菘蓝中木脂素生源合成途径五个关键酶基因的克隆与功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
菘蓝(Isatis indigotica Fort.),十字花科二年生草本。其根入药为板蓝根,其叶入药为大青叶,有清热解毒、凉血消斑、利咽止痛的功效,临床用于流行性感冒、流行性乙型脑炎、流行性腮腺炎、急慢性肝炎、带状疱疹等。前期研究表明,落叶松脂素和落叶松脂素苷正是我国传统中药板蓝根发挥抗病毒功效的重要活性物质基础,然而其含量相对较低。到目前为止,菘蓝中木脂素生源合成途径研究很少,该途径上的一些重要的酶基因尚未得到分离。
     本研究采用cDNA末端快速扩增(Rapid amplification of cDNA ends, RACE)技术,首次从菘蓝植物中克隆得到落叶松脂素生源合成途径的五个关键酶基因:肉桂酸-4-羟基化酶(cinnamic acid 4-hydroxylase, C4H)、4-香豆酸:辅酶A连接酶(4-coumarate coenzyme A ligase,4CL)、肉桂酰辅酶A还原酶(cinnamoyl-CoA reductase, CCR)、肉桂醇脱氢酶(cinnamyl alcohol dehydrogenase, CAD)、UDP-葡萄糖基转移酶(UDP-glucosyltransferase, UGT)的全长cDNA序列和基因组DNA序列。对相关基因进行了蛋白结构的预测和初步的生物信息学分析,对Iiccr进行了原核表达的功能分析。
     Iic4h基因:肉桂酸-4-羟基化酶(C4H, EC 1.14.13.11)属于细胞色素单加氧酶P450超家族,是公共苯丙烷途径中的第二个关键酶,催化反式肉桂酸转变为p-羟基肉桂酸。其全长cDNA为1674 bp (GenBank登录号:GU014562),包含一个1530 bp的开放阅读框(Open reading frame, ORF),编码509个氨基酸残基。对应的基因组分析表明,lic4h含两个内含子,三个外显子。在根茎叶各器官中均有表达,其中根中最多。考察了各种刺激因素对Iic4h表达的影响,结果显示紫外照射(Ultraviolet-B radiation, UV-B)、茉莉酸甲酯(Methyl jasmonate, MeJA)、脱落酸(abscisic acid,ABA)和赤霉素(Gibberellins, GA3)在一定程度上能够诱导Iiccr的表达上调。
     Iiccr基因:肉桂酰辅酶A还原酶(CCR, EC 1.2.1.44)是木脂素特异合成途径的第一个关键酶,可催化3种羟基肉桂酸的辅酶A酯的还原成相应的肉桂醛。其cDNA序列全长1368 bp (GenBank登录号:GQ872418),包含长度为79 bp的5’非编码区(Untranslated Regions, UTR),263 bp的3’UTR,包含一个完整的1026 bp的ORF,编码341个氨基酸残基。对应的基因组分析表明,Iiccr无内含子。该基因在菘蓝中为组成型表达,且根中的表达最高。考察了各种刺激因素对Iiccr表达的影响,结果显示UV-B、MeJA和GA3在一定程度能够诱导Iiccr的表达上调,而ABA却能够抑制Iiccr的表达。构建其原核表达载体pET-32a(+),利用大肠杆菌E.coli BL21(DE3)表达其重组蛋白。
     Iiugt基因:UDP-葡萄糖基转移酶(UGT, EC 2.4.1.91)催化相关的木脂素单体成苷。其全长cDNA为1576 bp(GenBank登录号:GU434222),包含一个1431 bp的ORF,编码476个氨基酸残基。对应的基因组分析表明,Iigut无内含子。
     Ii4cl基因:4-香豆酸:辅酶A连接酶(4CL, EC 6.2.1.12)是苯丙烷代谢途径的最后一个酶,在苯丙烷代谢途径中处于终端位置,催化4-香豆酸生成4-香豆酰辅酶A。其cDNA全长为1967bp (GenBank登录号:GU937875),包含一个1632 bp的ORF,编码543个氨基酸残基。对应的基因组分析表明,Ii4cl含有五个内含子,六个外显子。
     Iicad基因:肉桂醇脱氢酶(CAD, EC 1.1.195)催化肉桂醛生成肉桂醇,其cDNA全长为1402 bp (GenBank登录号:GU937874),包含一个1083 bp的ORF,编码360个氨基酸残基。对应的基因组分析表明,Iicad含有三个内含子,四个内含子。
     菘蓝中木脂素生源合成途径五个关键酶基因的克隆与特征分析,为全面阐述菘蓝中木脂素类化合物的代谢流特征,开展植物次生代谢基因工程提高菘蓝中抗病毒活性成分含量打下良好基础。
Isatis indigotica Fort. has been used in traditional Chinese medicine since ancient times. Its leaves and roots, known as Daqingye and Banlangen, respectively, are frequently used as anti-leukemia, antipyretic, anti-inflammatory and anti-influenza agents. By investigation on its chemical constituents and antivirus activity study, we found that the lignans inⅠ. indigotica, including Lariciresinol and Larch Lignan glycosides, showed significant antivirus activity. However, their content inⅠ. indigotica is very low. Until now, there is few research report on the lignan biosynthesis inⅠ. indigotica, and many important enzymes involved in the pathway have not been isolated.
     In the present study, five genes involved in the lignan biosynthesis pathway inⅠ. indigotica have been firstly cloned, using the method of rapid amplification of cDNA ends (RACE). Characterization, structure prediction and bioinformatics analysis of these five novel genes, as well as expression of Iiccr in E.coli were performed and reported as follows:
     1. Iic4h gene:Cinnamate 4-hydroxylase (C4H, EC 1.14.13.11) is the first P450 upstream in the phenylpropanoid pathway, which catalyses the hydroxylation of cinnamic acid to coumaric acid. The full-length cDNA of Iic4h was 1368 bp (GenBank accession no. GQ872418) long with an open reading frame (ORF) of 1026 bp encoding a polypeptide of 341 amino acid residues. The comparison of Ii4h genomic DNA sequences and Iic4h cDNA sequence revealed that the Iic4h genomic DNA contained two introns. Southern-blot analysis indicated that Iic4h is a multiple copy gene. Iic4h expression could be detected in all tissues at different expression levels, with the strongest expression in roots. Further expression analysis revealed that the signaling components of defense/stress pathways, such as ultraviolet-B radiation (UV-B), methyl jasmonate (MeJA), abscisic acid (ABA)and Gibberellins (GA3) could up-regulate the Iic4h transcript levels compared with the control.
     2. Iiccr gene:Cinnamoyl coenzyme A reductase (CCR, EC 1.2.1.44), one of the key enzymes in the biosynthesis of lignins monomers, catalyzes the NADPH-dependent reduction of cinnamoyl-CoA esters to their corresponding cinnamaldehydes. The full-length cDNA of Iiccr was 1674 bp (GenBank accession no. GU014562) long with an ORF of 1233 bp encoding a polypeptide of 411 amino acid residues. The analyses of genomic DNA sequences revealed that Iiccr cDNA sequence and the genomic sequence were identical, which indicated that the Iiccr gene did not contain introns. Southern-blot analysis indicated that Iiccr is a multiple copy gene.IiCCR expression could be detected in all tissues at different expression levels, with the strongest expression in roots. Further expression analysis revealed that UV-B, MeJA and GA3 could up-regulate the Iiccr transcript levels compared with the control, while ABA down-regulate the Iiccr transcript levels. The expression construct of Iiccr with pET-32a(+) was transformed into E.coli BL21(DE3), and the recombinant IiCCR protein was detected by SDS-PAGE analysis.
     3.Iiugt gene:UDP-glucosyltransferase (UGT, EC 2.4.1.91) catalyzes the addition of the glycosyl group from a UTP-sugar to a small hydrophobic molecule. The full-length cDNA of liugt was 1576 bp (GenBank accession no. GU434222) long with an ORF of 1431 bp encoding a polypeptide of 476 amino acid residues. The analyses of genomic DNA sequences revealed that Iiugt cDNA sequence and the genomic sequence were identical, which indicated that the liugt gene did not contain introns.
     4.1i4cl gene:4-coumarate:CoA ligase (4CL, EC 6.2.1.12) is the last enzyme of the general phenylpropanoid pathway, which catalyzes the conversion of 4-coumarate and other 4-hydroxycinnamates to their corresponding CoA thiol esters. The full-length cDNA of Ii4cl was 1967 bp (GenBank accession no. GU937875) long with an ORF of 1632 bp encoding a polypeptide of 543 amino acid residues. The comparison of Ii4cl genomic DNA sequences and Ii4cl cDNA sequence revealed that the Ii4cl genomic DNA contained five introns.
     5.Iicad gene:Cinnamyl alcohol dehydrogenase (CAD, EC1.1.195) catalyzes the synthesis of cinnamyl alcohols from corresponding cinnamaldehydes. The full-length cDNA of Iicad was 1402 bp (GenBank accession no. GU937874) long with an ORF of 1083 bp encoding a polypeptide of 360 amino acid residues. The comparison of Iicad genomic DNA sequences and Iicad cDNA sequence revealed that the Iicad genomic DNA contained three introns.
     Five key genes involved in the lignan biosynthesis pathway were isolated from medicinal plant 1. indigotica, and their stuctural and bioinformatic analyses were carried out, which will help us to further illuminate this pathway. The research also provides a possibility to elevate the content of lignans inⅠ. indigotica by plant metabolic engineering.
引文
1. 国家药典委员会.中华人民共和国药典(一部).2005:16
    2. 倪华,施霞,刘云海.板蓝根化学成分及其药理活性研究进展.齐齐哈尔医学院学报,2008,29(13):1609-1611
    3. 李彬.板蓝根活性成分及品质评价:[博士学位论文].上海:第二军医大学,2003
    4. 刘盛,乔伟卓,王寅.不同栽培居群板蓝根抗内毒素活性差异原因的研究.中国中药杂志,1999,24(7):398-400
    5. 乔传卓,崔熙,李红方.菘蓝多倍体育种的研究.植物学报,1989,31(9):678-681
    6. 乔传卓,戴富宝,崔熙.两种倍性水平菘蓝的生药学研究.中药学,1995,26(8):423-425
    7. 乔传卓,张汉明.抗内毒素实验评价四倍体板蓝根.第二军医大学学报,1995,16(4):395-396
    8. 王寅,乔传卓.四倍体菘蓝体外抗内毒素,抗病毒作用评价.中国中药杂志,2000,25(6):327-329
    9. B. Lu, X. Pan, L. Zhang, B. Huang, L. Sun, B. Li, B. Yi, S. Zheng, X. Yu, R. Ding. A genome-wide comparison of genes responsive to autopolyploidy in Isatis indigotica using Arabidopsis thaliana Affymetrix genechips. Plant Molecular Biology Reporter,2006,24(2):197-204
    10. J. Rios, R. Giner, J. Prieto. New findings on the bioactivity of lignans. Studies in Natural Products Chemistry,2002,26:183-292
    11. M.S. Touillaud, A.C. Thiebaut, A. Fournier, M. Niravong, M.C. Boutron-Ruault, F. Clavel-Chapelon. Dietary lignan intake and postmenopausal breast cancer risk by estrogen and progesterone receptor status. J Natl Cancer Inst,2007,99(6):475-486
    12. G. von Krogh. Podophyllotoxin for condylomata acuminata eradication. Clinical and experimental comparative studies on Podophyllum lignans, colchicine and 5-fluorouracil. Acta Derm Venereol Suppl (Stockh),1981,98:1-48
    13.陈茹,赵健雄,王学习,李世刚,王惠娟.糙叶败酱总木脂素对k562细胞体外生长的影响.四川中医,2007,25(5):14-17
    14. C.Y. Duh, C.H. Phoebe, Jr., J.M. Pezzuto, A.D. Kinghorn, N.R. Farnsworth. Plant anticancer agents, XLII. Cytotoxic constituents from Wikstroemia elliptica. J Nat Prod,1986,49(4):706-709
    15. M.R. Kernan, A. Sendl, J.L. Chen, S.D. Jolad, P. Blanc, J.T. Murphy, C.A. Stoddart, W. Nanakorn, M.J. Balick, E.J. Rozhon. Two new lignans with activity against influenza virus from the medicinal plant Rhinacanthus nasutus. J Nat Prod,1997,60(6):635-637
    16. D.F. Chen, S.X. Zhang, L. Xie, J.X. Xie, K. Chen, Y. Kashiwada, B.N. Zhou, P. Wang, L.M. Cosentino, K.H. Lee. Anti-AIDS agents—ⅩⅩⅥ. Structure-activity correlations of gomisin-G-related anti-HIV lignans from Kadsura interior and of related synthetic analogues. Bioorg Med Chem,1997,5(8):1715-1723
    17.周世文,周宁,徐传福.中草药抗肝细胞损伤有效成分研究进展.中国药学杂志,1995,30(2):67
    18. T.M. Zhang, B.E. Wang, G.T. Liu. Effect of schisandrin B on lipoperoxidative damage to plasma membrane of rat liver in vitro. Zhongguo Yao Li Xue Bao,1992,13(3):255-258
    19.韩桂秋.中草药中中血小板活化因子受体拮抗活性成分的研究.自然科学进展展.国家重点实验室通讯,1995,5(2):161
    20.王雪松,王伟,阮旭中.海风藤新木脂素类成分对缺血再灌注鼠脑损伤的保护作用.中国药理学通报,2002,18(6):161
    21. T.M. Kutchan. Alkaloid Biosynthesis-The Basis for Metabolic Engineering of Medicinal Plants. Plant Cell,1995,7(7):1059-1070
    22. U. Bayindir, A.W. Alfermann, E. Fuss. Hinokinin biosynthesis in Linum corymbulosum Reichenb. Plant J,2008,55(5):810-820
    23. R. Vanholme, K. Morreel, J. Ralph, W. Boerjan. Lignin engineering. Curr Opin Plant Biol,2008, 11(3):278-285
    24. S.L. Butland, M.L. Chow, B.E. Ellis. A diverse family of phenylalanine ammonia-lyase genes expressed in pine trees and cell cultures. Plant Mol Biol,1998,37(1):15-24
    25. T. Fukasawa-Akada, S.D. Kung, J.C. Watson. Phenylalanine ammonia-lyase gene structure, expression, and evolution in Nicotiana. Plant Mol Biol,1996,30(4):711-722
    26. A. Kumar, B.E. Ellis. The phenylalanine ammonia-lyase gene family in raspberry. Structure, expression, and evolution. Plant Physiol,2001,127(1):230-239
    27. B.K. Lee, M.R. Park, B. Srinivas, J.C. Chun, I.S. Kwon, I.M. Chung, N.H. Yoo, K.G. Choi, S.J. Yun. Induction of phenylalanine ammonia-lyase gene expression by paraquat and stress-related hormones in Rehmannia glutinosa. Mol Cells,2003,16(1):34-39
    28. B.-B. Lu, Z. Du, R.-X. Ding, L. Zhang, X.-J. Yu, C.-H. Liu, W.-S. Chen. Cloning and Characterization of a Differentially Expressed Phenylalanine Ammonialyase Gene liPAL After Genome Duplication from Tetraploid Isatis indigotica Fort. Journal of Integrative Plant Biology, 2006,48(12):1439-1449
    29. V. Mahesh, J.J. Rakotomalala, L. Le Gal, H. Vigne, A. de Kochko, S. Hamon, M. Noirot, C. Campa. Isolation and genetic mapping of a Coffea canephora phenylalanine ammonia-lyase gene (CcPAL1) and its involvement in the accumulation of caffeoyl quinic acids. Plant Cell Rep,2006,25(9): 986-992
    30. H.P. Li, Y.C. Liao. [Isolation and characterization of two closely linked phenylalanine ammonia-lyase genes from wheat]. Yi Chuan Xue Bao,2003,30(10):907-912
    31. Y.-S. Hu, L. Zhang, P. Di, W.-S. Chen. Cloning and Induction of Phenylalanine Ammonia-lyase Gene from Salvia miltiorrhiza and Its Effect on Hydrophilic Phenolic Acids Levels. Chinese Journal of Natural Medicines,2009,7(6):449-457
    32. R.W. Whetten, R.R. Sederoff. Phenylalanine Ammonia-Lyase from Loblolly Pine:Purification of the Enzyme and Isolation of Complementary DNA Clones. Plant Physiol,1992,98(1):380-386
    33. B. Gabriac, D. Werck-Reichhart, H. Teutsch, F. Durst. Purification and immunocharacterization of a plant cytochrome P450:the cinnamic acid 4-hydroxylase. Archives of Biochemistry and Biophysics,1991,288(1):302-309
    34. S. Kawai, A. Mori, T. Shiokawa, S. Kajita, Y. Katayama, N. Morohoshi. Isolation and analysis of cinnamic acid 4-hydroxylase homologous genes from a hybrid aspen, Populus kitakamiensis. Biosciences Biotechnology and Biochemistry,1996,60(10):1586-1597
    35. D. Bell-Lelong, J. Cusumano, K. Meyer, C. Chapple. Cinnamate-4-hydroxylase expression in Arabidopsis (regulation in response to development and the environment). Plant Physiology,1997, 113(3):729
    36. J.M. Whitbred, M.A. Schuler. Molecular characterization of CYP73A9 and CYP82A1 P450 genes involved in plant defense in pea. Plant Physiology,2000,124(1):47-58
    37. S. Liu, Y. Hu, X. Wang, L. Han, S. Song, H. Cheng, Z. Lin. Isolation and characterization of a gene encoding cinnamate 4-hydroxylase from Parthenocissus henryana. Mol Biol Rep,2009,36(6): 1605-1610
    38. A. Chen, Y. Chai, J. Li, L. Chen. Molecular cloning of two genes encoding cinnamate 4-hydroxylase (C4H) from oilseed rape (Brassica napus). Journal of Biochemistry and Molecular Biology,2007,40(2):247-260
    39. J. Ehlting, J.J. Shin, C.J. Douglas. Identification of 4-coumarate:coenzyme A ligase (4CL) substrate recognition domains. Plant J,2001,27(5):455-465
    40. C. Douglas, H. Hoffmann, W. Schulz, K. Hahlbrock. Structure and elicitor or u.v.-light-stimulated expression of two 4-coumarate:CoA ligase genes in parsley. EMBO J,1987,6(5):1189-1195
    41. M. Becker-Andre, P. Schulze-Lefert, K. Hahlbrock. Structural comparison, modes of expression, and putative as-acting elements of the two 4-coumarate:CoA ligase genes in potato. J Biol Chem, 1991,266:8551-8559
    42. K. Voo, R. Whetten, D. O'Malley, R. Sederoff.4-Coumarate:coenzyme A ligase from loblolly pine xylem (isolation, characterization, and complementary DNA cloning). Plant Physiology,1995, 108(1):85
    43. D. Lee, C.J. Douglas. Two divergent members of a tobacco 4-coumarate:coenzyme A ligase (4CL) gene family. cDNA structure, gene inheritance and expression, and properties of recombinant proteins. Plant Physiol,1996,112(1):193-205
    44. C. Lindermayr, B. Mollers, J. Fliegmann, A. Uhlmann, F. Lottspeich, H. Meimberg, J. Ebel. Divergent members of a soybean (Glycine max L.) 4-coumarate:coenzyme A ligase gene family. Eur. J. Biochem,2002,269:1304-1315
    45. J. Ehlting, D. Buttner, Q. Wang, C. Douglas, I. Somssich, E. Kombrink. Three 4-coumarate: coenzyme A ligases in Arabidopsis thaliana represent two evolutionarily divergent classes in angiosperms. The Plant Journal,1999,19(1):9-20
    46. W.J. Hu, S.A. Harding, J. Lung, J.L. Popko, J. Ralph, D.D. Stokke, C.J. Tsai, V.L. Chiang. Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees. NatBiotechnol,1999,17(8):808-812
    47. G. Schoch, S. Goepfert, M. Morant, A. Hehn, D. Meyer, P. Ullmann, D. Werck-Reichhart. CYP98A3 from Arabidopsis thaliana is a 3'-hydroxylase of phenolic esters, a missing link in the phenylpropanoid pathway. J Biol Chem,2001,276(39):36566-36574
    48. E. Lacombe, S. Hawkins, J. Van Doorsselaere, J. Piquemal, D. Goffner, O. Poeydomenge, A.M. Boudet, J. Grima-Pettenati. Cinnamoyl CoA reductase, the first committed enzyme of the lignin branch biosynthetic pathway:cloning, expression and phylogenetic relationships. Plant J,1997, 11(3):429-441
    49. J. Piquemal, C. Lapierre, K. Myton, A. O'connell, W. Schuch, J. Grimapettenati, A. Boudet. Down-regulation of Cinnamoyl-CoA Reductase induces significant changes of lignin profiles in transgenic tobacco plants. The Plant Journal,1998,13(1):71-83
    50. T. Luderitz, H. Grisebach. Enzymic synthesis of lignin precursors. Comparison of cinnamoyl-CoA reductase and cinnamyl alcohol:NADP+dehydrogenase from spruce (Picea abies L.) and soybean (Glycine max L.). Eur J Biochem,1981,119(1):115-124
    51. F. Sarni, C. Grand, A.M. Boudet. Purification and properties of cinnamoyl-CoA reductase and cinnamyl alcohol dehydrogenase from poplar stems (Populus X euramericana). Eur J Biochem, 1984,139(2):259-265
    52. J. Leple, J. Grima-Pettenati, M. Montagu, W. Boerjan. A cDNA encoding cinnamoyl-CoA reductase from Populus trichocarpa. Plant Physiol,1998,117:1126
    53. M. Pichon, I. Courbou, M. Beckert, A. Boudet, J. Grima-Pettenati. Cloning and characterization of two maize cDNAs encoding cinnamoyl-CoA reductase (CCR) and differential expression of the corresponding genes. Plant Molecular Biology,1998,38(4):671
    54. G SELMAN-HOUSEIN, M. LOPEZ, D. HERNANDEZ, L. CIVARDI, F. MIRANDA, J. RIGAU, P. PUIGDOMENECH. Molecular cloning of cDNAs coding for three sugarcane enzymes involved in lignification. Plant science(Limerick),1999,143(2):163-171
    55. V. Lauvergeat, C. Lacomme, E. Lacombe, E. Lasserre, D. Roby, J. Grima-Pettenati. Two cinnamoyl-CoA reductase (CCR) genes from Arabidopsis thaliana are differentially expressed during development and in response to infection with pathogenic bacteria. Phytochemistry,2001, 57(7):1187-1195
    56. Z. Lin, Q. Ma, M. Ma. Cloning and expression analysis of two wheat cDNAs encoding cinnamoyl-CoA reductase. Acta Botanica Sinica,2001,43:1043
    57. M.H. Walter, J. Grima-Pettenati, C. Grand, A.M. Boudet, C.J. Lamb. Cinnamyl-alcohol dehydrogenase, a molecular marker specific for lignin synthesis:cDNA cloning and mRNA induction by fungal elicitor. Proc Natl Acad Sci U S A,1988,85(15):5546-5550
    58. M.E. Knight, C. Halpin, W. Schuch. Identification and characterisation of cDNA clones encoding cinnamyl alcohol dehydrogenase from tobacco. Plant Mol Biol,1992,19(5):793-801
    59. J. Grima-Pettenati, C. Feuillet, D. Goffner, G Borderies, A.M. Boudet. Molecular cloning and expression of a Eucalyptus gunnii cDNA clone encoding cinnamyl alcohol dehydrogenase. Plant Mol Biol,1993,21(6):1085-1095
    60. T. Hibino, D. Shibata, J. Chen, T. Higuchi. Cinnamyl alcohol dehydrogenase from Aralia cordata: cloning of the cDNA and expression of the gene in lignified tissues. Plant and cell physiology, 1993,34(5):659
    61. H. Galliano, M. Cabane, C. Eckerskorn, F. Lottspeich, H. Sandermann, Jr., D. Ernst. Molecular cloning, sequence analysis and elicitor-/ozone-induced accumulation of cinnamyl alcohol dehydrogenase from Norway spruce (Picea abies L.). Plant Mol Biol,1993,23(1):145-156
    62. J. MacKay, W. Liu, R. Whetten, R. Sederoff, D. O'Malley. Genetic analysis of cinnamyl alcohol dehydrogenase in loblolly pine:single gene inheritance, molecular characterization and evolution. Molecular and General Genetics MGG,1995,247(5):537-545
    63. Y. Sato, T. Watanabe, A. Komamine, T. Hibino, D. Shibata, M. Sugiyama, H. Fukuda. Changes in the activity and mRNA of cinnamyl alcohol dehydrogenase during tracheary element differentiation in zinnia. Plant Physiol,1997,113(2):425-430
    64. A. Anterola, N. Lewis. Trends in lignin modification:a comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity. Phytochemistry,2002, 61(3):221-294
    65. D. Guo, F. Chen, K. Inoue, J. Blount, R. Dixon. Downregulation of caffeic acid 3-O-methyltransferase and caffeoyl CoA 3-O-methyltransferase in transgenic alfalfa:impacts on lignin structure and implications for the biosynthesis of G and S lignin. The Plant Cell Online, 2001,13(1):73
    66.陆倍倍.四倍体菘蓝中优良品质相关基因的克隆及研究:[硕士学位论文].上海:第二军医大学,2006
    67. Q.H. Ma, Y. Xu. Characterization of a caffeic acid 3-O-methyltransferase from wheat and its function in lignin biosynthesis. Biochimie,2008,90(3):515-524
    68. J.E. Poulton, V.S. Butt. Purification and properties of S-adenosyl-L-methionine:caffeic acid O-methyltransferase from leaves of spinach beet (Beta vulgaris L). Biochim Biophys Acta,1975, 403(2):301-314
    69. R. Edwards, R.A. Dixon. Purification and characterization of S-adenosyl-L-methionine:caffeic acid 3-O-methyltransferase from suspension cultures of alfalfa (Medicago sativa L.). Arch Biochem Biophys,1991,287(2):372-379
    70. D. Schmitt, A.E. Pakusch, U. Matern. Molecular cloning, induction and taxonomic distribution of caffeoyl-CoA 3-O-methyltransferase, an enzyme involved in disease resistance. J Biol Chem,1991, 266(26):17416-17423
    71. Z.H. Ye, R.E. Kneusel, U. Matern, J.E. Varner. An alternative methylation pathway in lignin biosynthesis in Zinnia. Plant Cell,1994,6(10):1427-1439
    72. F. Chen, S. Yasuda, K. Fukushima. Evidence for a novel biosynthetic pathway that regulates the ratio of syringyl to guaiacyl residues in lignin in the differentiating xylem of Magnolia kobus DC. Planta,1999,207(4):597-603
    73. M. Ruegger, K. Meyer, J. Cusumano, C. Chapple. Regulation of ferulate-5-hydroxylase expression in Arabidopsis in the context of sinapate ester biosynthesis. Plant Physiology,1999,119(1):101
    74. B. Burchell, D.W. Nebert, D.R. Nelson, K.W. Bock, T. Iyanagi, P.L. Jansen, D. Lancet, G.J. Mulder, J.R. Chowdhury, G. Siest, et al. The UDP glucuronosyltransferase gene superfamily:suggested nomenclature based on evolutionary divergence. DNA Cell Biol,1991,10(7):487-494
    75. S. Schulte, W. Stoffel. Ceramide UDPgalactosyltransferase from myelinating rat brain:purification, cloning, and expression. Proc Natl Acad Sci U S A,1993,90(21):10265-10269
    76. D. Furtek, J.W. Schiefelbein, F. Johnston, O.E. Nelson. Sequence comparisons of three wild-type Bronze-1 alleles from Zea mays. Plant Molecular Biology,1988,11(4):473-481
    77. D.R. O'Reilly, L.K. Miller. A baculovirus blocks insect molting by producing ecdysteroid UDP-glucosyl transferase. Science,1989,245(4922):1110-1112
    78. C. Hernandez, C. Olano, C. Mendez, J.A. Salas. Characterization of a Streptomyces antibioticus gene cluster encoding a glycosyltransferase involved in oleandomycin inactivation. Gene,1993, 134(1):139-140
    79. P. Pare, H. Wang, L. Davin, N. Lewis. (+)-Pinoresinol synthase:a stereoselective oxidase catalysing 8,8'-lignan formation in Forsythia intermedia. Tetrahedron Letters,1994,35(27): 4731-4734
    80. D.R. Gang, M.A. Costa, M. Fujita, A.T. Dinkova-Kostova, H.B. Wang, V. Burlat, W. Martin, S. Sarkanen, L.B. Davin, N.G. Lewis. Regiochemical control of monolignol radical coupling:a new paradigm for lignin and lignan biosynthesis. Chem Biol,1999,6(3):143-151
    81. S. Ogita, H. Uefuji, Y. Yamaguchi, N. Koizumi, H. Sano. Producing decaffeinated coffee plants. Nature,2003,423(6942):823
    82. Y. Pang, G.J. Peel, S.B. Sharma, Y. Tang, R.A. Dixon. A transcript profiling approach reveals an epicatechin-specific glucosyltransferase expressed in the seed coat of Medicago truncatula. Proc Natl Acad Sci U S A,2008,105(37):14210-14215
    83. L. Zhang, R. Ding, Y. Chai, M. Bonfill, E. Moyano, K.M. Oksman-Caldentey, T. Xu, Y. Pi, Z. Wang, H. Zhang, G. Kai, Z. Liao, X. Sun, K. Tang. Engineering tropane biosynthetic pathway in Hyoscyamus niger hairy root cultures. Proc Natl Acad Sci U S A,2004,101(17):6786-6791
    84. K. Blee, J.W. Choi, A.P. O'Connell, S.C. Jupe, W. Schuch, N.G. Lewis, G.P. Bolwell. Antisense and sense expression of cDNA coding for CYP73A15, a class II cinnamate 4-hydroxylase, leads to a delayed and reduced production of lignin in tobacco. Phytochemistry,2001,57(7):1159-1166
    85. J. Wadenback, S. von Arnold, U. Egertsdotter, M.H. Walter, J. Grima-Pettenati, D. Goffner, G. Gellerstedt, T. Gullion, D. Clapham. Lignin biosynthesis in transgenic Norway spruce plants harboring an antisense construct for cinnamoyl CoA reductase (CCR). Transgenic Res,2008,17(3): 379-392
    86. H.J. Kim, E. Ono, K. Morimoto, T. Yamagaki, A. Okazawa, A. Kobayashi, H. Satake. Metabolic engineering of lignan biosynthesis in Forsythia cell culture. Plant Cell Physiol,2009,50(12): 2200-2209
    87. S. Kumar, K. Tamura, I.B. Jakobsen, M. Nei. MEGA2:molecular evolutionary genetics analysis software. Bioinformatics,2001,17(12):1244-1245
    88. N. Saitou, M. Nei. The neighbor-joining method:a new method for reconstructing phylogenetic trees. Mol Biol Evol,1987,4(4):406-425
    89. J.D. Thompson, D.G. Higgins, T.J. Gibson. CLUSTAL W:improving the sensitivity of progressive
    multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res,1994,22(22):4673-4680
    90. C. Combet, C. Blanchet, C. Geourjon, G. Deleage. NPS@:network protein sequence analysis. Trends Biochem Sci,2000,25(3):147-150
    91. K. Arnold, L. Bordoli, J. Kopp, T. Schwede. The SWISS-MODEL workspace:a web-based environment for protein structure homology modelling. Bioinformatics,2006,22(2):195-201
    92. N. Guex, M. Peitsch. SWISS-MODEL and the Swiss-PdbViewer:an environment for comparative protein modeling. Electrophoresis,1997,18(15):2714-2723
    93. T. Schwede, J. Kopp, N. Guex, M.C. Peitsch. SWISS-MODEL:An automated protein homology-modeling server. Nucleic Acids Res,2003,31(13):3381-3385
    94. A. Gravot, R. Larbat, A. Hehn, K. Lievre, E. Gontier, J.L. Goergen, F. Bourgaud. Cinnamic acid 4-hydroxylase mechanism-based inactivation by psoralen derivatives:cloning and characterization of a C4H from a psoralen producing plant-Ruta graveolens-exhibiting low sensitivity to psoralen inactivation. Arch Biochem Biophys,2004,422(1):71-80
    95. R.A. Dixon, N.L. Paiva. Stress-Induced Phenylpropanoid Metabolism. Plant Cell,1995,7(7): 1085-1097
    96. R. Heath, R. McInnes, A. Lidgett, H. Huxley, D. Lynch, E. Jones, N. Mahoney, G. Spangenberg. Isolation and characterisation of three 4-coumarate:CoA-ligase homologue cDNAs from perennial ryegrass (Lolium perenne). Journal of Plant Physiology,2002,159(7):773-779
    97. T. Nakatsu, S. Ichiyama, J. Hiratake, A. Saldanha, N. Kobashi, K. Sakata, H. Kato. Structural basis for the spectral difference in luciferase bioluminescence. Nature,2006,440(7082):372-376
    98. E.K. Bomati, J.P. Noel. Structural and kinetic basis for substrate selectivity in Populus tremuloides sinapyl alcohol dehydrogenase. Plant Cell,2005,17(5):1598-1611
    99. M. Baucher, B. Monties, M. Montagu, W. Boerjan. Biosynthesis and genetic engineering of lignin. Critical Reviews in Plant Sciences,1998,17(2):125-197
    100. Y. Yukimune, H. Tabata, Y. Higashi, Y. Hara. Methyl jasmonate-induced overproduction of paclitaxel and baccatin Ⅲ in Taxus cell suspension cultures. Nat Biotechnol,1996,14(9): 1129-1132
    101. C. Zhang, Q. Yan, W.K. Cheuk, J. Wu. Enhancement of tanshinone production in Salvia miltiorrhiza hairy root culture by Ag+elicitation and nutrient feeding. Planta Med,2004,70(2): 147-151