孙寰,杨光宇.中国野生大豆生物学研究[M].北京:科学出版社,1999,1-98.
    [8]庄炳昌,许航,王玉民,等.中国野生大豆(G.soja)茎叶性状的多态性及其地理分布[J].作物学报,1996,22(5):583-586.
    [9]徐豹,徐航,庄炳昌,等.中国野生大豆(G.soja)籽粒性状的遗传多样性及地理分布[J].作物学报,1995,21(6):733-739.
    [10]王金陵,孟庆喜,祝其昌.中国南北地区野生大豆光照生态类型的分析[J].遗传学通讯,1973,(3):1-8.
    [11]徐豹,路琴华.大豆生态研究Ⅰ.中国不同纬度野生大豆的光温生态分析[J].大豆科学,1983,2(03):155-168.
    [12]李福山,王衍桐.野生大豆分布与环境条件[J].大豆科学,1989,8(3):245-251.
    [13]邵启全,林章棋,周端敏.中国野生大豆光周期生态类型分析[J].作物学报,1980,6(1):45-50.
    [14]童川拉,黄建成.人工短日照诱导野生大豆开花的研究[J].福建农业科技,1989,3:19-20.
    [15]梁慕勤,潘世元,梁镇林.野生大豆的栽培技术及短日照处理[J].贵州农业科学,1986,4:4-5.
    [16]徐豹,路琴华.大豆生态研究Ⅲ野生大豆(G.soja)与栽培大豆(G.max)光周期效应的比较研究[J].大豆科学,1988,7(4):270-275.
    [17]史宏.路贵和,马俊奎,等.野生大豆形态特征及生育特性研究[J].山西农业科学,2000 ,28(3):29-31.
    [18]全国野生大豆考察组.中国野生大豆考察报告[J].中国农业科学,1983,26:47-55.
    [19]李福山.大豆起源及其演化研究[J].大豆科学,1994,13(1):61-66.
    [20]董英山,庄炳昌,赵丽梅,等.中国野生大豆遗传多样性中心[J].作物学报,2000,26(5):521-527.
    [21]严华军,吴乃虎.DNA分子标记技术及其在植物遗传多样性研究中的应用[J].生命科学1996,8(3):32-36.
    [22]李桂兰,张悦,乔亚科,等.冀东沿海地区野生大豆过氧化物酶同工酶多样性研究[J].中国油料作物学报,2009,31(3):386-390.
    [23]Rafalski J A,Tingey S V. Genetic diagnostics in plant breeding:RAPDs,microsatellites and machines [J].Trends Genet,1993,9:275-280.
    [24]Zietkiewicz E,Rafalski A,Labuda D. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerise chain reaction amplification[J].Genomics,1994,20:176-183.
    [25]关强,张月学,徐香玲,等.DNA分子标记的研究进展及几种新型分子标记技术[J].黑龙江农业科学.2008(1):102-104.
    [26]Litt M,Luty J A. A hypervariable microsatellite revealed by in vitro amplification of dinucieotide repeat within the cardiac muscle actin gene[J].Am J Hum Genet,1989,44:388-396.
    [27]边银丙,宋小亚.几种新型DNA分子标记及其在食用菌研究中的应用[J].食用菌学报2006.13(1):78~81.
    [28]翁跃进.AFLP—一种DNA分子标记新技术[J].遗传,1996,18:29-31.
    [29]缪颖.AFLP分子标记及其应用[J].亚热带植物通讯,1999,28(2):55-60.
    [30]梁慧玲,梁月荣.植物分子标记技术原理及其在茶树育种中的应用[J].茶叶,2003,29(4):191-194.
    [31]刘萌娟,胡胜武,赵惠贤,等.基于农艺性状和RAPD片断的陕西大豆种质资源遗传多样性研究[J].西北农业学报,2009,18(5):159-166.
    [32]寿惠霞,王志安,沈晓霞.野生大豆和栽培大豆的根尖细胞核型与进化[J].浙江农业大学学报,1997,23(4):447-450.
    [33]弭忠祥,陆印,王春海,等.栽培大豆与野生大豆染色体超微结构的比较研究[J].黑龙江农业科学,1999,1:1-3.
    [34]Roder M S,Korum V,Wendehake K.et al. A micro satellite mapping in wheat [J]. Genetics ,1998,(149):2007-2023.
    [35]Yang G P,Maroof M A,Xu C G,et al.Comparative analysis of microsatellite DNA polymorphism in landraces and cultivars of rice[J].MGG,1994,(245);187-194.
    [36]薛中天,徐美琳,庄乃亮,等.野生大豆(Glycine soja)球蛋白glycinin Gy4基因家族的两种表达拷贝[J].中国科学,1987,14(8):832-839.
    [37]惠东威,陈受宜,庄炳昌.利用rRNA基因ITS-I序列构建的大豆属12个种的种系关系[J].中国科学:1997,327-333.
    [38]Choi Ik-Young,Kang Jung-Hoon,Song Hi-Sup,et al. Genetic diversity measured by simple sequence repeat variations among the wild soybean,Glycine soja,collected along the riverside of five major rivers in Korea[J]. Genes and Genetic Systems.1999,74 (4):169-177
    [39]关荣霞,刘秀敏,常汝镇,等.辽宁新宾县原位保护区野生大豆遗传多样性分析[J].高技术通讯,2006,16(1):67-72.
    [40]王果,王成社,张辉.河南省野生大豆资源遗传多样性分析[D].杨凌:西北农林科技大学,2006.
    [41]刘亚男,李向华,王克晶.国家基因库野生大豆微核心样本遗传变异性的SSR标记分析[J].植物遗传资源学报,2009,10(2):211-217.
    [42]夏冰,卢新雄,陈晓玲、等.利用SSR分子标记检测分析30份大豆种质遗传完整性[J].大豆科学,2007,26(3):305-309.
    [43]王传堂,黄粤.改良CTAB法和高盐低pH值法提取花生DNA的效果[J].花生学报,2002,31(3):20-23.
    [44]赵洪馄,王玉民,李启云,等.中国不同纬度野生大豆和栽培大豆SSR分析[J].大豆科学.2001,20(3):172-176.
    [45]孙君灵,杜雄明,孙其信,等.棉花γ射线诱变后代的SSR标记遗传多样性[J].中国农业科学,2006,39(10):1967-1976.
    [46]Nei M,Li W H. Mathematical model for studying genetic variation in terms of restriction endonucleases [J]. Proceedings of the National Academy of Sciences of the United States of America,1979,5269-5273.
    [47]府宇雷,钱吉,张美云,等.金华地区野生大豆小种群的分子生态学研究[J].复旦学报(自然科学版),1999,38(5):584-586.
    [48]Sokal R R, Waterberg D E. A test of spatial autocorrelation analysis using an isolation-by-distance model [J]. Genetics,1983,105:219-237.
    [49]朴向民,张圣珍,许建,等.中国吉林省和韩国野生大豆的遗传多样性及遗传关系分析[J]. 大豆科学,2009,28(2):181-185.
    [50]朱维岳,周桃英.基于遗传多样性和空间遗传结构的野生大豆居群采样策略[J].复旦学报(自然科学版),2006,45(3)222-228.
    [51]赵茹,程舟,陆伟峰,等.基于分子标记的野生大豆居群遗传多样性估算与取样策略[J].科学通报,2006,51(9):1042-1048.
    [52]Furnier G R,Knowles P,Ciyde M A,et al. Effect of avian seed dispersal on the genetic structure of whitebark pine populations[J].Evolution,1987,41:607-612.
    [53]周晓馥,庄炳昌,王玉民,等.利用RAPD与SSR技术进行野生大豆种群内分化的研究[J].中国生态农业学报,2002,10(4):6-9.